Role of 11C Methionine Positron Emission Tomography (11CMETPET) for Surgery and Radiation Therapy Planning in Newly Diagnosed Glioblastoma Patients Enrolled into a Phase II Clinical Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Surgery
2.3. Radiation Therapy
2.4. Chemotherapy
2.5. Supportive Care
2.6. Outcome Evaluation
2.7. Statistical Analysis
3. Results
3.1. Progression-Free Survival (PFS) and Overall Survival (OS) Analysis
3.2. Prognostic Factors Analysis
3.3. Postoperative Assessment and Neuropsychological Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Hegi, M.E.; Mason, W.P.; van den Bent, M.J.; Taphoorn, M.J.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466. [Google Scholar] [CrossRef]
- Stall, B.; Zach, L.; Ning, H.; Ondos, J.; Arora, B.; Shankavaram, U.; Miller, R.W.; Citrin, D.; Camphausen, K. Comparison of T2 and FLAIR imaging for target delineation in high grade gliomas. Radiat. Oncol. 2010, 5, 5–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Coene, B.; Hajnal, J.V.; Gatehouse, P.; Longmore, D.B.; White, S.J.; Oatridge, A.; Pennock, J.M.; Young, I.R.; Bydde, G.M. MR of the brain using fluid attenuated inversion recovery (FLAIR) pulse sequences. Am. J. Neuroradiol. 1992, 13, 1555–1564. [Google Scholar] [PubMed]
- NCCN Guidelines Version 1.2021. Central Nervous System Cancers. Available online: https://www.nccn.org/guidelines/category_1 (accessed on 21 May 2021).
- Wong, T.Z.; van der Westhuizen, G.J.; Coleman, R.E. Positron emission tomography imaging of brain tumors. Neuroimaging Clin. N. Am. 2002, 12, 615–626. [Google Scholar] [CrossRef]
- Kubota, K. From tumor biology to clinical Pet: A review of positron emission tomography (PET) in oncology. Ann. Nucl. Med. 2001, 15, 471–486. [Google Scholar] [CrossRef]
- Navarria, P.; Reggiori, G.; Pessina, F.; Ascolese, A.; Tomatis, S.; Mancosu, P.; Lobefalo, F.; Clerici, E.; Lopci, E.; Bizzi, A.; et al. Investigation on the role of integrated PET/MRI for target volume definition and radiotherapy planning in patients with high grade glioma. Radiother. Oncol. 2014, 112, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Riva, M.; Lopci, E.; Castellano, A.; Olivari, L.; Gallucci, M.; Pessina, F.; Fernandes, B.; Simonelli, M.; Navarria, P.; Grimaldi, M.; et al. Lower Grade Gliomas: Relationships Between Metabolic and Structural Imaging with Grading and Molecular Factors. World Neurosurg. 2019, 126, 270–280. [Google Scholar] [CrossRef]
- Pala, A.; Reske, S.N.; Eberhardt, N.; Scheuerle, A.; König, R.; Bernd Schmitz, B.; Beer, A.J.; Wirtz, C.R.; Coburger, J. Diagnostic accuracy of intraoperative perfusion-weighted MRI and 5-aminolevulinic acid in relation to contrast-enhanced intraoperative MRI and 11C methionine positron emission tomography in resection of glioblastoma: A prospective study. Neurosurg. Rev. 2019, 42, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Rapalino, O.; Heidari, P.; Loeffler, J.; Shih, H.A.; Oh, K.; Mahmood, U. C11 Methionine PET (MET-PET) Imaging of Glioblastoma for Detecting Postoperative Residual Disease and Response to Chemoradiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1024–1028. [Google Scholar] [CrossRef]
- Lundemann, M.; Cardoso Costa, J.; Law, I.; Engelholm, S.A.; Muhic, A.; Poulsen, H.S.; Munck af Rosenschold, P. Patterns of failure for patients with glioblastoma following O-(2-[18F] fluoroethyl)-L-tyrosine PET- and MRI-guided radiotherapy. Radiother Oncol. 2017, 122, 380–386. [Google Scholar] [CrossRef]
