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Abstract: Over the years, the ammonia concentration in water streams and the environment
is increasing at an alarming rate. Many membrane-based processes have been studied to
alleviate this concern via adsorption and filtration. On the other hand, ammonia electro-
oxidation is an approach of particular interest owing to its energetic and environmental
benefits. Thus, a plausible alternative to combine these two paths is by using an electrocon-
ductive membrane (ECM) to complete the ammonia oxidation reaction (AOR). This combi-
nation of processes has been studied very limitedly, and it can be an area for development.
Herein, we developed a multilayered membrane with hydrophilic and electrocatalytic
properties capable of completing the AOR. The porosity of carbon black (CB) particles was
embedded in the polymeric support (CBES) and the active side was composed of a triple
layer consisting of polyamide/CB/Pt nanoparticles (PA:CB:Pt). The CBES increased the
membrane porosity, changed the pores morphology, and enhanced water permeability and
electroconductivity. The deposition of each layer was monitored and corroborated phys-
ically, chemically, and electrochemically. The final membrane CBES:PA:VXC:Pt reached
higher water flux than its PSF counterpart (3.9 ± 0.3 LMH), had a hydrophilic surface
(water contact angle: 19.8 ± 0.4◦), and achieved the AOR at −0.3 V vs. Ag/AgCl. Our
results suggest that ECMs with conductive material in both membrane layers enhanced
their electrical properties. Moreover, this study is proof-of-concept that the AOR can be
succeeded by a polymeric FO-ECMs.

Keywords: carbon black; forward osmosis; electrocatalytic membrane; hydrophilic; ammonia
electro-oxidation

1. Introduction
The production of ammonia has increased remarkably in recent years due to its diverse

uses, e.g., fertilizer, antimicrobial agents, as a precursor for nitrogenous compounds, among
others. This leads to a large fraction being released into the environment, including domestic
sewage discharges. Therefore, ammonia removal from water/wastewater has gained signifi-
cant attention, and several technologies/methods have been investigated [1–4]. Among these,
membrane-based technologies have been explored, however, the main focus has been the
membrane’s adsorptive capacity [5], size-exclusion [6] or chemical-exclusion [7] properties,
and gas extraction ability [8].
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Ammonia oxidation reaction (AOR) is one prominent electrochemical reaction with great
potential to remove ammonia from contaminated water but also to contribute to environmental
applications (e.g., ammonia fuel cells). Yet the sluggish reaction kinetics require the use of
electrocatalysts, and platinum is considered one of the most active [9–11]. Most researchers
have been centering their efforts on developing cost-effective and selective catalysts [4]. One
approach that can be implemented is the use of electroconductive membranes (ECMs) as the
catalyst to conduct the AOR. ECMs are a class of membranes where an electroactive additive is
incorporated into at least one of the membrane’s layers without affecting water permeability.
There has been plenty of evolution in this research area [12], where ECMs are capable to
prevent and mitigate the adhesion of foulants via physical [13] (i.e., electrostatic repulsions)
and chemical [14] (i.e., degradation reactions) processes. However, the AOR using ECMs for
filtration applications has not been explored, thus, it is still an area for development.

ECMs have proven to be a successful approach where the membrane combines its se-
lective separation potential with an electrochemical process. Amongst the ECMs, different
types of technologies have been investigated, including ultrafiltration [15], nanofiltra-
tion [16], and reverse osmosis [17]. Less attention has been paid to osmotically-driven
ECMs owing to the differences in water permeability rates. Nonetheless, we focused on the
forward osmosis (FO) process because their separation efficiency is comparable to that of
the pressure-driven processes, while the energy input for the driving force (i.e., osmotic
potential gradient) is substantially reduced.

Typically, FO membranes are composed of two layers: a porous support and an
active layer. Studies have shown that modifications to any of these layers can modify the
membrane properties. An ideal FO-ECM to conduct the AOR should exhibit a hydrophilic
surface to attract the ammonia molecules while allowing the water molecules to permeate
through the pores and an ammonia-selective catalytic surface. It is known that hydrophilic
surfaces can create a hydration layer, some reported examples are the use of amine-based
polymers [18,19] and zwitterions [20]. Currently, for the electroconductive character, refined
and highly graphitized carbonaceous species like carbon nanotubes and graphene oxides
have been studied [21]. In contrast, carbon black (CB) particles are less refined conductive
porous particles widely studied as electrocatalyst substrates [22,23] but are rarely used
in the membrane research area. CBs are composed of sp2 carbons with defect sites (sp3

carbons) covalently bonded to hydrophilic functional groups, such as epoxy, –COOH, and
–OH [24]. Some membranes containing CBs have emphasized their capacity to enhance
the conductivity [25] and good chemical adhesion with polymeric materials [26,27]. Also,
CBs have been used in polymer electrolyte membrane fuel cells (PEMFCs) to stabilize
and minimize the electrocatalyst agglomeration [28]. Similarly, these CB particles could
enhance the mechanical and electrochemical properties of a water filtration membrane.

