Obesity and Post-Transplant Diabetes Mellitus in Kidney Transplantation
Abstract
:1. Introduction
2. Obesity before Kidney Transplantation
2.1. Epidemiology of Obesity in Patients with End-Stage Kidney Disease (ESRD)
2.2. Morbidity and Mortality in Obese ESRD Patients
2.3. Risks of and Contraindications for Kidney Transplantation
2.4. Treatment Options for Overweight in Patients with ESRD
2.4.1. Lifestyle Interventions and Medical Treatment
2.4.2. Bariatric Surgery
3. Obesity and PTDM after Kidney Transplantation
3.1. Epidemiology of Obesity after Kidney Transplantation
3.2. Post-Transplant Diabetes Mellitus (PTDM)
3.3. Pathophysiology and Risk Factors for PTDM
3.4. Effects of Different Immunosuppressants on PTDM
4. Morbidity and Mortality in Patients with Obesity after Kidney Transplantation
4.1. Patient and Graft Survival
4.2. Surgical and Other Complications
4.3. Cardiovascular Outcomes
5. Treatments for Obesity and PTDM in Kidney Transplant Patients
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- James, W.P.T. WHO Recognition of the Global Obesity Epidemic. Int. J. Obes. 2008, 32 (Suppl. 7), S120–S126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic Syndrome—A New World-Wide Definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Song, Y.; Caballero, B.; Cheskin, L.J. Association between Obesity and Kidney Disease: A Systematic Review and Meta-Analysis. Kidney Int. 2008, 73, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Stenvinkel, P.; Ikizler, T.A.; Mallamaci, F.; Zoccali, C. Obesity and Nephrology: Results of a Knowledge and Practice Pattern Survey. Nephrol. Dial. Transplant. 2013, 28 (Suppl. 4), iv99–iv104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Kriesche, H.-U.; Arndorfer, J.A.; Kaplan, B. The Impact of Body Mass Index on Renal Transplant Outcomes: A Significant Independent Risk Factor for Graft Failure and Patient Death. Transplantation 2002, 73, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, K.A.; Campbell, S.B.; Hawley, C.M.; Nicol, D.L.; Johnson, D.W.; Isbel, N.M. Obesity is Associated with Worsening Cardiovascular Risk Factor Profiles and Proteinuria Progression in Renal Transplant Recipients. Am. J. Transplant. 2005, 5, 2710–2718. [Google Scholar] [CrossRef] [PubMed]
- Montori, V.M.; Basu, A.; Erwin, P.J.; Velosa, J.A.; Gabriel, S.E.; Kudva, Y.C. Posttransplantation Diabetes: A Systematic Review of the Literature. Diabetes Care 2002, 25, 583–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarafidis, P.; Ferro, C.J.; Morales, E.; Ortiz, A.; Malyszko, J.; Hojs, R.; Khazim, K.; Ekart, R.; Valdivielso, J.; Fouque, D.; et al. SGLT-2 Inhibitors and GLP-1 Receptor Agonists for Nephroprotection and Cardioprotection in Patients with Diabetes Mellitus and Chronic Kidney Disease. A Consensus Statement by the EURECA-m and the DIABESITY Working Groups of the ERA-EDTA. Nephrol. Dial. Transplant. 2019, 34, 208–230. [Google Scholar] [CrossRef] [PubMed]
- Kramer, H.J.; Saranathan, A.; Luke, A.; Durazo-Arvizu, R.A.; Guichan, C.; Hou, S.; Cooper, R. Increasing Body Mass Index and Obesity in the Incident ESRD Population. J. Am. Soc. Nephrol. 2006, 17, 1453–1459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imam, T.H.; Coleman, K.J. The Triad of Kidney, Obesity, and Bariatric Surgery. Saudi J. Kidney Dis. Transplant. 2016, 27, 875–884. [Google Scholar] [CrossRef]
