Differences between Obese and Non-Obese Children and Adolescents Regarding Their Oral Status and Blood Markers of Kidney Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study and Control Groups
- Peripheral blood morphology, blood gases, C-reactive protein.
- Concentrations of creatinine, cystatin C, uric acid (UA), urea, Na, K, Ca, Mg.
- Total cholesterol, LDL-cholesterol, HDL-cholesterol, triglycerides, glucose, glycated hemoglobin, insulin profile.
- Thyroid-stimulating hormone, triiodothyronine.
- Liver enzymes, brain natriuretic peptide, troponin.
- Urine analysis, 24-h urine concentrations of protein and albumin, Na.
2.2. Dental Examination
2.3. Statistical Analysis
3. Results
3.1. Anthropometric, Clinical, and Biochemical Evaluation
3.2. Oral Data
3.3. Correlations between the Variables
3.4. Clinical and Biochemical Characteristics: Suspicion of Obesity-Related Glomerulopathy Group and without ORG Group
4. Discussion
4.1. Dental Caries
4.2. Dental Plaque and Gingival Bleeding
4.3. BMI and Obesity-Related Glomerulopathy
4.4. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zoja, C.; Abbate, M.; Remuzzi, G. Progression of renal injury toward interstitial inflammation and glomerular sclerosis is dependent on abnormal protein filtration. Nephrol. Dial. Transplant. 2015, 30, 706–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chagnac, A.; Zingerman, B.; Rozen-Zvi, B.; Herman-Edelstein, M. Consequences of glomerular hyperfiltration: The role of physical forces in the pathogenesis of chronic kidney disease in diabetes and obesity. Nephron 2019, 143, 38–42. [Google Scholar] [CrossRef]
- Kambham, N.; Markowitz, G.S.; Valeri, A.M.; Lin, J.; D’Agati, V.D. Obesity-related glomerulopathy: An emerging epidemic. Kidney Int. 2011, 59, 1498–1509. [Google Scholar] [CrossRef] [Green Version]
- Praga, M.; Morales, E. The Fatty Kidney: Obesity and renal disease. Nephron 2017, 136, 273–276. [Google Scholar] [CrossRef]
- Serra, A.; Romero, R.; Lopez, D.; Navarro, M.; Esteve, A.; Perez, N.; Alastrue, A.; Ariza, A. Renal injury in the extremely obese patients with normal renal function. Kidney Int. 2008, 73, 947–955. [Google Scholar] [CrossRef] [Green Version]
- Ostalska-Nowicka, D.; Mackowiak-Lewandowicz, K.; Perek, B.; Zaorska, K.; Zachwieja, J.; Nowicki, M. Megalin—A facultative marker of obesity-related glomerulopathy in children. J. Biol. Regul. Homeost. Agents 2019, 33, 415–420. [Google Scholar]
- Zhao, Y.; Li, G.; Wang, Y.; Liu, Z. Alteration of Connexin43 expression in a rat model of obesity-related glomerulopathy. Exp. Mol. Pathol. 2018, 104, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Modéer, T.; Blomberg, C.; Wondimu, B.; Lindberg, T.Y.; Marcus, C. Association between obesity and periodontal risk indicators in adolescents. Int. J. Pediatr. Obes. 2011, 6, 264–270. [Google Scholar] [CrossRef]
- Guaré, R.O.; Ciamponi, A.L.; Santos, M.T.B.R.; Gorjão, R.; Diniz, M.B. Caries experience and salivary parameters among overweight children and adolescents. Dent. J. 2013, 1, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Prpic, J.; Kuis, D.; Pezelj-Ribaric, S. Obesity and oral health—Is there an association? Coll. Antropol. 2012, 36, 755–759. [Google Scholar]