As a feasible alternative, we developed a multilayered membrane exhibiting hy-
drophilic and electrocatalytic properties as a potential FO-ECM for the AOR. The rationale
for designing this complex layered membrane was to integrate distinct properties while
allowing the materials to operate synergistically. To do so, we designed the following
composite membrane: (L1) polymeric support with CBs particles, (L2) polyamide (PA),
a dense hydrophilic polymer, (L3) Vulcan XC-72 (VXC), a type of CBs with high surface
area and electroconductivity, and (L4) platinum nanoparticles as electrocatalyst for the
AOR. We monitored the morphological changes by all the layer deposition (L1–L4) using
SEM, the electrochemical properties were validated using CV and EIS, and the wettability
of the membrane’s active layer was studied with contact angle measurements. The FO
performance was examined after the deposition of each layer. Lastly, the AOR was assessed
by CV and chronoamperometry. To the best of our knowledge, this is the first time this
combination of materials has been explored for a FO-ECM. This work represents the suc-
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cessful development of a FO-ECM tailored for AOR. It provides valuable insights into the
effect of integrating materials with different properties in both layers of the membrane (i.e.,
support and active) to reach a dual-functional FO membrane. More importantly, this study
opens new possibilities for ECM and highlights their potential for ammonia removal from
water and wastewater.

2. Materials and Methods
2.1. Materials

Polysulfone (PSF, average Mn ~22,000), N-methyl-2-pyrrolidone (NMP, 99%), m-
phenylenediamine (MPD, 99%), trimesoyl chloride (TMC, 98%), hexane (anhydrous 95%),
sodium carbonate (Na2CO3, ACS reagent 99%), sodium dodecylbenzenesulfonate (SDBS,
technical grade), poly(vinyl alcohol) (PVA 150 K), glutaraldehyde (GA, 50 wt. % in H2O), hy-
drochloric acid (HCl, ACS reagent 37%), potassium tetrachloroplatinate (K2PtCl4, 99.99%),
sulfuric acid (H2SO4, ACS reagent 95.0–98.0%), sodium chloride (NaCl, ACS reagent 99.0%),
potassium hydroxide (KOH, ACS reagent, ≥85%, pellets), potassium chloride (KCl, ACS
reagent 99%), potassium ferrocyanide trihydrate (K4[Fe(CN)6], ACS reagent, 99%), and
potassium ferricyanide (K3[Fe(CN)6], ACS reagent, 99%) were all purchased from Sigma-
Aldrich (Burlington, MA, USA). Carbon black: Vulcan XC-72 (VXC), Black Pearl 280 (BP2),
and Black Pearl 430 (BP4) were obtained from Cabot Corp (Boston, MA, USA). Polyester
mesh (105 micron—52% open area) was purchased from Elko Filtering Co (Fort Lauderdale,
FL, USA). All chemicals and solvents were used as received without further purification.
Nanopure water (18.2 MΩ·cm2) was used at all times.

2.2. Methods
2.2.1. Multilayered Membrane Preparation (See Scheme 1)
Polymeric Support (Layer 1)

The polymeric supports were prepared via the non-solvent induced phase separation
(NIPS) process. Briefly, two solutions: (a) 12% w/v of polysulfone (PSF) and (b) 12% PSF
and 5% w/v black pearls 480 (BP4) were dissolved in N-methyl-2-pyrrolidone (NMP)
overnight. These solutions were casted over a polyester mesh adjusting the thickness to
150 µm. Then, the respective films were immersed in a nanopure water (npw) precipitation
bath and allowed at least 10 min to complete the precipitation process. The two supports:
(a) PSF and (b) PSF-BP4, carbon black embedded support (CBES) were stored in npw.

Polyamide—Hydrophilic Layer (Layer 2)

Once the supports were fabricated, a 2% w/v m-phenylenediamine (MPD) aqueous
solution was poured onto the membrane’s surface for 2 min and the excess was removed
using an air knife. Next, a 0.1% w/v trimesoyl chloride (TMC) solution in hexane was
poured onto the membrane’s surface for 1 min and the excess was removed by using an air
knife. Finally, the membranes were soaked in a 0.2% w/v sodium carbonate solution for
5 min, rinsed, and stored in npw.

Carbon Black Vulcan—Conductive Layer (Layer 3)

An aqueous solution of 1% Vulcan (VXC) and 10% sodium dodecylbenzenesulfonate
(SDBS) surfactant was prepared and sonicated until complete dissolution. Thereafter,
this solution was spray coated over the X:PA membranes (where X = PSF or CBES) at a
concentration of 0.05 mL/cm2, maintaining a 3 inch distance between the nozzle and the
membrane. The coating was left to dry at room temperature. An aqueous solution of
1% poly(vinyl alcohol) (PVA) was prepared, where the PVA was dissolved by stirring in
npw at 100 ◦C. Then, a thin layer of the PVA solution was air-sprayed over the VXC-SDBS
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coating. After drying at room temperature, the membranes were rinsed with abundant
npw to remove the SDBS. Lastly, to complete the crosslinking reaction, the membranes
were immersed in a 1% glutaraldehyde/1% HCl solution at 75 ◦C for 1 h. Once the reaction
was completed, the modified membranes (X:PA:VXC) were rinsed with abundant npw and
stored in water until used.

Platinum Nanoparticles Electrodeposition (Layer 4)

Once the CB conductive layer was deposited, platinum nanoparticles were electrode-
posited using a Biologic SP-240 Potentiostat from Biologic USA (Knoxville, TN, USA) and
a custom-made 3-electrode cell [29]. The membrane was used as the working electrode
on a fluorine-doped tin oxide (FTO) and carbon tape contact, the reference electrode was
Ag/AgCl (0.197V vs. NHE), and the counter electrode was a platinum wire. Cyclic voltam-
metry (CV) was used for the electrodeposition with a potential window from −0.6 V to
1.4 V vs. Ag/AgCl in 5 mM K2PtCl4 in 0.5 M H2SO4 at a scan rate of 50 mV/s for 50 cycles.
Once the reaction was completed, the membrane was rinsed thoroughly with npw.
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Scheme 1. Representation of the membrane assembling steps. L1: the support was manufactured
via phase inversion with two different casting solutions, L2: interfacial polymerization of polyamide
film, L3: spray coating of VXC, and PVA followed by a crosslinking process with glutaraldehyde
(GA), and L4: electrodeposition of Pt nanoparticles.