- Hsu, C.; McCulloch, C.E.; Iribarren, C.; Darbinian, J.; Go, A.S. Body Mass Index and Risk for End-Stage Renal Disease. Ann. Intern. Med. 2006, 144, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Browning, L.M.; Hsieh, S.D.; Ashwell, M. A Systematic Review of Waist-to-Height Ratio as a Screening Tool for the Prediction of Cardiovascular Disease and Diabetes: 05 Could Be a Suitable Global Boundary Value. Nutr. Res. Rev. 2010, 23, 247–269. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.K.; Wang, Z.M.; Heshka, S.; Heo, M.; Faith, M.S.; Heymsfield, S.B. Waist Circumference and Obesity-Associated Risk Factors among Whites in the Third National Health and Nutrition Examination Survey: Clinical Action Thresholds. Am. J. Clin. Nutr. 2002, 76, 743–749. [Google Scholar] [CrossRef]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef] [PubMed]
- Friedman, A.N.; Miskulin, D.C.; Rosenberg, I.H.; Levey, A.S. Demographics and Trends in Overweight and Obesity in Patients at Time of Kidney Transplantation. Am. J. Kidney Dis. 2003, 41, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, N.; Higgins, R.; Short, A.; Zehnder, D.; Pitcher, D.; Hudson, A.; Raymond, N.T. Kidney Transplantation Significantly Improves Patient and Graft Survival Irrespective of BMI: A Cohort Study. Am. J. Transplant. 2015, 15, 2378–2386. [Google Scholar] [CrossRef] [Green Version]
- Gore, J.L.; Pham, P.T.; Danovitch, G.M.; Wilkinson, A.H.; Rosenthal, J.T.; Lipshutz, G.S.; Singer, J.S. Obesity and Outcome Following Renal Transplantation. Am. J. Transplant. 2006, 6, 357–363. [Google Scholar] [CrossRef]
- Hoogeveen, E.K.; Aalten, J.; Rothman, K.J.; Roodnat, J.I.; Mallat, M.J.K.; Borm, G.; Weimar, W.; Hoitsma, A.J.; de Fijter, J.W. Effect of Obesity on the Outcome of Kidney Transplantation: A 20-Year Follow-Up. Transplantation 2011, 91, 869–874. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Yuan, W. Relationship between Body Mass Index and Mortality in Hemodialysis Patients: A Meta-Analysis. Nephron Clin. Pract. 2012, 121, c102–c111. [Google Scholar]
- Dolla, C.; Naso, E.; Mella, A.; Allesina, A.; Giraudi, R.; Torazza, M.C.; Vanzino, S.B.; Gallo, E.; Lavacca, A.; Fop, F.; et al. Impact of Type 2 Diabetes Mellitus on Kidney Transplant Rates and Clinical Outcomes among Waitlisted Candidates in a Single Center European Experience. Sci. Rep. 2020, 10, 1–7. [Google Scholar] [CrossRef]
- Pondrom, S. The AJT Report News and Issues That Affect Organ and Tissue Transplantation. Am. J. Transplant. 2012, 12, 1359–1360. [Google Scholar] [CrossRef] [PubMed]
- Scandling, J.D. Kidney Transplant Candidate Evaluation. Semin. Dial. 2005, 18, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Kasiske, B.L.; Cangro, C.B.; Hariharan, S.; Hricik, D.E.; Kerman, R.H.; Roth, D.; Rush, D.N.; Vazquez, M.A.; Weir, M.R. The Evaluation of Renal Transplantation Candidates: Clinical Practice Guidelines. Am. J. Transplant. 2001, 1 (Suppl. 2), 3–95. [Google Scholar] [PubMed]
- Abramowicz, D.; Cochat, P.; Claas, F.H.J.; Heemann, U.; Pascual, J.; Dudley, C.; Harden, P.; Hourmant, M.; Maggiore, U.; Salvadori, M.; et al. European Renal Best Practice Guideline on Kidney Donor and Recipient Evaluation and Perioperative Care. Nephrol. Dial. Transplant. 2015, 30, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Chadban, S.J.; Ahn, C.; Axelrod, D.A.; Foster, B.J.; Kasiske, B.L.; Kher, V.; Kumar, D.; Oberbauer, R.; Pascual, J.; Pilmore, H.L.; et al. KDIGO Clinical Practice Guideline on the Evaluation and Management of Candidates for Kidney Transplantation. Transplantation 2020, 104 (Suppl. 1), S11–S103. [Google Scholar] [CrossRef]