- Goodson, J.M. Disease reciprocity between gingivitis and obesity. J. Periodontol. 2020, 91, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Tomofuji, T.; Ekuni, D.; Irie, K.; Azuma, T.; Tamaki, N.; Maruyama, T.; Yamamoto, T.; Watanabe, T.; Morita, M. Relationships between periodontal inflammation, lipid peroxide and oxidative damage of multiple organs in rats. Biomed Res. 2011, 32, 343–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, D.J. Hypertension in children and adolescents. Pediatr. Rev. 2017, 38, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, J.; Cochat, P.; Rognant, N.; Ranchin, B.; Hadj-Aissa, A.; Dubourg, L. Which creatinine and cystatin C equations can be reliably used in children? Clin. J. Am. Soc. Nephrol. 2011, 6, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Tykarski, A.; Filipiak, K.J.; Januszewicz, A.; Litwin, M.; Narkiewicz, K.; Prejbisz, A.; Ostalska-Nowicka, D.; Widecka, K.; Kostka-Jeziorny, K. Guidelines for the Management of Hypertension. Arter. Hypertens. 2019, 23, 41–87. [Google Scholar] [CrossRef] [Green Version]
- Lurbe, I.; Ferrer, E. 2016 European society of hypertension guidelines for the management of high blood pressure in children and adolescents. An. Pediatr. 2016, 85, 167–169. (In Spanish) [Google Scholar]
- Kêkê, L.M.; Samouda, H.; Jacobs, J.; di Pompeo, C.; Lemdani, M.; Hubert, H.; Zitouni, D.; Guinhouya, B. Body mass index and childhood obesity classification systems: A comparison of the French, International Obesity Task Force (IOTF) and World Health Organization (WHO) references. Rev. Epidemiol. Sante Publique 2015, 63, 173–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abitbol, C.L.; Ingelfinger, J.R. Nephron mass and cardiovascular and renal disease risks. Semin. Nephrol. 2009, 29, 445–454. [Google Scholar] [CrossRef]
- Paszynska, E.; Pawinska, M.; Gawriolek, M.; Kaminska, I.; Otulakowska-Skrzynska, J.; Marczuk-Kolada, G.; Rzatowski, S.; Sokolowska, K.; Olszewska, A.; Schlagenhauf, U.; et al. Impact of a toothpaste with microcrystalline hydroxyapatite on the occurrence of early childhood caries: A 1-year randomized clinical trial. Sci. Rep. 2021, 11, 2650. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, J.I.; van der Merwe, E.H.; Retief, D.H.; Barbakow, F.H.; Cleaton-Jones, P.E. Relationship between fluoride concentration in enamel, DMFT index, and degree of fluorosis in a community residing in an area with a high level of fluoride. J. Dent. Res. 1976, 55, 37–42. [Google Scholar] [CrossRef]
- O’Leary, T.J.; Drake, R.B.; Naylor, J.E. The plaque control record. J. Periodontol. 1972, 43, 38. [Google Scholar] [CrossRef] [PubMed]
- Ainamo, J.; Bay, I. Periodontal indexes for and in practice. Tandlaegebladet 1976, 80, 149–152. [Google Scholar]
- Ainamo, J.; Bay, I. Problems and proposals for recording gingivitis and plaque. Int. Dent. J. 1975, 25, 229–235. [Google Scholar]
- Paszynska, E.; Dmitrzak-Weglarz, M.; Ostalska-Nowicka, D.; Nowicki, M.; Gawriolek, M.; Zachwieja, J. Association of oral status and early primary hypertension biomarkers among children and adolescents. Int. J. Environ. Res. Public Health 2020, 17, 7981. [Google Scholar] [CrossRef]