2.2.2. Multilayered Membrane Characterization

To study the chemical composition of the membranes, attenuated total reflectance–
Fourier transform infrared (ATR-FTIR) measurements were conducted using a Bruker
Alpha Platinum-ATR spectrometer (Billerica, MA, USA) in the transmittance mode. Briefly,
a membrane coupon was analyzed with a spectral width ranging from 4000 to 500 cm−1,
with a 4 cm−1 resolution, and an accumulation of 64 scans. To characterize the membrane
morphology, scanning electron microscopy (SEM) images were taken with a Hitachi S-4800
field emission SEM (Chiyoda-ku, Tokyo, Japan) with an accelerating voltage of 10.0 KV
and a current of 5 µA. Samples were air-dried, attached to a sample holder, and sputtered
with a gold film (ca. 10 nm thick). Also, an energy-dispersive X-ray spectroscopy (EDS)
detector was used (i.e., SEM-EDS) to study the membrane surface composition. The surface
wettability of the membranes was analyzed via water contact angle measurement; a Krüss
drop shape analyzer DSA25S (Hamburg, Germany) was used at room temperature. A
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1 cm2 coupon of each membrane was fixed over a glass slide with carbon tape. The analysis
started when a 4.50 µL npw droplet was released onto the membrane surface; the data
was recorded every 0.5 s up to 60 s and analyzed in real-time using advanced software
(version 1.8).

The electrochemical properties of the membrane were evaluated using cyclic voltam-
metry in the same custom-made 3-electrode setup: (i) in 5 mM Ferri/Ferrocyanide in 0.1 M
KCl from −1.2 V to 1.6V vs. Ag/AgCl at 50 mV for 5 cycles, and (ii) in 0.5 M H2SO4 solution
(before and after the Pt deposition) from −0.6 V to 1.4 V vs. Ag/AgCl, at 50 mV/s scan
rate for 5 cycles. Electrochemical impedance spectroscopy (EIS) was conducted in 0.5 M
H2SO4 solution; Eoc = 0 V, voltage amplitude: 20 mV, frequency range: 7 MHz to 400 Hz
and 20 points per decade. The membrane was used as WE (area of 0.13 cm2), Ag/AgCl as
RE, and Pt wire as CE. All measurements were initialized at the open circuit voltage (OCV),
after allowing the system to stabilize for 5 min. Once the OCV stabilized, the scans were
initiated, and all analyses were performed relative to the OCV.

The diffusion coefficient of the Ferri/Ferrocyanide redox probe when the different
membranes were used as WE was determined with the Randles–Sevcik Equation (1) via
CV at different scan rates (5, 10, 20, 30, and 50 mV/s).

ip = 2.687 × 105 n3/2 AD1/2C0ν1/2 (1)

where ip is the current peak (e.g., anodic or cathodic), n is the number of electrons in the
half-reaction of the redox probe (n = 1), A is the electrode’s geometric area, D is the diffusion
coefficient, C is the bulk concentration, and ν is the scan rate.

The FO permeability evaluation was assessed using an acrylic custom-made cross-flow
cell with npw as the feed solution (FS) and an aqueous 5% w/v NaCl solution as the draw
solution (DS). The membrane active area was 4.25 cm2 and the active layer was facing the
FS. The data was collected for 1 h at constant flow rate (12.3 mL/min) and temperature
(22 ± 1 ◦C).

The water fluxes, Jw in LMH (L·m−2·h−1), were calculated using the following
Equation (2):

Jw =
∆V
AMt

(2)

where ∆V is the volume increment in the draw solution in L, AM is the membrane area
(m2), and t is the time of the test in hours.

The reverse salt flux, Js in GMH (g·m−2·h−1), from the draw solution to the feed
solution was calculated using Equation (3):

Js =
∆(CtVt)

AMt
(3)

where Ct and Vt are the salt concentration and the feed volume at the end of the FO
experiments, respectively. To determine the salt concentration in the feed solution, we
monitored the solution conductivity and used a calibration curve of NaCl solutions (i.e.,
concentration-conductivity).

The ammonia electro-oxidation reaction was studied via CV in a 0.5 M NH4OH
solution in 1 M KOH (pH > 10). The ammonia-free control was obtained by analyzing
the 1 M KOH solution (pH > 10). The studied potential window was from −0.8 V to
0.2 V vs. Ag/AgCl, at a 50 mV/s scan rate for 5 cycles. The membrane was used as WE
(area of 0.13 cm2), Ag/AgCl as RE, and Pt wire as CE. The AOR was also monitored via
chronoamperometry at different NH4OH concentrations: 0.250 M, 0.125 M, and 0.0625 M
with variations in the applied voltage from −0.1 to −0.5 V vs. Ag/AgCl.
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3. Results and Discussion
3.1. Selection of the Carbon Black as Additive

The composition and intrinsic properties of the support layer can govern the mem-
brane performance. Moreover, interactions between the polymer matrix and the additives
used can alter properties like hydrophilicity, solubility, and precipitation rate of the film; the
porosity, pore distribution, and pore morphology can be influenced. Here, we embedded
porous carbon additives in a similar way to the reported approaches [30,31]. Carbon black
(CB) particles were chosen owing to their porosity, surface area, and good interaction with
polymers [32]. We studied three types of CBs: (a) black pearls 430 (BP4), (b) black pearls
280 (BP2), and (c) Vulcan XC-72 (VXC). The main difference among these materials is their
particle size, oil absorption number (OAN), densities, and porosity (comparison in Table
S1). These aspects define how the CB particles can interact with polymer-based materials,
and therefore, the overall functionality of the fabricated membrane.

