Triglyceride Glucose-Waist Circumference Better Predicts Coronary Calcium Progression Compared with Other Indices of Insulin Resistance: A Longitudinal Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical and Laboratory Measurements
2.3. Use of MDCT to Assess the CAC Score
2.4. Statistical Analysis
3. Results
3.1. Clinical and Biochemical Characteristics of the Study Participants
3.2. Relationship of HOMA-IR and TyG-Related Markers with CAC Score Progression
3.3. Comparison of HOMA-IR and TyG-Related Markers for the Prediction of CAC Score Progression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kahn, B.B.; Flier, J.S. Obesity and insulin resistance. J. Clin. Investig. 2000, 106, 473–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerf, M.E. Beta cell dysfunction and insulin resistance. Front. Endocrinol. 2013, 4, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reaven, G.M. Pathophysiology of insulin resistance in human disease. Physiol. Rev. 1995, 75, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.N. Insulin resistance and cardiovascular disease. J. Clin. Investig. 2000, 106, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Gast, K.B.; Tjeerdema, N.; Stijnen, T.; Smit, J.W.; Dekkers, O.M. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: Meta-analysis. PLoS ONE 2012, 7, e52036. [Google Scholar] [CrossRef] [Green Version]
- DeFronzo, R.A.; Tobin, J.D.; Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol. 1979, 237, E214–E223. [Google Scholar] [CrossRef]
- Du, T.; Yuan, G.; Zhang, M.; Zhou, X.; Sun, X.; Yu, X. Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc. Diabetol. 2014, 13, 146. [Google Scholar] [CrossRef]
- Qu, H.Q.; Li, Q.; Rentfro, A.R.; Fisher-Hoch, S.P.; McCormick, J.B. The definition of insulin resistance using HOMA-IR for Americans of Mexican descent using machine learning. PLoS ONE 2011, 6, e21041. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Romero, F.; Simental-Mendia, L.E.; Gonzalez-Ortiz, M.; Martinez-Abundis, E.; Ramos-Zavala, M.G.; Hernandez-Gonzalez, S.O.; Jacques-Camarena, O.; Rodriguez-Moran, M. The product of triglycerides and glucose, a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef] [Green Version]
- Simental-Mendia, L.E.; Rodriguez-Moran, M.; Guerrero-Romero, F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef]
- Taniguchi, A.; Fukushima, M.; Sakai, M.; Miwa, K.; Makita, T.; Nagata, I.; Nagasaka, S.; Doi, K.; Okumura, T.; Fukuda, A.; et al. Remnant-like particle cholesterol, triglycerides, and insulin resistance in nonobese Japanese type 2 diabetic patients. Diabetes Care 2000, 23, 1766–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bu, S.Y. Genetically Mediated Lipid Metabolism and Risk of Insulin Resistance: Insights from Mendelian Randomization Studies. J. Lipid Atheroscler. 2019, 8, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.; Yang, Y.; Lee, E.Y.; Yang, H.K.; Kim, H.S.; Lim, S.Y.; Lee, J.H.; Lee, S.S.; Suh, B.K.; Yoon, K.H. Triglycerides/glucose index is a useful surrogate marker of insulin resistance among adolescents. Int. J. Obes. 2017, 41, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Kim, J.; Koo, S.H.; Kwon, G.C. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007–2010 Korean National Health and Nutrition Examination Survey. PLoS ONE 2019, 14, e0212963. [Google Scholar] [CrossRef]
- Er, L.K.; Wu, S.; Chou, H.H.; Hsu, L.A.; Teng, M.S.; Sun, Y.C.; Ko, Y.L. Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLoS ONE 2016, 11, e0149731. [Google Scholar] [CrossRef]