- Paszynska, E.; Dmitrzak-Węglarz, M.; Perczak, A.; Gawriolek, M.; Hanć, T.; Bryl, E.; Mamrot, P.; Dutkiewicz, A.; Roszak, M.; Tyszkiewicz-Nwafor, M.; et al. Excessive weight gain and dental caries experience among children affected by ADHD. Int. J. Environ. Res. Public Health 2020, 17, 5870. [Google Scholar] [CrossRef]
- Manohar, N.; Hayen, A.; Fahey, P.; Arora, A. Obesity and dental caries in early childhood: A systematic review and meta-analyses. Obes. Rev. 2020, 21, e12960. [Google Scholar] [CrossRef]
- Alves, L.S.; Susin, C.; Damé-Teixeira, N.; Maltz, M. Overweight and obesity are not associated with dental caries among 12-year-old South Brazilian schoolchildren. Commun. Dent. Oral Epidemiol. 2013, 41, 224–231. [Google Scholar] [CrossRef]
- Alshihri, A.A.; Rogers, H.J.; Alqahtani, M.A.; Aldossary, M.S. Association between dental caries and obesity in children and young people: A narrative review. Int. J. Dent. 2019, 2019, 9105759. [Google Scholar] [CrossRef]
- Hayden, C.; Bowler, J.O.; Chambers, S.; Freeman, R.; Humphris, G.; Richards, D.; Cecil, J.E. Obesity and dental caries in children: A systematic review and meta-analysis. Commun. Dent. Oral. Epidemiol. 2013, 41, 289–308. [Google Scholar] [CrossRef]
- Guaré, R.O.; Perez, M.M.; Novaes, T.F.; Ciamponi, A.L.; Gorjão, R.; Diniz, M.B. Overweight/obese children are associated with lower caries experience than normal-weight children/adolescents. Int. J. Paediatr. Dent. 2019, 29, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Chłapowska, J.; Rataj-Kulmacz, A.; Krzyżaniak, A.; Borysewicz-Lewicka, M. Zaleznosc wystepowania prochnicy od stanu odzywienia u dzieci 7-i 12-letnich. [Association between dental caries and nutritional status of 7-and 12-years-old children]. Dev. Period. Med. 2014, 18, 349–355. (In Polish) [Google Scholar]
- Kaczmarek, U.; Szymonajtis, A.; Kłaniecka, B. Prochnica zebow i higiena jamy ustnej u dzieci szkolnych z prawidłowa i nadmierna masa ciała. [Dental caries and oral hygiene in normal and overweight schoolchildren]. Nowa Stomatol. 2014, 1, 15–19. (In Polish) [Google Scholar]
- Olczak-Kowalczyk, D.; Gozdowski, D.; Kaczmarek, U. Próchnica zębów stałych u dzieci w wieku 5 i 7 lat w Polsce i jej związek z próchnicą zębów mlecznych. [Dental caries in permanent dentition in children aged 5 and 7 in Poland and its association with dental caries in primary dentition]. Nowa Stomatol. 2017, 3, 129–141. (In Polish) [Google Scholar]
- Costa, L.R.; Daher, A.; Queiroz, M.G. Early childhood caries and body mass index in young children from low income families. Int. J. Environ. Res. Public Health 2013, 10, 867–878. [Google Scholar] [CrossRef] [Green Version]
- Modéer, T.; Blomberg, C.C.; Wondimu, B.; Julihn, A.; Marcus, C. Association between obesity, flow rate of whole saliva and dental caries in adolescents. Obesity 2010, 18, 2367–2373. [Google Scholar] [CrossRef]
- Greenberg, B.L.; Glick, M.; Tavares, M. Addressing obesity in the dental setting: What can be learned from oral health care professionals’efforts to screen for medical conditions. J. Public Health Dent. 2017, 77 (Suppl. 1), S67–S78. [Google Scholar] [CrossRef] [Green Version]