- Schold, J.D.; Srinivas, T.R.; Guerra, G.; Reed, A.I.; Johnson, R.J.; Weiner, I.D.; Oberbauer, R.; Harman, J.S.; Hemming, A.W.; Meier-Kriesche, H.U. A “Weight-Listing” Paradox for Candidates of Renal Transplantation? Am. J. Transplant. 2007, 7, 550–559. [Google Scholar] [CrossRef]
- Modlin, C.S.; Flechner, S.M.; Goormastic, M.; Goldfarb, D.A.; Papajcik, D.; Mastroianni, B.; Novick, A.C. Should Obese Patients Lose Weight before Receiving a Kidney Transplant? Transplantation 1997, 64, 599–604. [Google Scholar] [CrossRef]
- Macdonald, J.H.; Kirkman, D.; Jibani, M. Kidney Transplantation: A Systematic Review of Interventional and Observational Studies of Physical Activity on Intermediate Outcomes. Adv. Chronic Kidney Dis. 2009, 16, 482–500. [Google Scholar] [CrossRef]
- Hajjar, R.; Dtp, C.M.; Chan, G. Conservative Management of Obesity in Kidney Transplant Candidates. J. Ren. Nutr. 2021, S1051–2276, 00087-X. [Google Scholar] [CrossRef]
- Kramer, H.; Tuttle, K.R.; Leehey, D.; Luke, A.; Durazo-Arvizu, R.; Shoham, D.; Cooper, R.; Beddhu, S. Obesity Management in Adults with CKD. Am. J. Kidney Dis. 2009, 53, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Lafranca, J.A.; IJermans, J.N.M.; Betjes, M.G.H.; Dor, F.J.M.F. Body Mass Index and Outcome in Renal Transplant Recipients: A Systematic Review and Meta-Analysis. BMC Med. 2015, 13, 111. [Google Scholar] [CrossRef] [Green Version]
- Friedman, A.N.; Wahed, A.S.; Wang, J.; Courcoulas, A.P.; Dakin, G.; Hinojosa, M.W.; Kimmel, P.L.; Mitchell, J.E.; Pomp, A.; Pories, W.J.; et al. Effect of Bariatric Surgery on CKD Risk. J. Am. Soc. Nephrol. 2018, 29, 1289–1300. [Google Scholar] [CrossRef] [Green Version]
- MacLaughlin, H.L.; Campbell, K.L. Obesity as a Barrier to Kidney Transplantation: Time to Eliminate the Body Weight Bias? Semin. Dial. 2019, 32, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Potluri, K.; Hou, S. Obesity in Kidney Transplant Recipients and Candidates. Am. J. Kidney Dis. 2010, 56, 143–156. [Google Scholar] [CrossRef]
- Lentine, K.L.; Delos Santos, R.; Axelrod, D.; Schnitzler, M.A.; Brennan, D.C.; Tuttle-Newhall, J.E. Obesity and Kidney Transplant Candidates: How Big is Too Big for Transplantation? Am. J. Nephrol. 2012, 36, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Coates, P.T.H.; McDonald, S.P. Effects of Body Mass Index at Transplant on Outcomes of Kidney Transplantation. Transplantation 2007, 84, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Forte, C.C.; Pedrollo, E.F.; Nicoletto, B.B.; Lopes, J.B.; Manfro, R.C.; Souza, G.C.; Leitão, C.B. Risk Factors Associated with Weight Gain after Kidney Transplantation: A Cohort Study. PLoS ONE 2020, 15, 1–11. [Google Scholar] [CrossRef]
- Clunk, J.M.; Lin, C.Y.; Curtis, J.J. Variables Affecting Weight Gain in Renal Transplant Recipients. Am. J. Kidney Dis. 2001, 38, 349–353. [Google Scholar] [CrossRef]
- Sharif, A.; Hecking, M.; de Vries, A.P.J.; Porrini, E.; Hornum, M.; Rasoul-Rockenschaub, S.; Berlakovich, G.; Krebs, M.; Kautzky-Willer, A.; Schernthaner, G.; et al. Proceedings from an International Consensus Meeting on Posttransplantation Diabetes Mellitus: Recommendations and Future Directions. Am. J. Transplant. 2014, 14, 1992–2000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Care, D.; Suppl, S.S. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2020. Diabetes Care 2020, 43, S14–S31. [Google Scholar] [CrossRef] [Green Version]