We analyzed the untreated CBs using the Brunauer–Emmett–Teller (BET) method to
determine the specific surface area of the material. After completing the measurement
(results in Table S1), we determined that VXC has the highest surface area (221.89 m2/g),
followed by BP4 (77.04 m2/g), and the lowest was BP2 (42.20 m2/g). These results showed
a significant difference in surface area among the studied CB particles which can be
correlated to their particle size and intrinsic porosity. Then, we embedded these CBs
within the polysulfone support by adding them into the casting solution. We tested the
FO performance of the carbon black embedded supports (CBES) using npw as the feed
solution and NaCl as the draw solution. In this case, as shown in Table S1, the trend was
BP4 (37.4 ± 14 LMH) > VXC (20.2 ± 4 LMH) > BP2 (14.2 ± 11 LMH). We suggest that the
significant difference in water flux is due to the inherent properties of the BP4. Specifically,
BP4 has larger particles and the highest density, which implies it could interact better with
the PSF chains within the casting solution. It also has the lowest OAN, so fewer molecules
of the solvent in the casting solution can be absorbed, and a faster precipitation rate in
the phase inversion method occurs. All these properties translate into higher porosity
within the support layer and higher water flux. For this reason, we selected the BP4 as the
optimal additive to incorporate into the membrane support. Thus, we will be referring to
the support with BP4 as the additive when mentioning CBES for the rest of this work.

On the other hand, the deposition of additives in the membrane active layer (i.e.,
surface) can attribute specific features to it [20,33]. Herein, we were interested in an
electroactive layer capable of extending the electrochemical features to the surface while
acting as a substrate for the Pt electrocatalyst. VXC has previously been used for this
task [23,28,34] and here, showed the smallest particle size, exhibits the highest surface area,
and also has the highest OAN (i.e., ability to absorb liquids). In light of this, VXC was
selected as the surface additive in the membrane layout.

3.2. Carbon Black Embedded Support (CBES)

Two polymeric supports were fabricated to study the effect of CB particles on the
membrane performance (see Figure 1A): (A) the control made of polysulfone (PSF) and (B)
the CBES by mixing PSF and BP4. PSF is a polymer that has been thoroughly studied as the
support layer of TFC membranes [35]. The incorporation of carbonaceous species results
in a practical carbon-embedded support due to the high chemical inertness and electrical
conductivity of the CB particles [36,37]. It has also been shown that the incorporation
of non-polymeric substances into polymeric matrixes can enhance the membrane flux
while avoiding both membrane swelling and compromising the mechanical stability of the
membrane [38].
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We determined that BP4 was the best CB additive to incorporate into the polymeric
matrix of the support because it reached a higher water flux in the FO experiment. To
understand the rationale of this performance, we characterized and compared the CBES
with the PSF support. First, we analyzed the chemical composition using ATR-FTIR.
The FTIR spectra of PSF in Figure S1A show its characteristic peaks corresponding to its
chemical skeletal vibrations [39]. These vibrations include the aromatic ring stretching, the
SO2 antisymmetric and symmetric stretching, scissoring, and the C–O–C and C–S stretching
(vibrations summarized in Table S2). These PSF characteristic peaks were present in the
CBES support, indicating there were no chemical interactions between the PSF chains and
the CB particles. Also, the C–H stretching in aromatics and alkyl is present in both supports.
In Figure S1B, the CBES FTIR spectra show the distinct O–H stretching band at 3288 cm−1

confirming the incorporation of additional functional groups characteristic of CB particles.
Also, an increase in intensity in the CO and CO2 adsorption regions is noticeable, region
2490–2160 cm−1, and peak at 2087 cm−1, respectively, suggesting that the incorporated BP4
particles increase the membrane adsorption capacity. These FTIR spectra confirmed the
chemical changes by incorporating CB particles into the polymeric support.

Then, we analyzed the wettability of each support by using water contact angle
measurements of the surface. The PSF support had an angle of 73.0 ± 0.8◦ while the
CBES was 78.9 ± 0.2◦. This result showed that incorporating BP4 into the support slightly
increases the hydrophobic character of the polymeric support. The predominant sp2
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carbons in CB particles can be the main reason for increasing the water contact angle of
the support surface. Yet, the water flux of the bare PSF was 10.8 ± 4 LMH while the CBES
surpasses this performance by a 4-fold increment. This substantial increment in water flux
can be attributed to the porosity. As shown in Figure 1C, especially in the SEM cross-section
images, the addition of BP4 into the polymeric support enhances the membrane porosity.
On the surface, the PSF has wave-like textures and larger pores while the CBES support
has a flatter surface and smaller pores (see also Figure S2). Notable differences are spotted
in the cross-section images. Within the PSF support, the pores have a finger-like structure
and are more uniformly distributed along the film. In contrast, the pores in the CBES have
a mixed morphology between finger-like and sponge-like structures in addition to having
seemingly higher porosity (i.e., with smaller pores). These results are in agreement that the
CB particles affect the membrane pores morphology, distribution, and size which resulted
in an enhanced support with higher water permeability.