- Zheng, S.; Shi, S.; Ren, X.; Han, T.; Li, Y.; Chen, Y.; Liu, W.; Hou, P.C.; Hu, Y. Triglyceride glucose-waist circumference, a novel and effective predictor of diabetes in first-degree relatives of type 2 diabetes patients: Cross-sectional and prospective cohort study. J. Transl. Med. 2016, 14, 260. [Google Scholar] [CrossRef] [Green Version]
- Silverman, M.G.; Blaha, M.J.; Krumholz, H.M.; Budoff, M.J.; Blankstein, R.; Sibley, C.T.; Agatston, A.; Blumenthal, R.S.; Nasir, K. Impact of coronary artery calcium on coronary heart disease events in individuals at the extremes of traditional risk factor burden: The Multi-Ethnic Study of Atherosclerosis. Eur. Heart J. 2014, 35, 2232–2241. [Google Scholar] [CrossRef]
- Budoff, M.J.; Hokanson, J.E.; Nasir, K.; Shaw, L.J.; Kinney, G.L.; Chow, D.; Demoss, D.; Nuguri, V.; Nabavi, V.; Ratakonda, R.; et al. Progression of coronary artery calcium predicts all-cause mortality. JACC Cardiovasc. Imaging 2010, 3, 1229–1236. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Du, T.; Li, M.; Jia, J.; Lu, H.; Lin, X.; Yu, X. Triglyceride glucose-body mass index is effective in identifying nonalcoholic fatty liver disease in nonobese subjects. Medicine 2017, 96, e7041. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, D.Y.; Park, S.E.; Park, C.Y.; Lee, W.Y.; Oh, K.W.; Park, S.W.; Rhee, E.J. Triglyceride glucose index predicts coronary artery calcification better than other indices of insulin resistance in Korean adults: The Kangbuk Samsung Health Study. Precis. Future Med. 2017, 1, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.K.; Kang, Y.M.; Hwang, J.Y.; Kim, E.H.; Yang, D.H.; Kang, J.W.; Park, J.Y.; Lee, W.J.; Kim, H.K.; Jung, C.H. Association between serum gamma-glutamyltransferase and the progression of coronary artery calcification. Atherosclerosis 2015, 243, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.K.; Kang, Y.M.; Hwang, J.Y.; Lee, J.; Lee, S.E.; Yang, D.H.; Kang, J.W.; Park, J.Y.; Jung, C.H.; Kim, H.K.; et al. The impact of non-alcoholic fatty liver disease and metabolic syndrome on the progression of coronary artery calcification. Sci. Rep. 2018, 13, 12004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, S14–S31. [Google Scholar] [CrossRef] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, J.S.; Yoon, J.S.; Won, K.C.; Cho, I.H.; Lee, H.W. Diagnostic Accuracy of 64-Slice MDCT Coronary Angiography for the Assessment of Coronary Artery Disease in Korean Patients with Type 2 Diabetes. Diabetes Metab. J. 2013, 37, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.H.; Lee, M.J.; Hwang, J.Y.; Jang, J.E.; Leem, J.; Yang, D.H.; Kang, J.W.; Kim, E.H.; Park, J.Y.; Kim, H.K.; et al. Association of metabolically healthy obesity with subclinical coronary atherosclerosis in a Korean population. Obesity 2014, 22, 2613–2620. [Google Scholar] [CrossRef] [Green Version]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M., Jr.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Greenland, P.; LaBree, L.; Azen, S.P.; Doherty, T.M.; Detrano, R.C. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 2004, 291, 210–215. [Google Scholar] [CrossRef] [Green Version]
- DeFilippis, A.P.; Blaha, M.J.; Ndumele, C.E.; Budoff, M.J.; Lloyd-Jones, D.M.; McClelland, R.L.; Lakoski, S.G.; Cushman, M.; Wong, N.D.; Blumenthal, R.S.; et al. The association of Framingham and Reynolds risk scores with incidence and progression of coronary artery calcification in MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 2011, 58, 2076–2083. [Google Scholar] [CrossRef] [Green Version]