- Ong, S.C.; Rhee, C.M. Novel Management of Diabetes in Kidney Transplantation. Curr. Opin. Nephrol. Hypertens 2021, 30, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Jenssen, T.; Hartmann, A. Post-Transplant Diabetes Mellitus in Patients with Solid Organ Transplants. Nat. Rev. Endocrinol. 2019, 15, 172–188. [Google Scholar] [CrossRef]
- Nam, J.H.; Mun, J.I.; Kim, S.I.; Kang, S.W.; Choi, K.H.; Park, K.; Ahn, C.W.; Cha, B.S.; Song, Y.D.; Lim, S.K.; et al. Beta-Cell Dysfunction Rather than Insulin Resistance is the Main Contributing Factor for the Development of Postrenal Transplantation Diabetes Mellitus. Transplantation 2001, 71, 1417–1423. [Google Scholar] [CrossRef]
- Halden, T.A.S.; Egeland, E.J.; Åsberg, A.; Hartmann, A.; Midtvedt, K.; Khiabani, H.Z.; Holst, J.J.; Knop, F.K.; Hornum, M.; Feldt-Rasmussen, B.; et al. GLP-1 Restores Altered Insulin and Glucagon Secretion in Posttransplantation Diabetes. Diabetes Care 2016, 39, 617–624. [Google Scholar] [CrossRef] [Green Version]
- Nicoletto, B.B.; Fonseca, N.K.O.; Manfro, R.C.; Gonçalves, L.F.S.; Leitão, C.B.; Souza, G.C. Effects of Obesity on Kidney Transplantation Outcomes: A Systematic Review and Meta-Analysis. Transplantation 2014, 98, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.W.; Famure, O.; Li, Y.; Kim, S.J. Hypomagnesemia and the Risk of New-Onset Diabetes Mellitus after Kidney Transplantation. J. Am. Soc. Nephrol. 2016, 27, 1793–1800. [Google Scholar] [CrossRef] [Green Version]
- Schnitzler, M.; Kasiske, B.L.; Snyder, J.J.; Gilbertson, D.; Matas, A.J. Diabetes Mellitus after Kidney Transplantation in the United States. Am. J. Transplant. 2003, 3, 1318. [Google Scholar] [CrossRef] [Green Version]
- Luan, F.L.; Steffick, D.E.; Ojo, A.O. New-Onset Diabetes Mellitus in Kidney Transplant Recipients Discharged on Steroid-Free Immunosuppression. Transplantation 2011, 91, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Xia, M.; Yang, H.; Tong, X.; Xie, H.; Cui, F.; Shuang, W. Risk Factors for New-Onset Diabetes Mellitus after Kidney Transplantation: A Systematic Review and Meta-Analysis. J. Diabetes Investig. 2021, 12, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Stinkens, R.; Goossens, G.H.; Jocken, J.W.E.; Blaak, E.E. Targeting Fatty Acid Metabolism to Improve Glucose Metabolism. Obes. Rev. 2015, 16, 715–757. [Google Scholar] [CrossRef] [PubMed]
- Hjelmesæth, J.; Sagedal, S.; Hartmann, A.; Rollag, H.; Egeland, T.; Hagen, M.; Nordal, K.P.; Jenssen, T. Asymptomatic Cytomegalovirus Infection is Associated with Increased Risk of New-Onset Diabetes Mellitus and Impaired Insulin Release after Renal Transplantation. Diabetologia 2004, 47, 1550–1556. [Google Scholar] [CrossRef] [PubMed]
- Roccaro, G.A.; Mitrani, R.; Hwang, W.T.; Forde, K.A.; Reddy, K.R. Sustained Virological Response is Associated with a Decreased Risk of Posttransplant Diabetes Mellitus in Liver Transplant Recipients with Hepatitis C-Related Liver Disease. Liver Transplant. 2018, 24, 1665–1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culliford, A.; Phagura, N.; Sharif, A. Autosomal Dominant Polycystic Kidney Disease is a Risk Factor for Posttransplantation Diabetes Mellitus: An Updated Systematic Review and Meta-Analysis. Transplant. Direct 2020, 6, e553. [Google Scholar] [CrossRef] [PubMed]
- Ong, A.C.M.; Ward, C.J.; Butler, R.J.; Biddolph, S.; Bowker, C.; Torra, R.; Pei, Y.; Harris, P.C. Coordinate Expression of the Autosomal Dominant Polycystic Kidney Disease Proteins, Polycystin-2 and Polycystin-1, in Normal and Cystic Tissue. Am. J. Pathol. 1999, 154, 1721–1729. [Google Scholar] [CrossRef] [Green Version]