- Lee, I.H.; Piert, M.; Gomez-Hassan, D.; Junck, L.; Rogers, L.; Hayman, J.; Haken, R.K.T.; Lawrence, T.S.; Cao, Y.; Tsien, C. Association of 11c-methionine pet uptake with site of failure after Concurrent temozolomide and radiation for primary glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 2009, 2, 479–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iuchi, T.; Hatano, K.; Uchino, Y.; Itami, M.; Hasegawa, Y.; Kawasaki, K.; Sakaida, T.; Hara, R. Methionine Uptake and Required Radiation Dose to Control Glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Harat, M.; Małkowski, B.; Makarewicz, R. Pre-irradiation tumour volumes defined by MRI and dual time-point FET-PET for the prediction of glioblastoma multiforme recurrence: A prospective study. Radiother. Oncol. 2016, 120, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Grosu, A.L.; Weber, W.A.; Riedel, E.; Jeremic, B.; Nieder, C.; Franz, M.; Gumprecht, H.; Jaeger, R.; Schwaiger, M.; Molls, M. L-(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 64–74. [Google Scholar] [CrossRef]
- Navarria, P.; Pessina, F.; Tomatis, S.; Soffietti, R.; Grimaldi, M.; Lopci, E.; Chiti, A.; Leonetti, A.; Casarotti, A.; Rossi, M.; et al. Are three weeks hypofractionated radiation therapy (HFRT) comparable to six weeks for newly diagnosed glioblastoma patients? Results of a phase II study. Oncotarget 2017, 8, 67696–67708. [Google Scholar] [CrossRef] [PubMed]
- Unterrainer, M.; Vettermann, F.; Brendel, M.; Holzgreve, A.; Lifschitz, M.; Zähringer, M.; Suchorska, B.; Wenter, V.; Illigens, B.M.; Bartenstein, P.; et al. Towards standardization of 18 F-FET PET imaging: Do we need a consistent method of background activity assessment? EJNMMI Res. 2017, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Law, I.; Albert, N.L.; Arbizu, J.; Boellaard, R.; Drzezga, A.; Galldiks, N.; la Fougère, C.; Langen, K.J.; Lopci, E.; Lowe, V.; et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18 F]FDG: Version 1.0. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 540–557. [Google Scholar] [CrossRef] [Green Version]
- Wen, P.Y.; Macdonald, D.R.; Reardon, D.A.; Cloughesy, T.; Sorensen, A.; Galanis, E.; Degroot, J.; Wick, W.; Gilbert, M.; Lassman, A.; et al. Updated response assessment criteria for high-grade gliomas: Response assessment in neuro-oncology working group. J. Clin. Oncol. 2010, 28, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- Papagno, C.; Casarotti, A.; Comi, A.; Gallucci, M.; Riva, M.; Bello, L. Measuring clinical outcomes in neuro-oncology. A battery of evaluate low-grade glioma (LGG). J. Neurooncol. 2012, 108, 269–275. [Google Scholar] [CrossRef]
- Cox, D.R. Regression models and life tables. J. R. Stat. Soc. 1972, 34, 187–220. [Google Scholar] [CrossRef]
- Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Holland, E.; et al. 2001 A multivariate analysis of 416 patients with glioblastoma multiforme: Prognosis, extent of resection, and survival. J. Neurosurg. 2001, 95, 190–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaichana, K.L.; Jusue-Torres, I.; Navarro-Ramirez, R.; Raza, S.M.; Pascual-Gallego, M.; Ibrahim, A.; Hernandez-Hermann, M.; Gomez, L.; Ye, X.; Weingart, J.D.; et al. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro Oncol. 2014, 16, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Pessina, F.; Navarria, P.; Cozzi, L.; Ascolese, A.; Simonelli, M.; Santoro, A.; Clerici, E.; Rossi, M.; Scorsetti, M.; Bello, L. Maximize surgical resection beyond contrast-enhancing boundaries in newly diagnosed glioblastoma multiforme: Is it useful and safe? A single institution retrospective experience. J. Neurooncol. 2017, 135, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Suki, D.; Hess, K.; Sawaya, R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? J. Neurosurg. 2016, 124, 977–988. [Google Scholar] [CrossRef] [Green Version]