- Nainar, S.M. Five-minute nutrition workup for children in dental practice. Gen. Dent. 2013, 61, e2–e3. [Google Scholar]
- Genco, R.J.; Borgnakke, W.S. Risk factors for periodontal disease. Periodontol. 2000 2013, 62, 59–94. [Google Scholar] [CrossRef]
- Suvan, J.; Petrie, A.; Moles, D.R.; Nibali, L.; Patel, K.; Darbar, U.; Donos, N.; Tonetti, M.; D’Aiuto, F. Body mass index as a predictive factor of periodontal therapy outcomes. J. Dent. Res. 2014, 93, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Gorman, A.; Kaye, E.K.; Apovian, C.; Fung, T.T.; Nunn, M.; Garcia, R.I. Overweight and obesity predict time to periodontal disease progression in men. J. Clin. Periodontol. 2012, 39, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, M.; Hu, F.B.; Marino, M.; Li, Y.; Joshipura, K.J. Prospective associations between measures of adiposity and periodontal disease. Obesity 2012, 20, 1718–1725. [Google Scholar] [CrossRef] [Green Version]
- von Bremen, J.; Lorenz, N.; Ruf, S. Impact of body mas index on oral health during orthodontic treatment: An explorative pilot study. Eur. J. Orthod. 2016, 38, 386–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeigler, C.C.; Persson, G.R.; Wondimu, B.; Marcus, C.; Sobko, T.; Modéer, T. Microbiota in the oral subgingival biofilm is associated with obesity in adolescence. Obesity 2012, 20, 157–164. [Google Scholar] [CrossRef]
- Pussinen, P.J.; Paju, S.; Viikari, J.; Salminen, A.; Taittonen, L.; Laitinen, T.; Burgner, D.; Kähönen, M.; Lehtimäki, T.; Hutri-Kähönen, N.; et al. Childhood oral infections associate with adulthood metabolic syndrome: A longitudinal cohort study. J. Dent. Res. 2020, 99, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Altay, U.; Gurgan, C.A.; Ağbaht, K. Changes in inflammatory and metabolic parameters after periodontal treatment in patients with and without obesity. J. Periodontol. 2013, 84, 13–23. [Google Scholar] [CrossRef]
- Lakkis, D.; Bissada, N.F.; Saber, A.; Khaitan, L.; Palomo, L.; Narendran, S.; Al-Zahrani, M.S. Response to periodontal therapy in patients who had weight loss after bariatric surgeryand obese counterparts: A pilot study. J. Periodontol. 2012, 83, 684–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goncalves, T.E.; Zimmermann, G.S.; Figueiredo, L.C.; Souza, M.D.C.; da Cruz, D.F.; Bastos, M.F.; da Silva, H.D.; Duarte, P.M. Local and serum levels of adipokines in patients with obesity after periodontal therapy: One-year follow-up. J. Clin. Periodontol. 2015, 42, 431–439. [Google Scholar] [CrossRef]
- Goodson, J.M.; Groppo, D.; Halem, S.; Carpino, E. Is obesity an oral bacterial disease? J. Dent. Res. 2009, 88, 519–523. [Google Scholar] [CrossRef]
- Haffajee, A.D.; Socransky, S.S. Relation of body mass index, periodontitis and Tannerella forsythia. J. Clin. Periodontol. 2009, 36, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Craig, S.J.C.; Blankenberg, D.; Parodi, A.C.L.; Paul, I.M.; Birch, L.L.; Savage, J.S.; Marini, M.E.; Stokes, J.L.; Nekrutenko, A.; Reimherr, M.; et al. Child weight gain trajectories linked to oral microbiota composition. Sci. Rep. 2018, 8, 14030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, S.; Fujii, H.; Machida, Y.; Okuda, K. A longitudinal study from prepuberty to puberty of gingivitis. Correlation between the occurrence of Prevotella intermedia and sex hormones. J. Clin. Periodontol. 1994, 21, 658–665. [Google Scholar] [CrossRef]