- Penfornis, A.; Kury-Paulin, S. Immunosuppressive Drug-Induced Diabetes. Diabetes Metab. 2006, 32, 539–546. [Google Scholar] [CrossRef]
- Pirsch, J.D.; Henning, A.K.; First, M.R.; Fitzsimmons, W.; Gaber, A.O.; Reisfield, R.; Shihab, F.; Woodle, E.S. New-Onset Diabetes after Transplantation: Results From a Double-Blind Early Corticosteroid Withdrawal Trial. Am. J. Transplant. 2015, 15, 1982–1990. [Google Scholar] [CrossRef]
- Marchetti, P.; Navalesi, R. The Metabolic Effects of Cyclosporin and Tacrolimus. J. Endocrinol. Investig. 2000, 23, 482–490. [Google Scholar] [CrossRef]
- Vincenti, F.; Friman, S.; Scheuermann, E.; Rostaing, L.; Jenssen, T.; Campistol, J.M.; Uchida, K.; Pescovitz, M.D.; Marchetti, P.; Tuncer, M.; et al. Results of an International, Randomized Trial Comparing Glucose Metabolism Disorders and Outcome with Cyclosporine versus Tacrolimus. Am. J. Transplant. 2007, 7, 1506–1514. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, B.L.; Vannini, S.D.P.; Truttmann, A.C.; Von Vigier, R.O.; Wermuth, B.; Ferrari, P.; Bianchetti, M.G. Long-Term Calcineurin Inhibition and Magnesium Balance after Renal Transplantation. Transpl. Int. 2003, 16, 76–81. [Google Scholar] [CrossRef]
- Tran, D.; Vallée, M.; Collette, S.; Senécal, L.; Lafrance, J.P.; Dandavino, R.; Boucher, A. Conversion from Twice-Daily to Once-Daily Extended-Release Tacrolimus in Renal Transplant Recipients: 2-Year Results and Review of the Literature. Exp. Clin. Transplant. 2014, 12, 323–327. [Google Scholar] [CrossRef]
- Busque, S.; Cantarovich, M.; Mulgaonkar, S.; Gaston, R.; Gaber, A.O.; Mayo, P.R.; Ling, S.; Huizinga, R.B.; Meier-Kriesche, H.-U. The PROMISE Study: A Phase 2b Multicenter Study of Voclosporin (ISA247) versus Tacrolimus in de Novo Kidney Transplantation. Am. J. Transplant. 2011, 11, 2675–2684. [Google Scholar] [CrossRef]
- Kolic, J.; Beet, L.; Overby, P.; Cen, H.H.; Panzhinskiy, E.; Ure, D.R.; Cross, J.L.; Huizinga, R.B.; Johnson, J.D. Differential Effects of Voclosporin and Tacrolimus on Insulin Secretion From Human Islets. Endocrinology 2020, 161. [Google Scholar] [CrossRef]
- Ahmed, S.H.; Biddle, K.; Augustine, T.; Azmi, S. Post-Transplantation Diabetes Mellitus. Diabetes Ther. 2020, 11, 779–801. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.D.; Chang, J.Y.; Chung, B.H.; Kim, C.D.; Lee, S.H.; Kim, Y.H.; Yang, C.W. Effect of Everolimus with Low-Dose Tacrolimus on Development of New-Onset Diabetes after Transplantation and Allograft Function in Kidney Transplantation: A Multicenter, Open-Label, Randomized Trial. Ann. Transplant. 2021, 26, 1–12. [Google Scholar] [CrossRef]
- Masson, P.; Henderson, L.; Chapman, J.R.; Craig, J.C.; Webster, A.C. Belatacept for Kidney Transplant Recipients. Cochrane Database Syst. Rev. 2013, 2013. [Google Scholar] [CrossRef]
- Cordoba, F.; Wieczorek, G.; Audet, M.; Roth, L.; Schneider, M.A.; Kunkler, A.; Stuber, N.; Erard, M.; Ceci, M.; Baumgartner, R.; et al. A Novel, Blocking, Fc-Silent Anti-CD40 Monoclonal Antibody Prolongs Nonhuman Primate Renal Allograft Survival in the Absence of B Cell Depletion. Am. J. Transplant. 2015, 15, 2825–2836. [Google Scholar] [CrossRef] [PubMed]
- Nanji, S.A.; Hancock, W.W.; Luo, B.; Schur, C.D.; Pawlick, R.L.; Lin, F.Z.; Anderson, C.C.; Shapiro, A.M.J. Costimulation Blockade of Both Inducible Costimulator and CD40 Ligand Induces Dominant Tolerance to Islet Allografts and Prevents Spontaneous Autoimmune Diabetes in the NOD Mouse. Diabetes 2006, 55, 27–33. [Google Scholar] [CrossRef]