- Carson, A.P.; Steffes, M.W.; Carr, J.J.; Kim, Y.; Gross, M.D.; Carnethon, M.R.; Reis, J.P.; Loria, C.M.; Jacobs, D.R., Jr.; Lewis, C.E. Hemoglobin a1c and the progression of coronary artery calcification among adults without diabetes. Diabetes Care 2015, 38, 66–71. [Google Scholar] [CrossRef] [Green Version]
- Kronmal, R.A.; McClelland, R.L.; Detrano, R.; Shea, S.; Lima, J.A.; Cushman, M.; Bild, D.E.; Burke, G.L. Risk factors for the progression of coronary artery calcification in asymptomatic subjects: Results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2007, 115, 2722–2730. [Google Scholar] [CrossRef] [Green Version]
- Hokanson, J.E.; MacKenzie, T.; Kinney, G.; Snell-Bergeon, J.K.; Dabelea, D.; Ehrlich, J.; Eckel, R.H.; Rewers, M. Evaluating changes in coronary artery calcium: An analytic method that accounts for interscan variability. AJR Am. J. Roentgenol. 2004, 182, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.J.; Gul, K.M. Expert review on coronary calcium. Vasc. Health Risk Manag. 2008, 4, 315–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgiou, D.; Budoff, M.J.; Kaufer, E.; Kennedy, J.M.; Lu, B.; Brundage, B.H. Screening patients with chest pain in the emergency department using electron beam tomography: A follow-up study. J. Am. Coll. Cardiol. 2001, 38, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Shaw, L.J.; Raggi, P.; Schisterman, E.; Berman, D.S.; Callister, T.Q. Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 2003, 228, 826–833. [Google Scholar] [CrossRef]
- Wayhs, R.; Zelinger, A.; Raggi, P. High coronary artery calcium scores pose an extremely elevated risk for hard events. J. Am. Coll. Cardiol. 2002, 39, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Raggi, P.; Cooil, B.; Ratti, C.; Callister, T.Q.; Budoff, M. Progression of coronary artery calcium and occurrence of myocardial infarction in patients with and without diabetes mellitus. Hypertension 2005, 46, 238–243. [Google Scholar] [CrossRef] [Green Version]
- Budoff, M.J.; Young, R.; Lopez, V.A.; Kronmal, R.A.; Nasir, K.; Blumenthal, R.S.; Detrano, R.C.; Bild, D.E.; Guerci, A.D.; Liu, K.; et al. Progression of coronary calcium and incident coronary heart disease events: MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 2013, 61, 1231–1239. [Google Scholar] [CrossRef] [Green Version]
- Arad, Y.; Goodman, K.J.; Roth, M.; Newstein, D.; Guerci, A.D. Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: The St. Francis Heart Study. J. Am. Coll. Cardiol. 2005, 46, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Welsh, P.; Preiss, D.; Lloyd, S.M.; de Craen, A.J.; Jukema, J.W.; Westendorp, R.G.; Buckley, B.M.; Kearney, P.M.; Briggs, A.; Stott, D.J.; et al. Contrasting associations of insulin resistance with diabetes, cardiovascular disease and all-cause mortality in the elderly: PROSPER long-term follow-up. Diabetologia 2014, 57, 2513–2520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bornfeldt, K.E.; Tabas, I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011, 14, 575–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, K.C.; Wild, S.H.; Kwag, H.J.; Byrne, C.D. Fatty liver, insulin resistance, and features of metabolic syndrome: Relationships with coronary artery calcium in 10,153 people. Diabetes Care 2012, 35, 