Patient-Self Inflicted Lung Injury: A Practical Review
Abstract
:1. Introduction
2. Inspiratory Effort and Mechanical Forces Promoting Lung Injury
3. Physiological Effects of Inspiratory Effort at a Given Global Transpulmonary Pressure
3.1. Stress and Strain Inhomogeneity
3.2. Alveolar Pressure
4. The Vicious Circle of P-SILI
5. Patient-Ventilator Interaction
6. Usefulness of the Concept of P-SILI in Clinical Practice
6.1. Measurement of Respiratory Effort
6.2. Clinical Situations at Risk of P-SILI
6.2.1. Detecting a Risk of P-SILI in Volume Assist-Control Ventilation
6.2.2. Detecting a Risk of P-SILI in Pressure Support Ventilation
6.2.3. Detecting a Risk of P-SILI during Noninvasive Strategies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Slutsky, A.S.; Ranieri, V.M. Ventilator-Induced Lung Injury. New Engl. J. Med. 2013, 369, 2126–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acute Respiratory Distress Syndrome Network. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. New Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar]
- Fan, E.; Del Sorbo, L.; Goligher, E.C.; Hodgson, C.L.; Munshi, L.; Walkey, A.J.; Adhikari, N.K.J.; Amato, M.B.P.; Branson, R.; Brower, R.G.; et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2017, 195, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Briel, M.; Meade, M.; Mercat, A.; Brower, R.G.; Talmor, D.; Walter, S.D.; Slutsky, A.S.; Pullenayegum, E.; Zhou, Q.; Cook, D. Higher vs Lower Positive End-Expiratory Pressure in Patients with Acute Lung Injury and Acute Respiratory Distress Syndrome: Systematic Review and Meta-Analysis. JAMA 2010, 303, 865–873. [Google Scholar] [CrossRef]
- Brochard, L.; Slutsky, A.; Pesenti, A. Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure. Am. J. Respir. Crit. Care Med. 2017, 195, 438–442. [Google Scholar] [CrossRef]
- Bellani, G.; Grasselli, G.; Teggia-Droghi, M.; Mauri, T.; Coppadoro, A.; Brochard, L.; Pesenti, A. Do Spontaneous and Mechanical Breathing Have Similar Effects on Average Transpulmonary and Alveolar Pressure? A Clinical Crossover Study. Crit. Care 2016, 20. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Nakahashi, S.; Nakamura, M.A.M.; Koyama, Y.; Roldan, R.; Torsani, V.; De Santis, R.R.; Gomes, S.; Uchiyama, A.; Amato, M.B.P.; et al. Volume-Controlled Ventilation Does Not Prevent Injurious Inflation during Spontaneous Effort. Am. J. Respir. Crit. Care Med. 2017, 196, 590–601. [Google Scholar] [CrossRef]
- Yoshida, T.; Nakamura, M.A.M.; Morais, C.C.A.; Amato, M.B.P.; Kavanagh, B.P. Reverse Triggering Causes an Injurious Inflation Pattern during Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2018. [Google Scholar] [CrossRef]
- Magder, S.; Verscheure, S. Proper Reading of Pulmonary Artery Vascular Pressure Tracings. Am. J. Respir. Crit. Care Med. 2014, 190, 1196–1198. [Google Scholar] [CrossRef]
- Brochard, L. Ventilation-Induced Lung Injury Exists in Spontaneously Breathing Patients with Acute Respiratory Failure: Yes. Intensive Care Med. 2017, 43, 250–252. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Torsani, V.; Gomes, S.; De Santis, R.R.; Beraldo, M.A.; Costa, E.L.V.; Tucci, M.R.; Zin, W.A.; Kavanagh, B.P.; Amato, M.B.P. Spontaneous Effort Causes Occult Pendelluft during Mechanical Ventilation. Am. J. Respir. Crit. Care Med. 2013, 188, 1420–1427. [Google Scholar] [CrossRef]