- Porrini, E.; Ruggenenti, P.; Luis-Lima, S.; Carrara, F.; Jiménez, A.; de Vries, A.P.J.; Torres, A.; Gaspari, F.; Remuzzi, G. Estimated GFR: Time for a critical appraisal. Nat. Rev. Nephrol. 2019, 15, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Feig, D.; Mazzali, M.; Kang, D.H.; Nakagawa, T.; Price, K.; Kannelis, J.; Johnson, R.J. Serum uric acid: A risk factor and a target for treatment? J. Am. Soc. Nephrol. 2006, 17, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Lamster, I.; Pagan, M. Periodontal disease and the metabolic syndrome. Int. Dent. J. 2017, 67, 67–77. [Google Scholar] [CrossRef]
- Xu, T.; Sheng, Z.; Li Yao, L. Obesity-related glomerulopathy: Pathogenesis, pathologic, clinical characteristics and treatment. Front. Med. 2017, 11, 340–348. [Google Scholar] [CrossRef] [PubMed]
- D’Agati, V.D.; Chagnac, A.; de Vries, A.P.; Levi, M.; Porrini, E.; Herman-Edelstein, M.; Praga, M. Obesity-related glomerulopathy: Clinical and pathologic characteristics and pathogenesis. Nat. Rev. Nephrol. 2016, 12, 453–471. [Google Scholar] [CrossRef]
- Bigler, L.R.; Streckfus, C.F.; Copeland, L.; Burns, R.; Dai, X.; Kuhn, M.; Martin, P.; Bigler, S.A. The potential use of saliva to detect recurrence of disease in women with breast carcinoma. J. Oral Pathol. Med. 2002, 31, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Olszewska, A.; Paszynska, E.; Roszak, M.; Czajka-Jakubowska, A. Management of the oral health of children during the COVID-19 pandemic in Poland. Front. Public Health 2021. [Google Scholar] [CrossRef] [PubMed]
Criteria for Inclusion into the Obesity Group | Criteria for Inclusion into the Control Group | Criteria for Exclusion from Study and Control Groups |
---|---|---|
aged 9–18 | aged 9–18 | interview: prematurity, congenital abnormalities of urinary tract such as unilateral or bilateral kidney hypoplasia, unilateral kidney aplasia; incorrect kidney location in abdomen; unilateral, bilateral vesicoureteral refluxmedical history: recurrent urinary tract infections |
simple obesity | normal weight | genetic obesity, diabetes mellitus, familial hyperlipidemia |
normal blood pressure/primary hypertension | normal blood pressure | secondary hypertension (based on kidney diseases, coarctation of the aorta, endocrine disorders, iatrogenic–medications such as steroids) |
BMI > 95 percentiles, BMI Z-score ≥ 1.4 | BMI < 85 percentiles BMI Z-score < 1.3 | BMI < 25 percentiles |
clinical or laboratory markers of previously acute or chronic diseases | ||
no aberrations in ECHO, USG | ||
a patient, parent, or legal guardian approval | a patient, parent, or legal guardian approval | lack of acceptance from patients, parents, or legal guardians |
Variables | Obesity Group (n = 45) Mean ± SD Median (Min-Max) | Control Group (n = 41) Mean ± SD Median (Min-Max) | p-Value |
---|---|---|---|
age [years] | 15.40 ± 2.33 | 15.36 ± 2.74 | ns |