2359–2364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonora, E.; Formentini, G.; Calcaterra, F.; Lombardi, S.; Marini, F.; Zenari, L.; Saggiani, F.; Poli, M.; Perbellini, S.; Raffaelli, A.; et al. HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: Prospective data from the Verona Diabetes Complications Study. Diabetes Care 2002, 25, 1135–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baek, J.H.; Kim, H.; Kim, K.Y.; Jung, J. Insulin Resistance and the Risk of Diabetes and Dysglycemia in Korean General Adult Population. Diabetes Metab. J. 2018, 42, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Yamazoe, M.; Hisamatsu, T.; Miura, K.; Kadowaki, S.; Zaid, M.; Kadota, A.; Torii, S.; Miyazawa, I.; Fujiyoshi, A.; Arima, H.; et al. Relationship of Insulin Resistance to Prevalence and Progression of Coronary Artery Calcification Beyond Metabolic Syndrome Components: Shiga Epidemiological Study of Subclinical Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1703–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, K.C.; Ryu, S.; Lee, J.Y.; Lee, S.H.; Cheong, E.S.; Wild, S.H.; Byrne, C.D. Fatty Liver, Insulin Resistance, and Obesity: Relationships with Increase in Coronary Artery Calcium Over Time. Clin. Cardiol. 2016, 39, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.K.; Fortmann, S.P.; Fair, J.M.; Iribarren, C.; Rubin, G.D.; Varady, A.; Go, A.S.; Quertermous, T.; Hlatky, M.A. Insulin resistance independently predicts the progression of coronary artery calcification. Am. Heart J. 2009, 157, 939–945. [Google Scholar] [CrossRef]
- Blaha, M.J.; DeFilippis, A.P.; Rivera, J.J.; Budoff, M.J.; Blankstein, R.; Agatston, A.; Szklo, M.; Lakoski, S.G.; Bertoni, A.G.; Kronmal, R.A.; et al. The relationship between insulin resistance and incidence and progression of coronary artery calcification: The Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 2011, 34, 749–751. [Google Scholar] [CrossRef] [Green Version]
- Alizargar, J.; Bai, C.H.; Hsieh, N.C.; Wu, S.V. Use of the triglyceride-glucose index (TyG) in cardiovascular disease patients. Cardiovasc. Diabetol. 2020, 19, 8. [Google Scholar] [CrossRef] [Green Version]
- Marceau, P.; Biron, S.; Hould, F.S.; Marceau, S.; Simard, S.; Thung, S.N.; Kral, J.G. Liver pathology and the metabolic syndrome X in severe obesity. J. Clin. Endocrinol. Metab. 1999, 84, 1513–1517. [Google Scholar] [CrossRef] [PubMed]
- Ryysy, L.; Hakkinen, A.M.; Goto, T.; Vehkavaara, S.; Westerbacka, J.; Halavaara, J.; Yki-Jarvinen, H. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes 2000, 49, 749–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, D.I.; Caddy, S.; Ilic, V.; Fielding, B.A.; Frayn, K.N.; Borthwick, A.C.; Taylor, R. Intramuscular triglyceride and muscle insulin sensitivity: Evidence for a relationship in nondiabetic subjects. Metabolism 1996, 45, 947–950. [Google Scholar] [CrossRef]
- Da Silva, A.; Caldas, A.P.S.; Hermsdorff, H.H.M.; Bersch-Ferreira, A.C.; Torreglosa, C.R.; Weber, B.; Bressan, J. Triglyceride-glucose index is associated with symptomatic coronary artery disease in patients in secondary care. Cardiovasc. Diabetol. 2019, 18, 89. [Google Scholar] [CrossRef] [PubMed]