- Duffau, H. Is supratotal resection of glioblastoma in noneloquent areas possible? World Neurosurg. 2014, 82, 101–103. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.A.; Karajannis, M.A.; Harter, D.H. Glioblastoma multiforme: State of the art and future therapeutics. Surg. Neurol. Int. 2014, 5, 64. [Google Scholar] [CrossRef]
- Kato, T.; Shinoda, J.; Nakayama, N.; Miwa, K.; Okumura, A.; Yano, H.; Yoshimura, S.; Maruyama, T.; Muragaki, Y.; Iwama, T. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. Am. J. Neuroradiol. 2008, 29, 1176–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kracht, L.W.; Miletic, H.; Busch, S.; Jacobs, A.H.; Voges, J.; Hoevels, M.; Klein, J.C.; Herholz, K.; Heiss, W.D. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: Local comparison with stereotactic histopathology. Clin. Cancer Res. 2004, 10, 7163–7170. [Google Scholar] [CrossRef] [Green Version]
- Ferjančič, P.; Ebert, M.A.; Francis, R.; Nowak, A.K.; Jeraj, R. Repeatability of Quantitative 18F-FET PET in Glioblastoma. Biomed. Phys. Eng. Express. 2021, 30, 7. [Google Scholar] [CrossRef]
n | % | |
---|---|---|
Patients | 93 | 100 |
Gender | ||
Female | 33 | 35.5 |
Male | 60 | 64.5 |
Median age (range years) | 61 (23–77) | |
KPS | ||
70 | 6 | 6.4 |
80 | 20 | 21.6 |
90–100 | 67 | 72 |
Histology | ||
Glioblastoma | 93 | 100 |
Tumor molecular profile | ||
IDH wild type | 93 | 100 |
MGMT methylated | 53 | 57 |
MGMT unmethylated | 40 | 43 |
Treatments | ||
Surgical resection | 93 | 100 |
HFRT | 93 | 100 |
Total doses/dose per fraction Gy | ||
CTV1/PTV1 | 60/4 | 100 |
CTV2/PTV2 | 42/2.8 | 100 |
Number of fractions | 15 | 100 |
Median duration weeks (range weeks) | 3 (2.6–4.1) | |
Chemotheraphy | ||
Concomitant temozolomide | 91 | 97.8 |
Never started concomitant temozolomide | 2 | 2.2 |
Adjuvant temozolomide | 91 | 97.8 |
Median number of cycles (range) | 6 (1–12) | |
Never started adjuvant temozolomide | 2 | 2.2 |
n | % | |
---|---|---|
Patients | 93 | 100 |
EOR | ||
GTR | 45 | 48.3 |
STR | 18 | 19.4 |
PR | 16 | 17.2 |
B | 14 | 15.1 |
CERTV on postoperative MRI | ||
Yes | 63 | 67.7 |
No | 30 | 32.3 |
Median CE RTV on postoperative MRI | 4.23 (0.17–35.33) | |
BTV on [11C]METPET | ||
Yes | 78 | 83.9 |
No | 15 | 16.1 |
Median BTV on [11C]MET PET | 8.47 (0.11–62.20) | |
Median SUVmax [11C]MET PET | 4.03 (2.30–13.90) | |
Median TBRmax | 4.34 (2.36–12.00) | |
Location of BTV | 78 | 100 |
CE + FLAIR abnormalities | 63 | 80.8 |
Only FLAIR abnormalities | 15 | 19.2 |
GTR | STR | PR | |
---|---|---|---|
No patients | 45 | 18 | 16 |
Residual Tumor NO (CERTV/BTV) | 15 | 0 | 0 |
Residual Tumor YES CERTV + BTV | 15 | 18 | 16 |
BTV only | 15 | 0 | 0 |
Median SUVmax (range) | 3.70 (2.20–9.54) | 3.25 (2.3–7.5) | 4.7 (2.96–9.30) |
Median PFS months (range) | 10 (6–22) | 11 (2–28) | 10 (2–35) |
Pts | Median OS Months (Months 95% CI) | 1 Year OS % (SE) | 2 Year OS % (SE) | 3 Year OS % (SE) | p Value Univariate | HR Multivariate (95% CI) | p Value Multivariate | |
---|---|---|---|---|---|---|---|---|