- Carteaux, G.; Millán-Guilarte, T.; De Prost, N.; Razazi, K.; Abid, S.; Thille, A.W.; Schortgen, F.; Brochard, L.; Brun-Buisson, C.; Mekontso Dessap, A. Failure of Noninvasive Ventilation for De Novo Acute Hypoxemic Respiratory Failure: Role of Tidal Volume. Crit. Care Med. 2016, 44, 282–290. [Google Scholar] [CrossRef]
- Frat, J.-P.; Ragot, S.; Coudroy, R.; Constantin, J.-M.; Girault, C.; Prat, G.; Boulain, T.; Demoule, A.; Ricard, J.-D.; Razazi, K. Predictors of Intubation in Patients With Acute Hypoxemic Respiratory Failure Treated With a Noninvasive Oxygenation Strategy. Crit. Care Med. 2018, 46, 208–215. [Google Scholar] [CrossRef]
- Papazian, L.; Perrin, G.; Seghboyan, J.-M.; Guérin, C. Neuromuscular Blockers in Early Acute Respiratory Distress Syndrome. New Engl. J. Med. 2010, 363, 1107–1116. [Google Scholar] [CrossRef] [Green Version]
- Dreyfuss, D.; Soler, P.; Basset, G.; Saumon, G. High Inflation Pressure Pulmonary Edema: Respective Effects of High Airway Pressure, High Tidal Volume, and Positive End-Expiratory Pressure. Am. Rev. Respir. Dis. 1988, 137, 1159–1164. [Google Scholar] [CrossRef]
- Mascheroni, D.; Kolobow, T.; Fumagalli, R.; Moretti, M.P.; Chen, V.; Buckhold, D. Acute Respiratory Failure Following Pharmacologically Induced Hyperventilation: An Experimental Animal Study. Intensive Care Med. 1988, 15. [Google Scholar] [CrossRef]
- Marini, J.J.; Gattinoni, L. Management of COVID-19 Respiratory Distress. JAMA 2020, 323, 2329. [Google Scholar] [CrossRef]
- Tobin, M.J.; Laghi, F.; Jubran, A. Caution about Early Intubation and Mechanical Ventilation in COVID-19. Ann. Intensive Care 2020, 10, 78. [Google Scholar] [CrossRef]
- Gattinoni, L.; Carlesso, E.; Caironi, P. Stress and Strain within the Lung. Curr. Opin. Crit. Care 2012, 18, 42–47. [Google Scholar] [CrossRef]
- Gattinoni, L.; Pesenti, A. The Concept of “Baby Lung”. Intensive Care Med. 2005, 31, 776–784. [Google Scholar] [CrossRef]
- Akoumianaki, E.; Maggiore, S.M.; Valenza, F.; Bellani, G.; Jubran, A.; Loring, S.H.; Pelosi, P.; Talmor, D.; Grasso, S.; Chiumello, D.; et al. The Application of Esophageal Pressure Measurement in Patients with Respiratory Failure. Am. J. Respir. Crit. Care Med. 2014, 189, 520–531. [Google Scholar] [CrossRef]
- Mauri, T.; Yoshida, T.; Bellani, G.; Goligher, E.; Carteaux, G.; Rittayamai, N.; Mojoli, F.; Chiumello, D.; Piquilloud, L.; Grasso, S.; et al. Esophageal and Transpulmonary Pressure in the Clinical Setting: Meaning, Usefulness and Perspectives. Intensive Care Med. 2016, 42, 1360–1373. [Google Scholar] [CrossRef]
- Caironi, P.; Cressoni, M.; Chiumello, D.; Ranieri, M.; Quintel, M.; Russo, S.G.; Cornejo, R.; Bugedo, G.; Carlesso, E.; Russo, R.; et al. Lung Opening and Closing during Ventilation of Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2010, 181, 578–586. [Google Scholar] [CrossRef]
- Loyd, J.E.; Nolop, K.B.; Parker, R.E.; Roselli, R.J.; Brigham, K.L. Effects of Inspiratory Resistance Loading on Lung Fluid Balance in Awake Sheep. J. Appl. Physiol. 1986, 60, 198–203. [Google Scholar] [CrossRef]