- Luo, E.; Wang, D.; Yan, G.; Qiao, Y.; Liu, B.; Hou, J.; Tang, C. High triglyceride-glucose index is associated with poor prognosis in patients with acute ST-elevation myocardial infarction after percutaneous coronary intervention. Cardiovasc. Diabetol. 2019, 18, 150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Guo, B.; Chen, H.; Shi, Z.; Li, Y.; Tian, Q.; Shi, S. The role of the triglyceride (triacylglycerol) glucose index in the development of cardiovascular events: A retrospective cohort analysis. Sci. Rep. 2019, 9, 7320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.; Ahn, C.W.; Lee, S.B.; Kang, S.; Nam, J.S.; Lee, B.K.; Kim, J.H.; Park, J.S. Elevated TyG Index Predicts Progression of Coronary Artery Calcification. Diabetes Care 2019, 42, 1569–1573. [Google Scholar] [CrossRef]
- Berry, J.D.; Liu, K.; Folsom, A.R.; Lewis, C.E.; Carr, J.J.; Polak, J.F.; Shea, S.; Sidney, S.; O’Leary, D.H.; Chan, C.; et al. Prevalence and progression of subclinical atherosclerosis in younger adults with low short-term but high lifetime estimated risk for cardiovascular disease: The coronary artery risk development in young adults study and multi-ethnic study of atherosclerosis. Circulation 2009, 119, 382–389. [Google Scholar]
- Ozkok, A.; Caliskan, Y.; Sakaci, T.; Erten, G.; Karahan, G.; Ozel, A.; Unsal, A.; Yildiz, A. Osteoprotegerin/RANKL axis and progression of coronary artery calcification in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2012, 7, 965–973. [Google Scholar] [CrossRef] [Green Version]
Total | Non-Progressor | Progressor | p | |
---|---|---|---|---|
n (%) | 1145 | 852 (74.4) | 293 (25.6) | |
Age (years) | 54.2 ± 7.6 | 53.5 ± 7.2 | 56.3 ± 8.1 | <0.001 |
Sex (male, %) | 81.7 | 78.2 | 91.8 | <0.001 |
Body mass index (kg/m2) | 25.0 ± 3.0 | 24.8 ± 3.1 | 25.5 ± 2.6 | 0.002 |
Waist circumference (cm) | 87.1 ± 8.3 | 86.5 ± 8.4 | 89.2 ± 7.4 | <0.001 |
Systolic BP (mmHg) | 119.0 ± 12.6 | 118.0 ± 12.1 | 121.8 ± 13.4 | <0.001 |
Diastolic BP (mmHg) | 76.2 ± 10.4 | 75.6 ± 10.2 | 78.0 ± 10.9 | 0.001 |
Current smoker (%) | 27.4 | 25.2 | 33.8 | 0.006 |
Moderate drinker (%) | 52.1 | 50.2 | 57.3 | 0.042 |
Physically active (%) | 44.3 | 42.7 | 48.8 | 0.076 |
Family history of diabetes (%) | 24.4 | 23.9 | 25.6 | 0.581 |
Diabetes (%) | 13.5 | 11.5 | 19.5 | 0.001 |
Hypertension (%) | 33.0 | 28.8 | 45.4 | <0.001 |
FPG (mg/dL) | 104.9 ± 19.1 | 103.9 ± 18.7 | 108.0 ± 19.9 | 0.002 |
HbA1c (%) | 5.7 ± 0.7 | 5.6 ± 0.7 | 5.8 ± 0.9 | 0.002 |
HbA1c (mmol/mol) | 38.3 ± 8.2 | 37.9 ± 7.7 | 39.6 ± 9.3 | 0.002 |
Total cholesterol (mg/dL) | 197.8 ± 32.6 | 198.2 ± 32.3 | 196.4 ± 33.5 | 0.410 |
TG (mg/dL) | 133.3 ± 77.3 | 131.4 ± 76.8 | 138.9 ± 78.6 | 0.154 |
LDL-C (mg/dL) | 125.3 ± 28.9 | 125.3 ± 28.8 | 125.3 ± 29.2 | 0.980 |
HDL-C (mg/dL) | 51.6 ± 13.2 | 52.2 ± 13.7 | 49.9 ± 11.5 | 0.004 |
Uric acid (mg/dL) | 5.8 ± 1.4 | 5.7 ± 1.4 | 6.0 ± 1.3 | 0.001 |
AST (U/L) | 25 (21–31) | 25 (21–31) | 27 (23–34) | 0.001 |
ALT (U/L) | 23 (17–32) | 22 (17–31) | 24 (19–35) | 0.001 |
GGT (U/L) | 25 (16–40) | 24 (16–38) | 30 (20–44) | <0.001 |
hsCRP (mg/L) | 0.6 (0.3–1.3) | 0.6 (0.3–1.3) | 0.7 (0.4–1.4) | 0.079 |
HOMA-IR | 2.1 ± 1.5 | 2.1 ± 1.5 | 2.3 ± 1.5 | 0.116 |
TyG index | 8.7 ± 0.6 | 8.7 ± 0.6 | 8.8 ± 0.5 | 0.005 |
TyG-BMI | 218.3 ± 33.4 | 216.2 ± 34.6 | 224.2 ± 29.0 | <0.001 |
TyG-WC | 760.5 ± 99.4 | 752.3 ± 101.4 | 784.2 ± 89.1 | <0.001 |
Baseline CAC score | 0 (0–22) | 0 (0–10) | 12 (0–99) | <0.001 |
Last follow-up CAC score | 1 (0–50) | 0 (0–16) | 66 (10–248) | <0.001 |
Baseline CAC score category | <0.001 | |||
0 (%) | 57.2 | 65.1 | 35.5 | |
>0 (%) | 42.8 | 34.9 | 64.5 | |
Follow-up interval (years) | 3.0 (2.1–3.9) | 2.9 (2.0–3.8) | 3.1 (2.5–4.0) | <0.001 |
Parameter | n | OR (95% CI) | |||
---|---|---|---|---|---|
Unadjusted | Model 1 | Model 2 | Model 3 | ||
HOMA-IR | |||||
First quartile | 287 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) |