- Cosio, F.G.; Pesavento, T.E.; Kim, S.; Osei, K.; Henry, M.; Ferguson, R.M. Patient Survival after Renal Transplantation: IV. Impact of Post-Transplant Diabetes. Kidney Int. 2002, 62, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Foucher, Y.; Lorent, M.; Albano, L.; Roux, S.; Pernin, V.; Le Quintrec, M.; Legendre, C.; Buron, F. Renal Transplantation Outcomes in Obese Patients: A French Cohort-Based Study. BMC. Nephrol. 2021, 22, 79. [Google Scholar] [CrossRef] [PubMed]
- Weiner, D.E.; Park, M.; Tighiouart, H.; Joseph, A.A.; Carpenter, M.A.; Goyal, N.; House, A.A.; Hsu, C.Y.; Ix, J.H.; Jacques, P.F.; et al. Albuminuria and Allograft Failure, Cardiovascular Disease Events, and All-Cause Death in Stable Kidney Transplant Recipients: A Cohort Analysis of the FAVORIT Trial. Am. J. Kidney Dis. 2019, 73, 51–61. [Google Scholar] [CrossRef]
- Zingerman, B.; Erman, A.; Mashraki, T.; Chagnac, A.; Rozen-Zvi, B.; Rahamimov, R. Association of Obesity and Muscle Mass with Risk of Albuminuria in Renal Transplant Recipients. J. Nephrol. 2020. [Google Scholar] [CrossRef]
- Valente, J.F.; Hricik, D.; Weigel, K.; Seaman, D.; Knauss, T.; Siegel, C.T.; Bodziak, K.; Schulak, J.A. Comparison of Sirolimus vs. Mycophenolate Mofetil on Surgical Complications and Wound Healing in Adult Kidney Transplantation. Am. J. Transplant. 2003, 3, 1128–1134. [Google Scholar] [CrossRef]
- Hameed, A.M.; Yao, J.; Allen, R.D.M.; Hawthorne, W.J.; Pleass, H.C.; Lau, H. The Evolution of Kidney Transplantation Surgery Into the Robotic Era and Its Prospects for Obese Recipients. Transplantation 2018, 102, 1650–1665. [Google Scholar] [CrossRef] [PubMed]
- Porrini, E.L.; Díaz, J.M.; Moreso, F.; Delgado Mallén, P.I.; Silva Torres, I.; Ibernon, M.; Bayés-Genís, B.; Benitez-Ruiz, R.; Lampreabe, I.; Lauzurrica, R.; et al. Clinical Evolution of Post-Transplant Diabetes Mellitus. Nephrol. Dial. Transplant. 2016, 31, 495–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- el-Agroudy, A.E.; Wafa, E.W.; Gheith, O.E.; Shehab el-Dein, A.B.; Ghoneim, M.A. Weight Gain after Renal Transplantation is a Risk Factor for Patient and Graft Outcome. Transplantation 2004, 77, 1381–1385. [Google Scholar] [CrossRef] [PubMed]
- Wauters, R.P.; Cosio, F.G.; Suarez Fernandez, M.L.; Kudva, Y.; Shah, P.; Torres, V.E. Cardiovascular Consequences of New-Onset Hyperglycemia after Kidney Transplantation. Transplantation 2012, 94, 377–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byambasukh, O.; Osté, M.C.J.; Gomes-Neto, A.W.; van den Berg, E.; Navis, G.; Bakker, S.J.L.; Corpeleijn, E. Physical Activity and the Development of Post-Transplant Diabetes Mellitus, and Cardiovascular- and All-Cause Mortality in Renal Transplant Recipients. J. Clin. Med. 2020, 9, 415. [Google Scholar] [CrossRef] [Green Version]
- Evert, A.B.; Boucher, J.L.; Cypress, M.; Dunbar, S.A.; Franz, M.J.; Mayer-Davis, E.J.; Neumiller, J.J.; Nwankwo, R.; Verdi, C.L.; Urbanski, P.; et al. Nutrition Therapy Recommendations for the Management of Adults with Diabetes. Diabetes Care 2014, 37 (Suppl. 1), 120–143. [Google Scholar] [CrossRef] [Green Version]
- Conte, C.; Maggiore, U.; Cappelli, G.; Ietto, G.; Lai, Q.; Salis, P.; Marchetti, P.; Piemonti, L.; Secchi, A.; Capocasale, E.; et al. Management of Metabolic Alterations in Adult Kidney Transplant Recipients: A Joint Position Statement of the Italian Society of Nephrology (SIN), the Italian Society for Organ Transplantation (SITO) and the Italian Diabetes Society (SID). Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1427–1441. [Google Scholar] [CrossRef]