- Smith-Erichsen, N.; Bø, G. Airway closure and fluid filtration in the lung. Br. J. Anaesth. 1979, 51, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Lemyze, M.; Mallat, J. Understanding Negative Pressure Pulmonary Edema. Intensive Care Med. 2014, 40, 1140–1143. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, M.; Kallet, R.H.; Ware, L.B.; Matthay, M.A. Negative-Pressure Pulmonary Edema. Chest 2016, 150, 927–933. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Uchiyama, A.; Matsuura, N.; Mashimo, T.; Fujino, Y. The Comparison of Spontaneous Breathing and Muscle Paralysis in Two Different Severities of Experimental Lung Injury. Crit. Care Med. 2013, 41, 536–545. [Google Scholar] [CrossRef]
- Vaporidi, K.; Akoumianaki, E.; Telias, I.; Goligher, E.C.; Brochard, L.; Georgopoulos, D. Respiratory Drive in Critically Ill Patients. Pathophysiology and Clinical Implications. Am. J. Respir. Crit. Care Med. 2020, 201, 20–32. [Google Scholar] [CrossRef]
- Spinelli, E.; Mauri, T.; Beitler, J.R.; Pesenti, A.; Brodie, D. Respiratory Drive in the Acute Respiratory Distress Syndrome: Pathophysiology, Monitoring, and Therapeutic Interventions. Intensive Care Med. 2020, 46, 606–618. [Google Scholar] [CrossRef]
- Brochard, L.; Lefebvre, J.-C.; Cordioli, R.L.; Akoumianaki, E.; Richard, J.-C.M. Noninvasive Ventilation for Patients with Hypoxemic Acute Respiratory Failure. Semin. Respir. Crit. Care Med. 2014, 35, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Coppadoro, A.; Grassi, A.; Giovannoni, C.; Rabboni, F.; Eronia, N.; Bronco, A.; Foti, G.; Fumagalli, R.; Bellani, G. Occurrence of Pendelluft under Pressure Support Ventilation in Patients Who Failed a Spontaneous Breathing Trial: An Observational Study. Ann. Intensive Care 2020, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Chanques, G.; Kress, J.P.; Pohlman, A.; Patel, S.; Poston, J.; Jaber, S.; Hall, J.B. Impact of Ventilator Adjustment and Sedation–Analgesia Practices on Severe Asynchrony in Patients Ventilated in Assist-Control Mode. Crit. Care Med. 2013, 41, 2177–2187. [Google Scholar] [CrossRef] [PubMed]
- Thille, A.W.; Rodriguez, P.; Cabello, B.; Lellouche, F.; Brochard, L. Patient-Ventilator Asynchrony during Assisted Mechanical Ventilation. Intensive Care Med. 2006, 32, 1515–1522. [Google Scholar] [CrossRef]
- Akoumianaki, E.; Lyazidi, A.; Rey, N.; Matamis, D.; Perez-Martinez, N.; Giraud, R.; Mancebo, J.; Brochard, L.; Richard, J.-C.M. Mechanical Ventilation-Induced Reverse-Triggered Breaths. Chest 2013, 143, 927–938. [Google Scholar] [CrossRef]
- Baedorf Kassis, E.; Su, H.K.; Graham, A.R.; Novack, V.; Loring, S.H.; Talmor, D.S. Reverse Trigger Phenotypes in Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2021, 203, 67–77. [Google Scholar] [CrossRef]
- Levine, S.; Nguyen, T.; Taylor, N.; Friscia, M.E.; Budak, M.T.; Rothenberg, P.; Zhu, J.; Sachdeva, R.; Sonnad, S.; Kaiser, L.R.; et al. Rapid Disuse Atrophy of Diaphragm Fibers in Mechanically Ventilated Humans. New Engl. J. Med. 2008, 358, 1327–1335. [Google Scholar] [CrossRef]
- Jaber, S.; Petrof, B.J.; Jung, B.; Chanques, G.; Berthet, J.-P.; Rabuel, C.; Bouyabrine, H.; Courouble, P.; Koechlin-Ramonatxo, C.; Sebbane, M.; et al. Rapidly Progressive Diaphragmatic Weakness and Injury during Mechanical Ventilation in Humans. Am. J. Respir. Crit. Care Med. 2011, 183, 364–371. [Google Scholar] [CrossRef]