We proceeded to evaluate the effect of adding conductive carbonaceous particles onto
the polymeric support in terms of electroactivity. To do so, we completed cyclic voltam-
metry (CV) measurements using the ferri/ferrocyanide redox couple. The voltammogram
in Figure 2A showed meaningful differences between the PSF and CBES. The minimal
electrochemical response on PSF can be attributed to the permeation of the redox couple
through the porous PSF membrane. Furthermore, on the CBES membrane, the one-electron
redox transfer of the ferri/ferrocyanide redox couple is present which corroborates that
the embedded BP4 particles, even within a non-conductive polymer matrix are capable
of promoting an electrical response. To further understand this enhancement in electrical
response, we studied the ferri/ferrocyanide redox reaction as a function of scan rate (Figure
S3). Faster scan rates led to higher currents owing to a decrease in the diffusion layer at
the membrane surface. The CBES voltammogram shows the reversible redox reaction of
the redox couple. To understand the kinetics of this redox reaction, the Randles–Sevcik
equation (Equation (2)) was used, and the resulting linear behaviors are shown in Figure 2B.
The CBES has a higher slope at the ip-v1/2 plot and diffusion coefficient (3.1 × 10−8 cm2/s)
meaning that the redox probe has a faster diffusion through the support.

Thereafter, we evaluated the electrochemical impedance (EIS) of the supports.
Figure 2C shows the comparison of the Nyquist plot, where a significant reduction of
the overall impedance was achieved by the CB. Figure 2D shows a closer examination of
the CBES Nyquist plot. In an attempt to provide an insight into the electrical response
attributed to the embedded CB particles, we determined the Randles equivalent electrical
circuit (EEC). The EEC that fitted the results is represented in Figure 2E and the respective
values for each component account for the effect of each layer in the membrane. The EEC
is composed of the bulk or solution resistance (Rs), i.e., ohmic resistance, and is present
at higher frequencies. Both supports have negative Rs, this trend has been previously
reported for complex systems when the electrolytes passivate the studied surface [40].

The next RC circuit corresponds to the ionic double-layer formed at the membrane
surface. The incorporation of the CB particles in the polymeric support reduces the Rdl

by a 100× factor (PSF: 160 × 104 Ω and CBES: 6.3 × 104 Ω) due to a significant reduction
of the ionic double layer. A smaller double layer can be attributed to a more defined
arrangement. The CBES incorporates the CB particles’ functional groups which can dictate
the arrangement of the ion charges on the surface whilst in the PSF an uncontrolled double
layer is formed. The double-layer capacitance (Cdl) is increased by a 1000× factor when
the CB particles are embedded into the polymeric support (PSF: 22 pF and CBES: 26 nF),
which corroborates that the CBES surface has an improved charge conductivity/mobility.
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Figure 2. Electrochemical evaluation of the PSF and CBES supports in a three-electrode cell where
the supports were used as working electro (WE), Pt wire was used as a counter electrode (CE), and
Ag/AgCl (0.197 V vs. NHE) as the reference electrode (RE). (A) Cyclic voltammograms using the
ferri/ferrocyanide redox couple (5 mM in 0.1 M KCl) at 50mV/s, (B) Randles–Sevcik plot to determine
the ferri/ferro diffusion coefficient, (C) Nyquist plot to compare the membrane impedance, (D) CBES
Nyquist plot close-up, and (E) Randles EEC and the respective values of each electrical component.

Lastly, in the circuit that describes the support inner pores, the same trend was
observed where the embedded CB particles reduced the resistance (Rsup; from 76 × 104 Ω
to 5.4 × 104 Ω) while also increasing the capacitance represented by the constant phase
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element (CPE). Thus, the internal membrane resistance was reduced which can be attributed
to the increment in porosity which can accommodate a higher number of electrolytes and
increase the effective energy storage of the support. The linear section at lower frequencies
on the Nyquist plot corresponds to a Warburg element (W) which has been associated with
diffusion; in this matter, it can be related to the membrane inner pores and their capacity to
diffuse the electrolytes.

Generally, the CB embedded in the support provides considerable changes to the
overall physical (e.g., color and porosity), morphological (e.g., pores size and arrangement),
and electrical properties of the membrane. Moreover, higher porosity, rearranged pore
morphology, and smaller pores were attained. Regarding the electrical properties, the
impedance was significantly reduced and suitable diffusion properties and enhanced
capacitance were achieved. To test the support ability to conduct a more complex redox
reaction, we tried the AOR reaction. Figure S4 confirmed that the electrochemical properties
of the CBES are not enough to complete the AOR. Nonetheless, the results presented here
demonstrate that although CB particles are non-refined carbonaceous species and do not
exhibit a controlled structure like graphene or CNTs, they can be considered an abundant
and inexpensive additive in the membrane design.

3.3. Hydrophilic and Electroconductive Active Layer

To increase the membrane hydrophilicity and selectivity while preventing the pores
from clogging after the VXC layer deposition, the support’s surface was modified with a
thin layer of polyamide (PA) through interfacial polymerization. The PA layer has been
widely used in thin film composite (TFC) membranes due to their stability and highly
crosslinked matrix [41]. The polymerized PA exhibited the characteristic ridge and valley
morphology; it has been reported that this morphology (showed in Figure 3A,D) of the
PA accounts for good water permeability [42]. The membrane’s surface exhibited lower
contact angles than that of the bare supports, PSF:PA 65 ± 1◦ (8% reduction), and CBES:PA:
63 ± 1◦ (16% reduction) due to the addition of the PA hydrophilic functional groups.

