The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes
Abstract
:1. Introduction
2. Theoretical Model
2.1. Modeling Domain
2.2. Immersed Boundary Method
2.3. Model Equations
2.4. Model Parameter Values
2.5. Solution of Model Equations
3. Results and Discussion
3.1. Particle Trajectories
3.2. Particle Velocities
3.3. Fluid Entrance Length
3.4. Particle Entrance Lengths
3.5. Particle Concentration Profiles
3.6. Effect of the Radius of Curvature of the Pore Entrance
3.7. Effect of Reh
3.8. Effect of Particle Specific Gravity
3.9. Pore Geometry
3.10. Particle Concentration/Feed Mixtures
3.11. Implications for Rejection Models
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Striemer, C.C.; Gaborski, T.R.; Mcgrath, J.L.; Fauchet, P.M. Charge-and size-based separation of macromolecules using ultrathin silicon membranes. Nature 2007, 445, 749–753. [Google Scholar] [CrossRef] [PubMed]
- Akbari, A.; Sheath, P.; Martin, S.T.; Shinde, D.B.; Shaibani, M.; Banerjee, P.C.; Tkacz, R.; Bhattacharyya, D.; Majumder, M. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 2016. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.; Jin, K.; Kaplan, D.L.; Buehler, M.J. Ultrathin free-standing bombyx mori silk nanofibril membranes. Nano Lett. 2016, 16, 3795–3800. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.M.; Jung, B.; Kim, Y.H.; Park, A.R.; Han, S.; Choe, W.S.; Yoo, P.J. Nanomesh-structured ultrathin membranes harnessing the unidirectional alignment of viruses on a graphene-oxide film. Adv. Mater. 2014, 26, 3899–3904. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Gao, S.; Hu, L.; Jin, J. Thermoresponsive Ultrathin Membranes with Precisely Tuned Nanopores for High-Flux Separation. ACS Appl. Mater. Interfaces 2016, 8, 13607–13614. [Google Scholar] [CrossRef] [PubMed]
- Popa, A.-M.; Niedermann, P.; Heinzelmann, H.; Hubbell, J.A.; Pugin, R. Fabrication of nanopore arrays and ultrathin silicon nitride membranes by block-copolymer-assisted lithography. Adv. Mater. 2009, 20, 485303. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Jiang, Z.; Cheng, X.; Chen, C.; Yang, H.; Wu, H.; Pan, F.; Zhang, P.; Cao, X. Elevating the selectivity of layer-by-layer membranes by in situ bioinspired mineralization. J. Memb. Sci. 2016, 520, 364–373. [Google Scholar] [CrossRef]
- Fang, D.Z.; Striemer, C.C.; Gaborski, T.R.; McGrath, J.L.; Fauchet, P.M. Methods for Controlling Pore Properties of Ultra-thin Nanocrystalline Silicon Membranes. J. Phys. Condens. Matter 2010, 22, 454134. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, B.J.; Hsiao, J.C.; Park, J.; Zydney, A.L.; Fissell, W.H.; Roy, S. Silicon nanoporous membranes as a rigorous platform for validation of biomolecular transport models. J. Memb. Sci. 2017, 536, 44–51. [Google Scholar] [CrossRef]
- Han, Y.; Xu, Z.; Gao, C. Ultrathin Graphene Nanofiltration Membrane for Water Purification. Adv. Funct. Mater. 2013, 23, 3693–3700. [Google Scholar] [CrossRef]
- Mireles, M.; Gaborski, T.R. Fabrication techniques enabling ultrathin nanostructured membranes for separations. Electrophoresis 2017. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.C.; Zhang, Y.; Viasnoff, V.; Low, H.Y. Predictive Design, Etch-Free Fabrication of Through-Hole Membrane with Ordered Pores and Hierarchical Layer Structure. Adv. Mater. Technol. 2017, 2, 1600169. [Google Scholar] [CrossRef]
- Warkiani, M.E.; Bhagat, A.A.S.; Khoo, B.L.; Han, J.; Lim, C.T.; Gong, H.Q.; Fane, A.G. Isoporous micro/nanoengineered membranes. ACS Nano 2013, 7, 1882–1904. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.L. Configurational effect on the reflection coefficient for rigid solutes in capillary pores. J. Theor. Biol. 1981, 90, 405–426. [Google Scholar] [CrossRef]
- Deen, W.M. Analysis of Transport Phenomena; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Atkinson, B.; Brocklebank, M.P.; Card, C.C.H.; Smith, J.M. Low Reynolds Number Developing Flows. AIChE J. 1969, 15, 548–553. [Google Scholar] [CrossRef]
- Burgin, T.; Johnson, D.; Chung, H.; Clark, A.; McGrath, J. Analytical and finite element modeling of nanomembranes for miniaturized, continuous hemodialysis. Membranes (Basel) 2015, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Bowen, W.R.; Sharif, A.O. Prediction of optimum membrane design: Pore entrance shape and surface potential. Colloids Surf. A Physicochem. Eng. Asp. 2002, 201, 207–217. [Google Scholar] [CrossRef]
- Kao, J.-N.; Wang, Y.; Pfeffer, R.; Weinbaum, S. A theoretical model for nuclepore filters including hydrodynamic and molecular wall interaction effects. J. Colloid Interface Sci. 1988, 121, 543–557. [Google Scholar] [CrossRef]
- Agbangla, G.C.; Bacchin, P.; Climent, E. Collective dynamics of flowing colloids during pore clogging. Soft Matter 2014, 10, 6303–6315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramachandran, V.; Venkatesan, R.; Tryggvason, G.; Scott, F.H. Low Reynolds Number Interactions between Colloidal Particles near the Entrance to a Cylindrical Pore. J. Colloid Interface Sci. 2000, 229, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Zydney, A.L. Effect of electrostatic, hydrodynamic, and Brownian forces on particle trajectories and sieving in normal flow filtration. J. Colloid Interface Sci. 2004, 269, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Bowen, R.W.; Filippov, A.N.; Sharif, A.O.; Starov, V.M. A model of the interaction between a charged particle and a pore in a charged membrane surface. Adv. Colloid Interface Sci. 1999. [Google Scholar] [CrossRef]
- Ford, D.M.; Glandt, E.D. Steric hindrance at the entrances to small pores. J. Memb. Sci. 1995, 107, 47–57. [Google Scholar] [CrossRef]
- Lim, Y.-I.; Bhatia, S.K. Simulation of methane permeability in carbon slit pores. J. Memb. Sci. 2011, 369, 319–328. [Google Scholar] [CrossRef]
- Peskin, C.S. The immersed boundary method. Acta Numer. 2002, 11, 479–517. [Google Scholar] [CrossRef]
- Agasanapura, B.; Baltus, R.E.; Tanneru, C.; Chellam, S. Membrane rejection of nonspherical particles: Modeling and experiment. AIChE J. 2013, 59, 3863–3873. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delavari, A.; Baltus, R. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes. Membranes 2017, 7, 42. https://doi.org/10.3390/membranes7030042
Delavari A, Baltus R. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes. Membranes. 2017; 7(3):42. https://doi.org/10.3390/membranes7030042
Chicago/Turabian StyleDelavari, Armin, and Ruth Baltus. 2017. "The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes" Membranes 7, no. 3: 42. https://doi.org/10.3390/membranes7030042
APA StyleDelavari, A., & Baltus, R. (2017). The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes. Membranes, 7(3), 42. https://doi.org/10.3390/membranes7030042