16 (8–19) | 16 (9–18) | ||
BMI [kg/m2] | 34.05 ± 4.75 | 16.43 ± 2.43 | 0.001 |
33.80 (26–47) | 20.00 (15–24) | ||
BMI Z-score | 2.30 ± 0.38 | −0.10 ± 0.65 | 0.001 |
2.32 (1.4–3.0) | 0.07 (−1.7–0.74) | ||
creatinine [mg/dL] | 0.63 ± 0.12 | 0.59 ± 0.19 | ns |
0.63 (0.33–0.91) | 0.57 (0.30–1.06) | ||
BUN [mg/dL] | 24.17 ± 5.45 | 25.27 ± 6.42 | ns |
24 (16–36) | 24 (17–41) | ||
UA [mg/dL] | 6.38 ± 1.33 | 4.40 ± 1.07 | 0.001 |
6.70 (3.7–9.1) | 3.90 (2.9–6.2) | ||
cystatin C [mg/L] | 0.88 ± 0.16 | 0.76 ± 0.11 | 0.028 |
0.91 (0.4–1.2) | 0.75 (0.6–0.9) | ||
GFR F [ml/min/1.73 m2] | 111.26 ± 31.15 | 127.18 ± 22.54 | 0.019 |
102 (75–249) | 127 (101–163) | ||
GFR S [ml/min/1.73 m2] | 115.57 ± 20.54 | 118.02 ± 36.02 | ns |
113 (80–175) | 111 (53–199) | ||
microalbuminuria [mg/day] | 20.56 ± 17.90 | 11.70 ± 7.03 | ns |
14.17 (5–87) | 10.92 (6–29) | ||
total cholesterol [mg/dL] | 184.83 ± 33.67 | 173.08 ± 32.44 | ns |
187 (112–260) | 177 (122–243) | ||
HDL [mg/dL] | 42.88 ± 7.90 | 55.47 ± 10.02 | 0.001 |
42 (31–60) | 56 (34–75) | ||
LDL [mg/dL] | 112.79 ± 28.31 | 105.73 ± 27.55 | ns |
113 (34–169) | 103 (70–162) | ||
triglycerides [mg/dL] | 161.28 ± 131.40 | 76.41 ± 25.39 | 0.001 |
132 (44–785) | 80 (27–130) | ||
glucose [mg/dL] | 92.57 ± 6.14 | 88.79 ± 5.45 | 0.029 |
91 (79–108) | 89 (80–99) | ||
LVMI [g/m2,7] | 37.30 ± 9.12 | 25.04 ± 3.28 | 0.001 |
34.01 (29–54) | 24.16 (20–29) | ||
D | 1.91 ± 2.93 | 0.12 ± 0.33 | 0.001 |
1 (0–11) | 0 (0–1) | ||
M | 0.08 ± 0.28 | 0 ± 0 | 0.054 |
0 (0–1) | 0 (0) | ||
F | 2.03 ± 3.39 | 1.71 ± 1.94 | ns |
1 (0–15) | 1 (0–6) | ||
DMFT | 4.03 ± 4.18 | 1.83 ± 1.99 | 0.016 |
2 (0–16) | 1.5 (0–7) | ||
d | 0.40 ± 1.65 | 0.02 ± 0.15 | ns |
0 (0–9) | 0 (0–1) | ||
mt | 0 ± 0 | 0.02 ± 0.15 | ns |
0 (0) | 0 (0–1) | ||
f | 0 ± 0 | 0.26 ± 0.77 | 0.037 |
0 (0) | 0 (0–3) | ||
dmft | 0.40 ± 1.65 | 0.31 ± 0.87 | ns |
0 (0–9) | 0 (0–3) | ||
DMFT + dmft | 4.31 ± 4.39 | 2.14 ± 2.04 | ns |
3 (0–17) | 2 (0–7) | ||
PCR [%] | 56.40 ± 34.16 | 15.87 ± 19.27 | 0.001 |
50 (5–100) | 9.5 (0–80) | ||
BOP [%] | 46.46 ± 33.68 | 7.19 ± 10.64 | 0.001 |
50 (0–100) | 0 (0–40) |
Obesity Group n = 45 | p-Value | Spearman R/Pearson r |
---|---|---|
BMI and D | 0.001 | R 0.433 |
BMI and PCR | 0.001 | R 0.539 |
BMI and BOP | 0.001 | R 0.583 |
BMI and creatinine | 0.033 | r 0.286 |
BMI and urea | 0.007 | R 0.256 |
BMI and UA | 0.001 | R 0.737 |
BMI and cystatin C | 0.001 | R 0.480 |
BMI and GFR F | 0.001 | R −0.524 |
BMI and microalbuminuria | 0.004 | R 0.419 |
BMI Z-score and D | 0.025 | R 0.316 |
BMI Z-score and BOP | 0.001 | R 0.499 |
BMI Z-score and DMFT | 0.001 | R 0.499 |
BMI Z-score and UA | 0.000 | r 0.606 |
BMI Z-score and cystatin C | 0.000 | R 0.477 |
BMI Z-score and GFR F | 0.000 | R −0.478 |
BMI Z-score and microalbuminuria | 0.020 | R 0.348 |
UA and BOP [%] | 0.001 | R 0.481 |
UA and HDL | 0.001 | r −0.582 |
UA and triglycerides | 0.001 | r 0.479 |
UA and LVMI | 0.004 | R 0.616 |
cystatin C and BOP [%] | 0.005 | R 0.407 |
cystatin C and LVMI | 0.039 | r 0.475 |
microalbuminuria and HDL | 0.001 | R −0.054 |
microalbuminuria and triglycerides | 0.009 | R 0.398 |
creatinine and HDL | 0.014 | R 0.337 |
BOP and GFR F | 0.005 | R −0.413 |