Thereafter, the VXC particles were spray-coated over the X:PA (where X: PSF or
CBES) membrane. The immobilization of the VXC over the PA layer was promoted by a
crosslinking between the spray-coated PVA and GA in acidic conditions [43]. The surface
morphology of the 3-layer membranes (X:PA:VXC) was studied via SEM. As shown in
Figure 3B,E, the crosslinked VXC layer shows a rough granular surface which is often
associated with higher porosity and surface area. After a closer examination in higher
magnification SEM images (Figure 3C,F), the PA layer can be observed at the bottom of
the VXC (see also Figure S5). The VXC layer created a superhydrophilic surface where the
contact angle was 0◦ in less than 60s of contact with the npw drop (Figure 3H). It has been
reported that, typically, CBs are hydrophobic [44]. Nonetheless, as reported by Han-Ying, L.
et al. and Li, J. et al. the CB particles can be encapsulated by a polymer [45,46]. In our study,
PVA and GA were crosslinked to immobilize the VXC over the membrane surface but also
accounted for the change in hydrophilicity of the CBs due to their richness in -OH [43]
functionalities. As reported in Figure 3G, the membrane porosity was also enhanced by
10% when compared to X:PA. These results showed that the physico-chemical properties of
the membrane are not affected by the chemical composition of the support layer.

On the other hand, the electrical response of the membrane is influenced by the
composition of the polymeric support. We studied the electrochemical properties of the
membranes via a CV using the ferri/ferrocyanide redox couple. The voltammogram in
Figure 3I shows that the electron transfer of the redox couple is more suitable with the
VXC layer over the CBES:PA than over the PSF:PA. Therefore, the CB particles embedded
in the support intensify the membrane electrochemical capabilities. If we compare these
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voltammograms with the ones in Figure 2A, we noticed that in the VXC layer over PSF:PA
increases the non-faradaic current while a more defined one-electron transfer reaction is
shown for the CBES:PA:VXC; almost a 3-fold increase was reached in both anodic and
cathodic currents. These results suggest that the CB particles in the support layer and the
active layer can work synergistically and stimulate an interconnected electroconductive
matrix. To evaluate the VXC electrocatalytic properties, the AOR was studied. The voltam-
mograms in Figure S6 showed that there is no charge transfer reaction validating the need
for a specific electrocatalyst towards the ammonia oxidation.
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Figure 3. Evaluation of the :PA and :VXC layers over the PSF and CBES supports. (A–F) Mor-
phological comparison via SEM images, (G) summary of water flux (Jw) and contact angle (CA),
(H) continuous water contact angle results of the membranes containing the :PA and :VXC layers,
and (I) electrochemical evaluation via cyclic voltammetry (CV) using ferri/ferrocyanide redox couple
(5 mM in 0.1 M KCl, RE: Ag/AgCl (NaCl saturated, 0.197V vs. NHE) and CE: Pt wire, and a scan rate
of 50 mV/s).

To enhance the membrane catalytic properties towards the AOR, we electrodeposited
platinum nanoparticles (PtNPs) over the VXC layer of the membranes. PtNPs were selected
as the electrocatalyst to provide selective sites where the ammonia electro-oxidation can
be completed [47]. The presence of the PtNP was corroborated physically with SEM and
chemically via EDS. As shown in Figure 4, both membrane surfaces (PSF- and CBES-based)



Membranes 2025, 15, 37 12 of 20

exhibited new spherical-like particles. Homogeneous deposition can be corroborated
at smaller magnifications (Figure 4C,F). The particles over the PSF-based support have
an average size of 350 nm, while they are smaller over the CBES-based support, with
an average size of 50–200 nm. The variation in particle size can be attributed to the
overall membrane electro-responsiveness, and diffusion ability to electrochemically reduce
platinum salt. The SEM-EDS was used to analyze the chemical composition of some of the
particles (Figure S7). These results confirmed that the spherical-like particles are composed
of Pt0. Thus, the PtNPs are well-distributed and exhibit continuity along the surface, which
allows for a better resolution of the electrochemical profile. The PtNPs are over the cross-
linked VXC-PVA-GA, thus, less -OH functional groups can be exposed which results in a
decrease in membrane hydrophilicity. The slight increase in the surface contact angle is:
15 ± 1◦ for PSF:PA:VXC:Pt and 19.8 ± 0.4◦ for CBES:PA:VXC:Pt.
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between (A–C) PSF:PA:VXC:Pt and (D–F) CBES:PA:VXC:Pt.

To determine if the PtNPs are electrochemically active, we performed CV in acid
media (Figure 5A,B) under the same experimental conditions as the electrodeposition. In
Figure 5A, the voltammogram of the PSF:PA:VXC:Pt membrane, the Pt deposition did not
affect the non-faradaic current but higher cathodic and anodic currents were reached. Also,
the increment in the cathodic current at −0.6 V vs. Ag/AgCl corresponds to the hydrogen
evolution reaction (HER) triggered by the PtNPs. In the voltammograms in Figure 5B,
the differences before and after the Pt deposition are remarkable. The CBES:PA:VXC:Pt
membrane exhibits the characteristic electrochemical behavior of Pt in acidic conditions [48].
A cathodic current associated with the hydrogen evolution reaction (HER) at −0.2 V vs.
Ag/AgCl is observed; in this step, the hydrogen is adsorbed and then Pt-H species are
formed. In the anodic sweep, hydrogen is oxidized and desorbed from the PtNPs, and its
metallic nature is regained until 0.6 V vs. Ag/AgCl where the Pt-oxides are formed. These
oxides are subsequently reduced to Pt[0] in the cathodic sweep at 0.5 V vs. Ag/AgCl. As
a result, the PtNPs were electrochemically validated in the CBES:PA:VXC:Pt membrane.
Moreover, the responsiveness of the membrane in acidic conditions confirms that the PtNPs
are electrochemically active and behave similarly to other Pt catalysts [49,50].