- Gheith, O.; Al-Otaibi, T.; Halim, M.A.; Mahmoud, T.; Mosaad, A.; Yagan, J.; Zakaria, Z.; Rida, S.; Nair, P.; Hassan, R. Bariatric Surgery in Renal Transplant Patients. Exp. Clin. Transplant. 2017, 15, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Vest, L.S.; Koraishy, F.M.; Zhang, Z.; Lam, N.; Schnitzler, M.A.; Dharnidharka, V.R.; Axelrod, D.; Naik, A.S.; Alhamad, T.A.; Kasiske, B.L.; et al. Metformin use in the first year after kidney transplant, correlates, and associated outcomes in diabetic transplant recipients: A retrospective analysis of integrated registry and pharmacy claims data. Clin. Transplant. 2018, 32, e13302. [Google Scholar] [CrossRef]
- Ekström, N.; Schiöler, L.; Svensson, A.M.; Eeg-Olofsson, K.; Jonasson, J.M.; Zethelius, B.; Cederholm, J.; Eliasson, B.; Gudbjörnsdottir, S. Effectiveness and Safety of Metformin in 51,675 Patients with Type 2 Diabetes and Different Levels of Renal Function: A Cohort Study from the Swedish National Diabetes Register. BMJ Open 2012, 2. [Google Scholar] [CrossRef]
- Haidinger, M.; Antlanger, M.; Kopecky, C.; Kovarik, J.J.; Säemann, M.D.; Werzowa, J. Post-Transplantation Diabetes Mellitus: Evaluation of Treatment Strategies. Clin. Transplant. 2015, 29, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.R.; Fathy, A.; Khashab, S.; Shaheen, N.; Soliman, M.A. Sitagliptin Might Be a Favorable Antiobesity Drug for New Onset Diabetes after a Renal Transplant. Exp. Clin. Transplant. 2013, 11, 494–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conte, C.; Secchi, A. Post-transplantation diabetes in kidney transplant recipients: An update on management and prevention. Acta Diabetol. 2018, 55, 763–779. [Google Scholar] [CrossRef]
- Heerspink, H.J.L. Sodium Glucose Co-Transporter 2 Inhibition: A New Avenue to Protect the Kidney. Nephrol. Dial. Transplant. 2019, 34, 2015–2017. [Google Scholar] [CrossRef] [PubMed]
- Zinman, B.; Lachin, J.M.; Inzucchi, S.E. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2016, 373, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Neal, B.; Perkovic, V.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef] [PubMed]
- Chewcharat, A.; Prasitlumkum, N.; Thongprayoon, C.; Bathini, T.; Medaura, J.; Vallabhajosyula, S.; Cheungpasitporn, W. Efficacy and Safety of SGLT-2 Inhibitors for Treatment of Diabetes Mellitus among Kidney Transplant Patients: A Systematic Review and Meta-Analysis. Med. Sci. 2020, 8, 47. [Google Scholar] [CrossRef]
- Halden, T.A.S.; Kvitne, K.E.; Midtvedt, K.; Rajakumar, L.; Robertsen, I.; Brox, J.; Bollerslev, J.; Hartmann, A.; Åsberg, A.; Jenssen, T. Efficacy and Safety of Empagliflozin in Renal Transplant Recipients with Posttransplant Diabetes Mellitus. Diabetes Care 2019, 42, 1067–1074. [Google Scholar] [CrossRef]
- Muskiet, M.H.A.; Tonneijck, L.; Smits, M.M.; van Baar, M.J.B.; Kramer, M.H.H.; Hoorn, E.J.; Joles, J.A.; van Raalte, D.H. GLP-1 and the Kidney: From Physiology to Pharmacology and Outcomes in Diabetes. Nat. Rev. Nephrol. 2017, 13, 605–628. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Lakshmanan, M.C.; Rayner, B.; Busch, R.S.; Zimmermann, A.G.; Woodward, D.B.; Botros, F.T. Dulaglutide versus Insulin Glargine in Patients with Type 2 Diabetes and Moderate-to-Severe Chronic Kidney Disease (AWARD-7): A Multicentre, Open-Label, Randomised Trial. Lancet. Diabetes Endocrinol. 2018, 6, 605–617. [Google Scholar] [CrossRef]