BOP and HDL | 0.001 | R −0.439 |
BOP and triglycerides | 0.004 | R −0.394 |
BOP and glucose | 0.004 | R 0.388 |
DMFT and total cholesterol | 0.034 | R 0.307 |
DMFT and triglycerides | 0047 | R 0.277 |
DMFT and glucose | 0.041 | R 0.279 |
Variables | sORG (n = 7) Mean ± SD Median (Min-Max) | Without ORG (n = 38) Mean ± SD Median (Min-Max) | p-Value |
---|---|---|---|
age | 16.14 ± 1.77 | 15.16 ± 1.77 | ns |
16 (14–19) | 16 (8–18) | ||
BMI | 35.78 ± 3.65 | 33.62 ± 4.94 | ns |
36.6 (29.5–40) | 32.61 (26–47) | ||
BMI Z-score | 2.42 ± 0.25 | 2.28 ± 0.41 | ns |
2.32 (2.06–2.7) | 2.33 (1.36–3.03) | ||
creatinine | 0.66 ± 0.09 | 0.62 ± 0.13 | ns |
0.7 (0.53–0.77) | 0.61 (0.33–0.91) | ||
BUN | 23 ± 4.43 | 24.5 ± 5.71 | ns |
22 (19–32) | 24 (16–36) | ||
UA | 7.31 ±0.59 | 6.14 ± 1.36 | 0.002 |
7.3 (6.3–8.2) | 6 (3.7–9.1) | ||
cystatin C | 0.79 ± 0.21 | 0.9 ± 0.15 | ns |
0.78 (0.41–1) | 0.92 (067–1.2) | ||
GFR F | 130.14 ± 54.88 | 106.37 ± 20.38 | ns |
121 (92–249) | 101 (75–144) | ||
GFR S | 112.83 ± 19.19 | 116.26 ± 21.14 | ns |
103 (92–144) | 113.5 (80–175) | ||
microalbuminuria | 51.41 ± 22.65 | 13. 95 ± 6.32 | 0.001 |
41.5 (30–87) | 13.45 (5–28) | ||
total cholesterol | 195 ± 49.1 | 182.28 ± 29.3 | ns |
218 (112–240) | 185 (128–260) | ||
HDL | 39.28 ± 6.68 | 43.78 ± 8.03 | ns |
39 (33–51) | 43 (31–60) | ||
LDL | 122.28 ± 48.65 | 110.23 ± 20.64 | ns |
141 (34–169) | 111 (60–153) | ||
triglycerides | 167 ± 56.07 | 159.85 ± 145.03 | ns |
155 (108–259) | 129 (44–785) | ||
glucose | 91.43 ± 6.37 | 92.86 ± 6.17 | ns |
95 (79–97) | 91 (82–108) | ||
LVMI | 53.4 ± 40 | 35.96 ± 8.08 | ns |
53.4 (50–63) | 33.06 (29–54) | ||
D | 2. 14 ± 3.34 | 1.86 ± 2.89 | ns |
0 (0–9) | 1 (0–11) | ||
DMFT | 3 ± 4.16 | 4.28 ± 4.21 | ns |
1 (0–11) | 2 (0–16) | ||
PCR [%] | 67.42 ± 33.16 | 53.64 ± 34.44 | ns |
80 (20–100) | 50 (50–100) | ||
BOP [%] | 50 ± 36.51 | 45.57 ± 33.59 | ns |
50 (0–100) | 45 (0–100) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maćkowiak-Lewandowicz, K.; Ostalska-Nowicka, D.; Zachwieja, J.; Paszyńska, E. Differences between Obese and Non-Obese Children and Adolescents Regarding Their Oral Status and Blood Markers of Kidney Diseases. J. Clin. Med. 2021, 10, 3723. https://doi.org/10.3390/jcm10163723
Maćkowiak-Lewandowicz K, Ostalska-Nowicka D, Zachwieja J, Paszyńska E. Differences between Obese and Non-Obese Children and Adolescents Regarding Their Oral Status and Blood Markers of Kidney Diseases. Journal of Clinical Medicine. 2021; 10(16):3723. https://doi.org/10.3390/jcm10163723
Chicago/Turabian StyleMaćkowiak-Lewandowicz, Katarzyna, Danuta Ostalska-Nowicka, Jacek Zachwieja, and Elżbieta Paszyńska. 2021. "Differences between Obese and Non-Obese Children and Adolescents Regarding Their Oral Status and Blood Markers of Kidney Diseases" Journal of Clinical Medicine 10, no. 16: 3723. https://doi.org/10.3390/jcm10163723
APA StyleMaćkowiak-Lewandowicz, K., Ostalska-Nowicka, D., Zachwieja, J., & Paszyńska, E. (2021). Differences between Obese and Non-Obese Children and Adolescents Regarding Their Oral Status and Blood Markers of Kidney Diseases. Journal of Clinical Medicine, 10(16), 3723. https://doi.org/10.3390/jcm10163723