- Goligher, E.C.; Dres, M.; Fan, E.; Rubenfeld, G.D.; Scales, D.C.; Herridge, M.S.; Vorona, S.; Sklar, M.C.; Rittayamai, N.; Lanys, A.; et al. Mechanical Ventilation–Induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes. Am. J. Respir. Crit. Care Med. 2018, 197, 204–213. [Google Scholar] [CrossRef]
- Goligher, E.C.; Fan, E.; Herridge, M.S.; Murray, A.; Vorona, S.; Brace, D.; Rittayamai, N.; Lanys, A.; Tomlinson, G.; Singh, J.M.; et al. Evolution of Diaphragm Thickness during Mechanical Ventilation. Impact of Inspiratory Effort. Am. J. Respir. Crit. Care Med. 2015, 192, 1080–1088. [Google Scholar] [CrossRef]
- Dres, M.; Goligher, E.C.; Heunks, L.M.A.; Brochard, L.J. Critical Illness-Associated Diaphragm Weakness. Intensive Care Med. 2017, 43, 1441–1452. [Google Scholar] [CrossRef]
- Goligher, E.C.; Dres, M.; Patel, B.K.; Sahetya, S.K.; Beitler, J.R.; Telias, I.; Yoshida, T.; Vaporidi, K.; Grieco, D.L.; Schepens, T.; et al. Lung- and Diaphragm-Protective Ventilation. Am. J. Respir. Crit. Care Med. 2020, 202, 950–961. [Google Scholar] [CrossRef]
- Goligher, E.C.; Jonkman, A.H.; Dianti, J.; Vaporidi, K.; Beitler, J.R.; Patel, B.K.; Yoshida, T.; Jaber, S.; Dres, M.; Mauri, T.; et al. Clinical Strategies for Implementing Lung and Diaphragm-Protective Ventilation: Avoiding Insufficient and Excessive Effort. Intensive Care Med. 2020, 46, 2314–2326. [Google Scholar] [CrossRef]
- Pellegrini, M.; Hedenstierna, G.; Roneus, A.; Segelsjö, M.; Larsson, A.; Perchiazzi, G. The Diaphragm Acts as a Brake during Expiration to Prevent Lung Collapse. Am. J. Respir. Crit. Care Med. 2017, 195, 1608–1616. [Google Scholar] [CrossRef]
- Kress, J.P. Daily Interruption of Sedative Infusions in Critically Ill Patients Undergoing Mechanical Ventilation. New Engl. J. Med. 2000, 342, 1471–1477. [Google Scholar] [CrossRef] [Green Version]
- Carteaux, G.; Mancebo, J.; Mercat, A.; Dellamonica, J.; Richard, J.-C.M.; Aguirre-Bermeo, H.; Kouatchet, A.; Beduneau, G.; Thille, A.W.; Brochard, L. Bedside Adjustment of Proportional Assist Ventilation to Target a Predefined Range of Respiratory Effort. Crit. Care Med. 2013, 41, 2125–2132. [Google Scholar] [CrossRef] [Green Version]
- Beck, J.; Gottfried, S.B.; Navalesi, P.; Skrobik, Y.; Comtois, N.; Rossini, M.; Sinderby, C. Electrical Activity of the Diaphragm during Pressure Support Ventilation in Acute Respiratory Failure. Am. J. Respir. Crit. Care Med. 2001, 164, 419–424. [Google Scholar] [CrossRef]
- Beck, J.; Sinderby, C.; Lindström, L.; Grassino, A. Effects of Lung Volume on Diaphragm EMG Signal Strength during Voluntary Contractions. J. Appl. Physiol. 1998, 85, 1123–1134. [Google Scholar] [CrossRef]
- Sinderby, C.; Beck, J.; Spahija, J.; Weinberg, J.; Grassino, A. Voluntary Activation of the Human Diaphragm in Health and Disease. J. Appl. Physiol. 1998, 85, 2146–2158. [Google Scholar] [CrossRef]
- Carteaux, G.; Córdoba-Izquierdo, A.; Lyazidi, A.; Heunks, L.; Thille, A.W.; Brochard, L. Comparison Between Neurally Adjusted Ventilatory Assist and Pressure Support Ventilation Levels in Terms of Respiratory Effort. Crit. Care Med. 2016, 44, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Bellani, G.; Mauri, T.; Coppadoro, A.; Grasselli, G.; Patroniti, N.; Spadaro, S.; Sala, V.; Foti, G.; Pesenti, A. Estimation of Patient’s Inspiratory Effort From the Electrical Activity of the Diaphragm. Crit. Care Med. 2013, 41, 1483–1491. [Google Scholar] [CrossRef] [PubMed]