- Grill, H.J. A Role for GLP-1 in Treating Hyperphagia and Obesity. Endocrinology 2021, 161, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Pesavento, T.E.; Washburn, K.; Walsh, D.; Meng, S. Largest Single-Centre Experience of Dulaglutide for Management of Diabetes Mellitus in Solid Organ Transplant Recipients. Diabetes Obes. Metab. 2019, 21, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Thangavelu, T.; Lyden, E.; Shivaswamy, V. A Retrospective Study of Glucagon-Like Peptide 1 Receptor Agonists for the Management of Diabetes After Transplantation. Diabetes Ther. 2020, 11, 987–994. [Google Scholar] [CrossRef] [Green Version]
- Pinelli, N.R.; Patel, A.; Salinitri, F.D. Coadministration of Liraglutide with Tacrolimus in Kidney Transplant Recipients: A Case Series. Diabetes Care 2013, 36, e171–e172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, M.J.; D’Alessio, D.A.; Fradkin, J.; Kernan, W.N.; Mathieu, C.; Mingrone, G.; Rossing, P.; Tsapas, A.; Wexler, D.J.; Buse, J.B. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018, 41, 2669–2701. [Google Scholar] [CrossRef] [Green Version]
Type of Surgery | Effect on Drug Levels |
---|---|
Gastric bypass | Higher doses of immunosuppressive medications |
Biliopancreatic diversion | Not reported |
Laparoscopic gastric banding | None reported |
Vertical gastroplasty | None reported |
Risk factors | Relative Risk for PTDM (95% CI) | p-Value |
---|---|---|
Old age (≥60) | 2.60 (2.32–2.92) | <0.0001 |
African-American race | 1.68 (1.52–1.85) | <0.0001 |
Hispanic ethnicity | 1.35 (1.19–1.54) | <0.0001 |
Obesity | 1.73 (1.57–1.90) | <0.0001 |
Family history of DM | 3.14 (1.87–5.27) | <0.0001 |
Steroid-containing maintenance regimen | 1.42 (1.27–1.58) | <0.001 |
Tacrolimus | 1.53 (1.29–1.81) | <0.0001 |
HCV positive | 1.33 (1.15–1.55) | <0.0001 |
Hypomagnesemia | 1.58 (1.07–2.34) | 0.02 |
HLA mismatches (6) | 1.30 (1.07–1.58) | 0.0085 |
Donor characteristics (male) | 1.12 (1.03–1.21) | 0.0090 |
Type of Anti-Diabetic Drug | Advantages | Disavantages |
---|---|---|
Insulin | No dose adjustment in renal impairment | Hypoglycaemia Weight gain Injectable |
Metformin | No hypoglycaemia No weight gain | Contraindicated if eGFR < 30 mL/min/1.73 m2 Caution if eGFR 30–59 mL/min/1.73 m2 Gastrointestinal side effects, Risk of lactic acidosis |
Sulfonylurea/glinides | Rapid onset of action | Hypoglycaemia Weight gain Increased CV risk Dose adjustment required in renal impairment |
Thiazolidinediones | No dose adjustment in renal impairment | Weight gain Increased fracture risk Potential risk for CHF |
DPP4-i | No hypoglycaemia No weight gain | All but linagliptin require dose adjustment in renal impairment Potential risk for CHF (saxagliptin, alogliptin) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin-Moreno, P.L.; Shin, H.-S.; Chandraker, A. Obesity and Post-Transplant Diabetes Mellitus in Kidney Transplantation. J. Clin. Med. 2021, 10, 2497. https://doi.org/10.3390/jcm10112497
Martin-Moreno PL, Shin H-S, Chandraker A. Obesity and Post-Transplant Diabetes Mellitus in Kidney Transplantation. Journal of Clinical Medicine. 2021; 10(11):2497. https://doi.org/10.3390/jcm10112497
Chicago/Turabian StyleMartin-Moreno, Paloma Leticia, Ho-Sik Shin, and Anil Chandraker. 2021. "Obesity and Post-Transplant Diabetes Mellitus in Kidney Transplantation" Journal of Clinical Medicine 10, no. 11: 2497. https://doi.org/10.3390/jcm10112497
APA StyleMartin-Moreno, P. L., Shin, H. -S., & Chandraker, A. (2021). Obesity and Post-Transplant Diabetes Mellitus in Kidney Transplantation. Journal of Clinical Medicine, 10(11), 2497. https://doi.org/10.3390/jcm10112497