Second quartile | 286 | 1.35 (0.91–1.99) | 1.33 (0.89–1.99) | 1.27 (0.84–1.92) | 1.22 (0.80–1.87) |
Third quartile | 285 | 1.48 (1.01–2.18) | 1.36 (0.91–2.03) | 1.24 (0.82–1.88) | 1.24 (0.81–1.90) |
Fourth quartile | 287 | 1.52 (1.03–2.23) | 1.41 (0.95–2.10) | 1.28 (0.83–1.96) | 1.22 (0.78–1.89) |
TyG | |||||
First quartile | 286 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) |
Second quartile | 286 | 1.84 (1.24–2.73) | 1.67 (1.11–2.52) | 1.52 (0.99–2.33) | 1.65 (1.06–2.57) |
Third quartile | 287 | 1.54 (1.03–2.29) | 1.36 (0.90–2.08) | 1.20 (0.76–1.91) | 1.26 (0.78–2.02) |
Fourth quartile | 286 | 1.90 (1.28–2.82) | 1.72 (1.14–2.61) | 1.43 (0.89–2.30) | 1.46 (0.90–2.38) |
TyG-BMI | |||||
First quartile | 286 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) |
Second quartile | 287 | 1.49 (0.99–2.25) | 1.26 (0.83–1.93) | 1.25 (0.80–1.93) | 1.28 (0.81–2.01) |
Third quartile | 286 | 2.10 (1.41–3.11) | 1.71 (1.13–2.59) | 1.55 (1.00–2.45) | 1.56 (0.97–2.44) |
Fourth quartile | 286 | 2.03 (1.37–3.02) | 1.83 (1.21–2.79) | 1.68 (1.05–2.69) | 1.62 (1.00–2.62) |
TyG-WC | |||||
First quartile | 286 | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) |
Second quartile | 286 | 1.80 (1.18–2.74) | 1.33 (0.86–2.07) | 1.27 (0.80–2.01) | 1.20 (0.74–1.93) |
Third quartile | 287 | 2.54 (1.69–3.83) | 1.92 (1.24–2.96) | 1.78 (1.11–2.86) | 1.64 (1.01–2.66) |
Fourth quartile | 286 | 2.68 (1.78–4.03) | 1.96 (1.27–3.03) | 1.80 (1.10–2.94) | 1.66 (1.01–2.77) |
Parameter | AUC | Standard Error |
HOMA-IR | 0.543 | 0.0193 |
TyG | 0.557 | 0.0189 |
TyG-BMI | 0.583 | 0.0186 |
TyG-WC | 0.600 | 0.0184 |
Comparison * | Difference AUC | p-Value * |
TyG-WC vs. HOMA-IR | 0.057 | 0.010 |
TyG-WC vs. TyG | 0.043 | 0.011 |
TyG-WC vs. TyG-BMI | 0.017 | 0.202 |
TyG-BMI vs. HOMA-IR | 0.040 | 0.176 |
TyG-BMI vs. TyG | 0.026 | 0.527 |
TyG vs. HOMA-IR | 0.014 | 1.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.K.; Lee, J.; Kim, H.S.; Kim, E.H.; Lee, M.J.; Yang, D.H.; Kang, J.-W.; Jung, C.H.; Park, J.-Y.; Kim, H.-K.; et al. Triglyceride Glucose-Waist Circumference Better Predicts Coronary Calcium Progression Compared with Other Indices of Insulin Resistance: A Longitudinal Observational Study. J. Clin. Med. 2021, 10, 92. https://doi.org/10.3390/jcm10010092
Cho YK, Lee J, Kim HS, Kim EH, Lee MJ, Yang DH, Kang J-W, Jung CH, Park J-Y, Kim H-K, et al. Triglyceride Glucose-Waist Circumference Better Predicts Coronary Calcium Progression Compared with Other Indices of Insulin Resistance: A Longitudinal Observational Study. Journal of Clinical Medicine. 2021; 10(1):92. https://doi.org/10.3390/jcm10010092
Chicago/Turabian StyleCho, Yun Kyung, Jiwoo Lee, Hwi Seung Kim, Eun Hee Kim, Min Jung Lee, Dong Hyun Yang, Joon-Won Kang, Chang Hee Jung, Joong-Yeol Park, Hong-Kyu Kim, and et al. 2021. "Triglyceride Glucose-Waist Circumference Better Predicts Coronary Calcium Progression Compared with Other Indices of Insulin Resistance: A Longitudinal Observational Study" Journal of Clinical Medicine 10, no. 1: 92. https://doi.org/10.3390/jcm10010092
APA StyleCho, Y. K., Lee, J., Kim, H. S., Kim, E. H., Lee, M. J., Yang, D. H., Kang, J. -W., Jung, C. H., Park, J. -Y., Kim, H. -K., & Lee, W. J. (2021). Triglyceride Glucose-Waist Circumference Better Predicts Coronary Calcium Progression Compared with Other Indices of Insulin Resistance: A Longitudinal Observational Study. Journal of Clinical Medicine, 10(1), 92. https://doi.org/10.3390/jcm10010092