Additional electrochemical measurements were performed to understand how the
PtNPs affect the overall electrical response. The results from Figure S8 were interpreted
for the Randles–Sevcik plot shown in Figure 6A as a comparison between the :VXC and
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:VXC:Pt over the CBES. The slope and the diffusion coefficient are higher in the presence of
the PtNPs indicating an enhancement in the charge-transfer redox reaction. EIS was also
used to study the interfacial properties when the VXC and the PtNP we added, respectively
(Figure 6B). The Randles EEC of the membranes (shown in Figure 6C) has an additional
RC circuit than the PSF and CBES support due to the incorporation of the conductive
material. Similar to the polymeric supports, the Rs are also negative. The Rdl was increased
after the PtNP’s were electrodeposited from 134.4 Ω to 814.3 Ω. This is attributed to the
variation in roughness and intrinsic charge of the membrane surface. Therefore, the VXC:Pt
layer can accommodate more electrolyte species in the double layer, yet it has a higher
capacitance. The additional RC circuit corresponds to the charge-transfer process that
occurs at the electroactive material, VXC and VXC:Pt. The Rct is smaller in the presence
of the Pt nanoparticles suggesting a faster electron transfer of the electrolyte, which is
consistent with the diffusion coefficient trend. Lastly, the Csup (i.e., CPE) is also increased
by a 10× factor in the membrane with all the deposited layers (CBES:PA:VXC:Pt) which
validates the synergistic effect among the layers to increase the overall membrane ability to
hold charged species.
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These results confirmed that the fabricated multilayered active layer was hydrophilic
and electroactive. Moreover, the VXC particles proved to be a suitable substrate for the
electrodeposition of PtNPs on a membrane surface and enhanced the charge-transfer
kinetics of different redox reactions. Additionally, the CBs at the different layers altogether
significantly reduced the inner pores resistance allowing good electrical mobility and
increasing the effective reaction area and energy storage capacity.
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3.4. Multilayered Active Layer Performance Evaluation

After the fabrication of all the membranes, we evaluated their performance in terms of
their capacity in FO filtration and electrochemical ammonia electro-oxidation, respectively.
First, we studied the FO membranes [51]. Here, we fabricated two four-layer membranes
(represented in Figure 7A), and it can be observed that the addition of each layer of the
composite membrane brings about a reduction in water flux (Jw), and consequently, in
reverse salt flux (Js). The control membranes (PSF and CBES) are represented in Figure S9,
where CBES has the highest Jw performance in a custom-made cell, using npw water as the
feed solution and 5% w/v NaCl as the draw solution. The results shown in Figure 7B follow
trends in previous studies of multilayered and large Js. The addition of the PA layer, which
created a dense cross-linked layer, significantly reduces the water flux as well as the reverse
flux when compared to the pristine supports. Nevertheless, the reduction in both fluxes (Jw

and Js) with the additional VXC layer is less significant than that with the PA layer, and
the PtNPs do not seem to alter the permeability due to their superhydrophilic character.
It should be noted that even though the water permeability was reduced significantly
by the hydrophilic-electroactive layers, the multilayered membranes were still able to
selectively permeate water with Jw of 3.1 ± 0.5 LMH (PSF:PA:VXC:Pt) and 3.9 ± 0.3 LMH
(CBES:PA:VXC:Pt).
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As a proof-of-concept, we evaluated the multilayer membrane capacity to complete
the electro-oxidation of ammonia. Similar to J.-H.K. et al., we explored its potential by using
higher concentrations than typical wastewater conditions; this allowed a comprehensive
study on the diffusion-controlled process [52]. The electrocatalytic activity of the multilay-
ered membranes for AOR was investigated in an alkaline aqueous solution; KOH was used
as the electrolyte. The membranes were employed as WE, and via CV the electrochemical
reaction was monitored. The membranes without PtNPs were evaluated and no redox
reactions occurred. The voltammograms for the PSF:PA:VXC:Pt membrane are shown
in Figure 7C where no significant differences are observed in ammonia-free solution or
the presence of ammonia. On the contrary, the CBES:PA:VXC:Pt membrane (Figure 7D)
in the presence of ammonia showed an oxidation peak at −0.3 V vs. Ag/AgCl which
corresponds to the AOR [10,11,53]. It is known that Pt is an excellent electrocatalyst for
the AOR. However, polymeric membranes are non-conductive, thus, these results demon-
strated that the membrane construction provided a suitable interface where the charge-
transfer was accomplished. Moreover, the successful ammonia oxidation confirmed that
integrating different materials in a layered approach allowed an electrical continuation
throughout the membrane polymeric support. This can be sustained by the fact that the
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PSF:PA:VXC:Pt membrane had the same surface modifications, including the presence of
the Pt electrocatalyst yet was unable to complete the AOR. This suggests that the polymeric
support’s resistance is a critical parameter that needs to be reduced, and the embedded CB
particles proved to be effective.