- Rittayamai, N.; Beloncle, F.; Goligher, E.C.; Chen, L.; Mancebo, J.; Richard, J.-C.M.; Brochard, L. Effect of Inspiratory Synchronization during Pressure-Controlled Ventilation on Lung Distension and Inspiratory Effort. Ann. Intensive Care 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telias, I.; Junhasavasdikul, D.; Rittayamai, N.; Piquilloud, L.; Chen, L.; Ferguson, N.D.; Goligher, E.C.; Brochard, L. Airway Occlusion Pressure As an Estimate of Respiratory Drive and Inspiratory Effort during Assisted Ventilation. Am. J. Respir. Crit. Care Med. 2020, 201, 1086–1098. [Google Scholar] [CrossRef] [PubMed]
- Beloncle, F.; Akoumianaki, E.; Rittayamai, N.; Lyazidi, A.; Brochard, L. Accuracy of Delivered Airway Pressure and Work of Breathing Estimation during Proportional Assist Ventilation: A Bench Study. Ann. Intensive Care 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Bertoni, M.; Telias, I.; Urner, M.; Long, M.; Del Sorbo, L.; Fan, E.; Sinderby, C.; Beck, J.; Liu, L.; Qiu, H.; et al. A Novel Non-Invasive Method to Detect Excessively High Respiratory Effort and Dynamic Transpulmonary Driving Pressure during Mechanical Ventilation. Crit. Care 2019, 23, 346. [Google Scholar] [CrossRef] [Green Version]
- Dianti, J.; Bertoni, M.; Goligher, E.C. Monitoring Patient–Ventilator Interaction by an End-Expiratory Occlusion Maneuver. Intensive Care Med. 2020, 46, 2338–2341. [Google Scholar] [CrossRef]
- Tuinman, P.R.; Jonkman, A.H.; Dres, M.; Shi, Z.-H.; Goligher, E.C.; Goffi, A.; de Korte, C.; Demoule, A.; Heunks, L. Respiratory Muscle Ultrasonography: Methodology, Basic and Advanced Principles and Clinical Applications in ICU and ED Patients—A Narrative Review. Intensive Care Med. 2020, 46, 594–605. [Google Scholar] [CrossRef] [Green Version]
- Younes, M.; Webster, K.; Kun, J.; Roberts, D.; Masiowski, B. A Method for Measuring Passive Elastance during Proportional Assist Ventilation. Am. J. Respir. Crit. Care Med. 2001, 164, 50–60. [Google Scholar] [CrossRef]
- Younes, M.; Kun, J.; Masiowski, B.; Webster, K.; Roberts, D. A Method for Noninvasive Determination of Inspiratory Resistance during Proportional Assist Ventilation. Am. J. Respir. Crit. Care Med. 2001, 163, 829–839. [Google Scholar] [CrossRef] [Green Version]
- Jonkman, A.H.; Rauseo, M.; Carteaux, G.; Telias, I.; Sklar, M.C.; Heunks, L.; Brochard, L.J. Proportional Modes of Ventilation: Technology to Assist Physiology. Intensive Care Med. 2020, 46, 2301–2313. [Google Scholar] [CrossRef]
- Ward, M.E.; Corbeil, C.; Gibbons, W.; Newman, S.; Macklem, P.T. Optimization of Respiratory Muscle Relaxation during Mechanical Ventilation. Anesthesiology 1988, 69, 29–35. [Google Scholar] [CrossRef]
- Beitler, J.R.; Sands, S.A.; Loring, S.H.; Owens, R.L.; Malhotra, A.; Spragg, R.G.; Matthay, M.A.; Thompson, B.T.; Talmor, D. Quantifying Unintended Exposure to High Tidal Volumes from Breath Stacking Dyssynchrony in ARDS: The BREATHE Criteria. Intensive Care Med. 2016, 42, 1427–1436. [Google Scholar] [CrossRef] [Green Version]
- Forster, A.; Gardaz, J.P.; Suter, P.M.; Gemperle, M. Respiratory Depression by Midazolam and Diazepam. Anesthesiology 1980, 53, 494–497. [Google Scholar] [CrossRef]