Overall survival | 93 | 16 (14–19) | 63.4 (±4.9) | 25.8 (±4.5) | 10.8 (±3.2) | |||
Age ≤60 >60 | 44 49 | 19 (16–24) 13 (10–16) | 77.3 (±6.3) 51.0 (±7.1) | 34.1 (±6.4) 18.4 (±5.5) | 15.9 (±5.5) 6.1 (±3.4) | 0.0050 | 2.6038 (1.5578–4.3524) | 0.0003 |
EOR GTR STR PR B | 46 17 16 14 | 21 (18–25) 14 (9–24) 13 (12–18) 7 (6–12) | 76.1 (±6.2) 64.7 (±11.6) 62.5 (±12.1) 21.4 (±11.0) | 37.0 (±7.1) 23.5 (±10.3) 18.8 (±9.7) 0 | 15.2 (±5.3) 5.8 (±5.7) 6.2 (±6.0) 0 | <0.0001 | 160.2776 (20.3294–1263.6345) | <0.0001 |
MGMT Methylated Unmethylated | 53 40 | 18 (14–23) 15 (12–18) | 66.0 (±6.5) 60.0 (±7.7) | 34.0 (±6.5) 15.0 (±5.6) | 15.1 (±4.9) 5.0 (±3.4) | 0.14 | 0.4626 (0.2776–0.7711) | 0.0031 |
CERTV absent present | 30 63 | 23 (19–27) 13 (11-16) | 85.2 (±6.5) 54.5 (±6.1) | 44.4 (±9.5) 18.2 (±4.7) | 22.2 (±8.0) 6.0 (±2.9) | 0.0040 | 4.1696 (2.3985–7.2485) | <0.0001 |
BTV absent present | 15 78 | 25 (20–34) 14 (12–18) | 100 56.4 (±5.6) | 60.0 (±12.6) 19.2 (±4.4) | 26.7 (±11.4) 7.6 (±3.0) | 0.0020 | 0.4800 (0.3772–0.6109) | <0.0001 |
CERTV/BTV CERTV absent BTV absent CERTV absent BTV present CERTV present BTV present | 15 15 63 | 25 (20–34) 21 (15–26) 13 (11–16) | 100 73.3 (±11.4) 52.4 (±6.2) | 60.0 (±12.6) 33.3 (±12.2) 15.9 (±4.6) | 26.7 (±11.4) 13.3 (±8.7) 6.3 (±3.0) | 0.0029 | 1.0728 (0.6131–1.8770) | 0.856 |
SUVmax * >5 2.2–5 | 18 46 | 13 (12–16) 19 (12–24) | 66.7 (±11.1) 63.0 (±7.1) | 5.5 (±5.4) 30.4 (±6.7) | 0 13.0 (±4.9) | 0.0059 | 2.1071 (1.135–3.909) | 0.0181 |
TBRmax * ≤4.5 >4.5 | 36 28 | 21 (13–24) 13 (10–16) | 70.6(±7.8) 57.1(±9.3) | 32.4(±8.0) 10.7(±5.8) | 14.7(±4.0) 3.5 (±3.5) | 0.0077 | 2.0273 (1.1419–3.5991) | 0.0158 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pessina, F.; Navarria, P.; Clerici, E.; Bellu, L.; Franzini, A.; Milani, D.; Simonelli, M.; Persico, P.; Politi, L.S.; Casarotti, A.; et al. Role of 11C Methionine Positron Emission Tomography (11CMETPET) for Surgery and Radiation Therapy Planning in Newly Diagnosed Glioblastoma Patients Enrolled into a Phase II Clinical Study. J. Clin. Med. 2021, 10, 2313. https://doi.org/10.3390/jcm10112313
Pessina F, Navarria P, Clerici E, Bellu L, Franzini A, Milani D, Simonelli M, Persico P, Politi LS, Casarotti A, et al. Role of 11C Methionine Positron Emission Tomography (11CMETPET) for Surgery and Radiation Therapy Planning in Newly Diagnosed Glioblastoma Patients Enrolled into a Phase II Clinical Study. Journal of Clinical Medicine. 2021; 10(11):2313. https://doi.org/10.3390/jcm10112313
Chicago/Turabian StylePessina, Federico, Pierina Navarria, Elena Clerici, Luisa Bellu, Andrea Franzini, Davide Milani, Matteo Simonelli, Pasquale Persico, Letterio S. Politi, Alessandra Casarotti, and et al. 2021. "Role of 11C Methionine Positron Emission Tomography (11CMETPET) for Surgery and Radiation Therapy Planning in Newly Diagnosed Glioblastoma Patients Enrolled into a Phase II Clinical Study" Journal of Clinical Medicine 10, no. 11: 2313. https://doi.org/10.3390/jcm10112313
APA StylePessina, F., Navarria, P., Clerici, E., Bellu, L., Franzini, A., Milani, D., Simonelli, M., Persico, P., Politi, L. S., Casarotti, A., Fernandes, B., Olei, S., Sollini, M., Chiti, A., & Scorsetti, M. (2021). Role of 11C Methionine Positron Emission Tomography (11CMETPET) for Surgery and Radiation Therapy Planning in Newly Diagnosed Glioblastoma Patients Enrolled into a Phase II Clinical Study. Journal of Clinical Medicine, 10(11), 2313. https://doi.org/10.3390/jcm10112313