To further investigate the membrane’s AOR activity, we monitored the reaction at
constant potentials (−0.1, −0.2, −0.3, −0.4, and −0.5 V vs. Ag/Cl) for 120 s. These
chronoamperometry experiments were carried out to examine the activity and stability of
the membrane. Figure S10A shows that the maximum current was obtained at −0.3 V vs.
Ag/AgCl, the oxidation potential determined in the CV. Also, we completed this study
by varying the ammonia concentration (0.250 M, 0.125 M, and 0.0625 M) and noted a
concentration dependence. The same current decay was observed but, in this case, the
maximum current was reduced proportionally to the concentration. From these results,
we used the Cottrell equation shown in Figure 8A and plotted the j-t−1/2 as shown in
Figure S10B. We conducted the same Cottrell analysis at a constant −0.3 V vs. Ag/AgCl
and monitored the changes attributed to variations in ammonia concentration (Figure 8A);
the comparative chronoamperometry is shown in Figure S11. In the chronoamperometry
and Cottrell analyses, the same current decay was followed. These results suggest that
the AOR reaction over the fabricated membrane is a diffusion-controlled redox process.
Additionally, we plotted j vs. concentration, as shown in Figure 8B, and found there is a
linear relationship between the ammonia concentration and the generated current at −0.3 V
vs. Ag/AgCl. This confirms the diffusion-controlled process but also is indicative that the
main reaction occurring at this potential is the ammonia oxidation, and no other secondary
processes such as adsorption are evident.
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concentrations. (A) j-t−1/2 plot at constant −0.3 V vs. Ag/AgCl and (B) j-c plot at −0.3 V vs.
Ag/AgCl.

4. Conclusions
In this work, we developed a multilayered membrane with a hydrophilic and elec-

trocatalytic surface. This membrane was composed of carbon black particles which are
an uncommon carbonaceous material used in FO membrane-based technologies. Even
though the CB particles are a non-refined material, they exhibit high surface area and when
embedded within a polymeric support, they can alter the pore morphology which caused
an increase in membrane porosity and in water permeability. Moreover, the CBES exhibited
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electrochemical features; the impedance of the membrane was significantly reduced which
led to smaller resistance within the inner pores of the polymeric support. Furthermore,
the additional layers on the membrane surface: PA:VXC demonstrated to work synergis-
tically with the support material. The membranes with the CBES support have a smaller
double-layer and support resistance when compared to the unmodified PSF support. We
systematically compared the effect of the addition of each layer material and the results
showed that the physico-chemical properties of the active layer were very similar in both
PSF- and CBES-based membranes. Thus, the main differences in electrochemical response
are strictly attributed to the development of a cohesive electrical mobility throughout
the layers.

This work proved that the VXC particles are a good substrate over a porous mem-
brane where the PtNP can be electrodeposited. Furthermore, the PtNP was validated as
physically, chemically, and electrochemically active. The reduction in the overall membrane
impedance was significant and an additional charge-transfer process was confirmed with
EIS. Overall, the CBES:PA:VXC:Pt membrane outperformed the PSF-based membrane in
all the electrochemical evaluations. Most importantly, we demonstrated a proof-of-concept
where this multilayered membrane completed the AOR at −0.3 V vs. Ag/AgCl. The
activity was validated at different applied potentials and ammonia concentrations. The
linear responsiveness in chronoamperometry and Cottrell plots confirmed a diffusion-
controlled process, and no secondary processes were apparent. Our findings demonstrated
that for the first time, a FO multilayered membrane with CB particles as the electrochemical
additive can exhibit hydrophilicity, electrocatalytic, water permeability, and selectivity,
and potentially can be employed to remove ammonia from contaminated water sources.
Moreover, the negative applied potential to conduct the AOR could hypothetically charge
the membrane surface negatively which could simultaneously prevent membrane fouling
by another negatively charged foulants.

In general, both properties, the water permeability and AOR properties of the mem-
brane were validated separately. In future studies, we will evaluate the filtration-AOR in
situ with a custom-made FO setup. For these experiments, synthetic wastewater will be
explored, and the ammonia concentration will be monitored to quantify the degradation
while studying any possible intermediates during the oxidation process. Lastly, this will
allow us a more comprehensive energetical analysis of the process for wastewater.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/membranes15020037/s1. Supporting information contains: Ta-
ble S1: Comparison of the CB reported properties1, and the experimental results of the BET surface
area and water flux; Figure S1. ATR-FTIR spectra of the fabricated supports (A) PSF and (B) CBES;
Table S2. Summary of the peak location of the infrared bands of the main chemical functional groups
in the fabricated supports: PSF and CBES; Figure S2. SEM micrograph at a 100,000× magnification;
Figure S3. CV of Ferro/Ferricyanide at different scan rates (mV/s) using (A) PSF and (B) CBES as the
working electrode; Figure S4. Ammonia electro-oxidation evaluation at different scan rates using
CBES as the working electrode. Cyclic voltammograms were performed using 1M KOH as electrolyte.
A Pt wire was used as counter electrode (CE) and Ag/AgCl (0.197V vs. NHE) as the reference
electrode (RE); Figure S5. SEM micrographs at higher magnifications of the active layers: PA and
PA:VXC over PSF and CBES; Figure S6. Ammonia electro-oxidation evaluation of (A) PSF:PA:VXC
and (B) CBES:PA:VXC. Cyclic voltammograms were performed using 1M KOH as electrolyte. A Pt
wire was used as counter electrode (CE) and Ag/AgCl (0.197V vs. NHE) as the reference electrode
(RE); Figure S7. EDS results of both multilayered membranes: PSF:PA:VXC:Pt and CBES:PA:VXC:Pt;
Figure S8. CV of Ferro/Ferricyanide at different scan rates (mV/s) using (A) CBES:PA:VXC and
(B) CBES:PA:VXC:Pt as the working electrode; Figure S9. Water permeability and reverse salt flux
comparison of the PSF and CBES; Figure S10. AOR activity measured at different potentials −0.1 V
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to −0.5 V vs. Ag/AgCl and at different ammonia concentrations (0.250 M, 0.125 M and 0.0625 M).
(A) Chronoamperometry measurements and (B) Cottrell plots; Figure S11. Evaluation of the AOR
activity at constant −0.3 V vs. Ag/AgCl potential while varying the NH4OH concentration. The
material is complementary to the main work [54,55].
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