- Pandharipande, P.; Pun, B.T.; Bernard, G.R. Lorazepam Is an Independent Risk Factor for Transitioning to Delirium in Intensive Care Unit Patients. Anesthesiology 2006, 104, 6. [Google Scholar] [CrossRef]
- Vaschetto, R.; Cammarota, G.; Colombo, D.; Longhini, F.; Grossi, F.; Giovanniello, A.; Della Corte, F.; Navalesi, P. Effects of Propofol on Patient-Ventilator Synchrony and Interaction During Pressure Support Ventilation and Neurally Adjusted Ventilatory Assist. Crit. Care Med. 2014, 42, 74–82. [Google Scholar] [CrossRef]
- Belleville, J.P.; Ward, D.S.; Bloor, B.C.; Maze, M. Effects of Intravenous Dexmedetomidine in Humans. I. Sedation, Ventilation, and Metabolic Rate. Anesthesiology 1992, 77, 1125–1133. [Google Scholar] [CrossRef]
- Morais, C.C.A.; Koyama, Y.; Yoshida, T.; Plens, G.M.; Gomes, S.; Lima, C.A.S.; Ramos, O.P.S.; Pereira, S.M.; Kawaguchi, N.; Yamamoto, H.; et al. High Positive End-Expiratory Pressure Renders Spontaneous Effort Noninjurious. Am. J. Respir. Crit. Care Med. 2018, 197, 1285–1296. [Google Scholar] [CrossRef]
- Pengelly, L.D.; Alderson, A.M.; Milic-Emili, J. Mechanics of the Diaphragm. J. Appl. Physiol. 1971, 30, 797–805. [Google Scholar] [CrossRef]
- Tonelli, R.; Fantini, R.; Tabbì, L.; Castaniere, I.; Pisani, L.; Pellegrino, M.R.; Della Casa, G.; D’Amico, R.; Girardis, M.; Nava, S.; et al. Inspiratory Effort Assessment by Esophageal Manometry Early Predicts Noninvasive Ventilation Outcome in de Novo Respiratory Failure: A Pilot Study. Am. J. Respir. Crit. Care Med. 2020. [Google Scholar] [CrossRef] [Green Version]
- Tuffet, S.; Mekontso Dessap, A.; Carteaux, G. Noninvasive Ventilation for De Novo Respiratory Failure: Impact of Ventilator Setting Adjustments. Am. J. Respir. Crit. Care Med. 2020, 202, 769–770. [Google Scholar] [CrossRef]
- Frat, J.-P.; Thille, A.W.; Mercat, A.; Girault, C.; Ragot, S.; Perbet, S.; Prat, G.; Boulain, T.; Morawiec, E.; Cottereau, A.; et al. High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure. New Engl. J. Med. 2015, 372, 2185–2196. [Google Scholar] [CrossRef] [Green Version]
- Möller, W.; Celik, G.; Feng, S.; Bartenstein, P.; Meyer, G.; Eickelberg, O.; Schmid, O.; Tatkov, S. Nasal High Flow Clears Anatomical Dead Space in Upper Airway Models. J. Appl. Physiol. 2015, 118, 1525–1532. [Google Scholar] [CrossRef]
- Mauri, T.; Turrini, C.; Eronia, N.; Grasselli, G.; Volta, C.A.; Bellani, G.; Pesenti, A. Physiologic Effects of High-Flow Nasal Cannula in Acute Hypoxemic Respiratory Failure. Am. J. Respir. Crit. Care Med. 2017, 195, 1207–1215. [Google Scholar] [CrossRef]
- Roca, O.; Caralt, B.; Messika, J.; Samper, M.; Sztrymf, B.; Hernández, G.; García-de-Acilu, M.; Frat, J.-P.; Masclans, J.R.; Ricard, J.-D. An Index Combining Respiratory Rate and Oxygenation to Predict Outcome of Nasal High-Flow Therapy. Am. J. Respir. Crit. Care Med. 2019, 199, 1368–1376. [Google Scholar] [CrossRef]
- Cruces, P.; Retamal, J.; Hurtado, D.E.; Erranz, B.; Iturrieta, P.; González, C.; Díaz, F. A Physiological Approach to Understand the Role of Respiratory Effort in the Progression of Lung Injury in SARS-CoV-2 Infection. Crit. Care 2020, 24, 494. [Google Scholar] [CrossRef]
- Carteaux, G.; Pons, M.; Morin, F.; Tuffet, S.; Lesimple, A.; Badat, B.; Haudebourg, A.-F.; Perier, F.; Deplante, Y.; Guillaud, C.; et al. Continuous Positive Airway Pressure for Respiratory Support during COVID-19 Pandemic: A Frugal Approach from Bench to Bedside. Ann. Intensive Care 2021, 11, 38. [Google Scholar] [CrossRef]
- Alviset, S.; Riller, Q.; Aboab, J.; Dilworth, K.; Billy, P.-A.; Lombardi, Y.; Azzi, M.; Ferreira Vargas, L.; Laine, L.; Lermuzeaux, M.; et al. Continuous Positive Airway Pressure (CPAP) Face-Mask Ventilation Is an Easy and Cheap Option to Manage a Massive Influx of Patients Presenting Acute Respiratory Failure during the SARS-CoV-2 Outbreak: A Retrospective Cohort Study. PLoS ONE 2020, 15, e0240645. [Google Scholar] [CrossRef]
- Oranger, M.; Gonzalez-Bermejo, J.; Dacosta-Noble, P.; Llontop, C.; Guerder, A.; Trosini-Desert, V.; Faure, M.; Raux, M.; Decavele, M.; Demoule, A.; et al. Continuous Positive Airway Pressure to Avoid Intubation in SARS-CoV-2 Pneumonia: A Two-Period Retrospective Case-Control Study. Eur. Respir. J. 2020, 2001692. [Google Scholar] [CrossRef]
- Demoule, A.; Vieillard Baron, A.; Darmon, M.; Beurton, A.; Géri, G.; Voiriot, G.; Dupont, T.; Zafrani, L.; Girodias, L.; Labbé, V.; et al. High-Flow Nasal Cannula in Critically III Patients with Severe COVID-19. Am. J. Respir. Crit. Care Med. 2020, 202, 1039–1042. [Google Scholar] [CrossRef]
- Hernandez-Romieu, A.C.; Adelman, M.W.; Hockstein, M.A.; Robichaux, C.J.; Edwards, J.A.; Fazio, J.C.; Blum, J.M.; Jabaley, C.S.; Caridi-Scheible, M.; Martin, G.S.; et al. Timing of Intubation and Mortality Among Critically Ill Coronavirus Disease 2019 Patients: A Single-Center Cohort Study. Crit. Care Med. 2020, 48, e1045–e1053. [Google Scholar] [CrossRef]
- Pandya, A.; Kaur, N.A.; Sacher, D.; O’Corragain, O.; Salerno, D.; Desai, P.; Sehgal, S.; Gordon, M.; Gupta, R.; Marchetti, N.; et al. Ventilatory Mechanics in Early vs Late Intubation in a Cohort of Coronavirus Disease 2019 Patients With ARDS. Chest 2021, 159, 653–656. [Google Scholar] [CrossRef] [PubMed]
- Papoutsi, E.; Giannakoulis, V.G.; Xourgia, E.; Routsi, C.; Kotanidou, A.; Siempos, I.I. Effect of Timing of Intubation on Clinical Outcomes of Critically Ill Patients with COVID-19: A Systematic Review and Meta-Analysis of Non-Randomized Cohort Studies. Crit Care 2021, 25, 121. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carteaux, G.; Parfait, M.; Combet, M.; Haudebourg, A.-F.; Tuffet, S.; Mekontso Dessap, A. Patient-Self Inflicted Lung Injury: A Practical Review. J. Clin. Med. 2021, 10, 2738. https://doi.org/10.3390/jcm10122738
Carteaux G, Parfait M, Combet M, Haudebourg A-F, Tuffet S, Mekontso Dessap A. Patient-Self Inflicted Lung Injury: A Practical Review. Journal of Clinical Medicine. 2021; 10(12):2738. https://doi.org/10.3390/jcm10122738
Chicago/Turabian StyleCarteaux, Guillaume, Mélodie Parfait, Margot Combet, Anne-Fleur Haudebourg, Samuel Tuffet, and Armand Mekontso Dessap. 2021. "Patient-Self Inflicted Lung Injury: A Practical Review" Journal of Clinical Medicine 10, no. 12: 2738. https://doi.org/10.3390/jcm10122738
APA StyleCarteaux, G., Parfait, M., Combet, M., Haudebourg, A. -F., Tuffet, S., & Mekontso Dessap, A. (2021). Patient-Self Inflicted Lung Injury: A Practical Review. Journal of Clinical Medicine, 10(12), 2738. https://doi.org/10.3390/jcm10122738