Disturbed Glucose Metabolism and Left Ventricular Geometry in the General Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of the Gutenberg Health Study
2.2. Definition of LVH and Its Phenotypes
2.3. Definition of Prediabetes and Type 2 Diabetes Mellitus
2.4. Prospective Analyses on Incident LVH and Mortality Assessment
2.5. Statistical Analysis
3. Results
3.1. Study Cohort and Prevalence of LVH Stratified on Diabetic State
3.2. Diabetic State and Prevalence of Cardiovascular Risk Factors, Comorbidities and Different Forms of Left Ventricular Geometry
3.3. The Influence of the Diabetic Phenotype on Left Ventricular Geometry
3.4. Influence of Left Ventricular Hypertrophy on Mortality in Different Diabetic States
3.5. Influence of Diabetic State on the Incidence of Left Ventricular Hypertrophy
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Methods
Appendix A.1. Data Acquisition
Appendix A.2. Definition of Cardiovascular Risk Factors
Appendix A.3. Echocardiographic Measurement
Appendix A.4. Statistical Analyses
References
- Haffner, S.M.; Lehto, S.; Rönnemaa, T.; Pyörälä, K.; Laakso, M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 1998, 339, 229–234. [Google Scholar] [CrossRef]
- Cannon, C.P.; Pratley, R.; Dagogo-Jack, S.; Mancuso, J.; Huyck, S.; Masiukiewicz, U.; Charbonnel, B.; Frederich, R.; Gallo, S.; Cosentino, F.; et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Reaven, P.D.; Emanuele, N.V.; Wiitala, W.L.; Bahn, G.D.; Reda, D.J.; McCarren, M.; Duckworth, W.C.; Hayward, R.A.; Investigators, V. Intensive Glucose Control in Patients with Type 2 Diabetes—15-Year Follow-up. N. Engl. J. Med. 2019, 380, 2215–2224. [Google Scholar] [CrossRef]
- Rawshani, A.; Rawshani, A.; Franzen, S.; Sattar, N.; Eliasson, B.; Svensson, A.M.; Zethelius, B.; Miftaraj, M.; McGuire, D.K.; Rosengren, A.; et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2018, 379, 633–644. [Google Scholar] [CrossRef]
- Salvatore, T.; Pafundi, P.C.; Galiero, R.; Albanese, G.; Di Martino, A.; Caturano, A.; Vetrano, E.; Rinaldi, L.; Sasso, F.C. The Diabetic Cardiomyopathy: The Contributing Pathophysiological Mechanisms. Front. Med. 2021, 8, 695792. [Google Scholar] [CrossRef] [PubMed]
- Tarquini, R.; Lazzeri, C.; Pala, L.; Rotella, C.M.; Gensini, G.F. The diabetic cardiomyopathy. Acta Diabetol. 2011, 48, 173–181. [Google Scholar] [CrossRef]
- Dei Cas, A.; Spigoni, V.; Ridolfi, V.; Metra, M. Diabetes and chronic heart failure: From diabetic cardiomyopathy to therapeutic approach. Endocr. Metab. Immune Disord. Drug Targets 2013, 13, 38–50. [Google Scholar] [CrossRef]
- Pappachan, J.M.; Varughese, G.I.; Sriraman, R.; Arunagirinathan, G. Diabetic cardiomyopathy: Pathophysiology, diagnostic evaluation and management. World J. Diabetes 2013, 4, 177–189. [Google Scholar] [CrossRef]
- Skali, H.; Shah, A.; Gupta, D.K.; Cheng, S.; Claggett, B.; Liu, J.; Bello, N.; Aguilar, D.; Vardeny, O.; Matsushita, K.; et al. Cardiac structure and function across the glycemic spectrum in elderly men and women free of prevalent heart disease: The Atherosclerosis Risk In the Community study. Circ. Heart Fail. 2015, 8, 448–454. [Google Scholar] [CrossRef] [Green Version]
- Sliem, H.; Nasr, G. Left ventricular structure and function in prediabetic adults: Relationship with insulin resistance. J. Cardiovasc. Dis. Res. 2011, 2, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Falcao-Pires, I.; Leite-Moreira, A.F. Diabetic cardiomyopathy: Understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail. Rev. 2012, 17, 325–344. [Google Scholar] [CrossRef]
- Rutter, M.K.; Parise, H.; Benjamin, E.J.; Levy, D.; Larson, M.G.; Meigs, J.B.; Nesto, R.W.; Wilson, P.W.; Vasan, R.S. Impact of glucose intolerance and insulin resistance on cardiac structure and function: Sex-related differences in the Framingham Heart Study. Circulation 2003, 107, 448–454. [Google Scholar] [CrossRef] [Green Version]
- Heckbert, S.R.; Post, W.; Pearson, G.D.; Arnett, D.K.; Gomes, A.S.; Jerosch-Herold, M.; Hundley, W.G.; Lima, J.A.; Bluemke, D.A. Traditional cardiovascular risk factors in relation to left ventricular mass, volume, and systolic function by cardiac magnetic resonance imaging: The Multiethnic Study of Atherosclerosis. J. Am. Coll. Cardiol. 2006, 48, 2285–2292. [Google Scholar] [CrossRef] [Green Version]
- Velagaleti, R.S.; Gona, P.; Chuang, M.L.; Salton, C.J.; Fox, C.S.; Blease, S.J.; Yeon, S.B.; Manning, W.J.; O’Donnell, C.J. Relations of insulin resistance and glycemic abnormalities to cardiovascular magnetic resonance measures of cardiac structure and function: The Framingham Heart Study. Circ. Cardiovasc. Imaging 2010, 3, 257–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wild, P.S.; Zeller, T.; Beutel, M.; Blettner, M.; Dugi, K.A.; Lackner, K.J.; Pfeiffer, N.; Münzel, T.; Blankenberg, S. The Gutenberg Health Study. Bundesgesundheitsblatt-Gesundh.-Gesundh. 2012, 55, 824–829. [Google Scholar] [CrossRef]
- Lang, R.M.; Bierig, M.; Devereux, R.B.; Flachskampf, F.A.; Foster, E.; Pellikka, P.A.; Picard, M.H.; Roman, M.J.; Seward, J.; Shanewise, J.; et al. Recommendations for chamber quantification. Eur. J. Echocardiogr. J. Work. Group Echocardiogr. Eur. Soc. Cardiol. 2006, 7, 79–108. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes, A. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar] [CrossRef]
- Cassidy, S.; Hallsworth, K.; Thoma, C.; MacGowan, G.A.; Hollingsworth, K.G.; Day, C.P.; Taylor, R.; Jakovljevic, D.G.; Trenell, M.I. Cardiac structure and function are altered in type 2 diabetes and non-alcoholic fatty liver disease and associate with glycemic control. Cardiovasc. Diabetol. 2015, 14, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eguchi, K.; Boden-Albala, B.; Jin, Z.; Rundek, T.; Sacco, R.L.; Homma, S.; Di Tullio, M.R. Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. Am. J. Cardiol. 2008, 101, 1787–1791. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.M.; Hung, C.L.; Shin, S.H.; Skali, H.; Verma, A.; Ghali, J.K.; Kober, L.; Velazquez, E.J.; Rouleau, J.L.; McMurray, J.J.; et al. Cardiac structure and function, remodeling, and clinical outcomes among patients with diabetes after myocardial infarction complicated by left ventricular systolic dysfunction, heart failure, or both. Am. Heart J. 2011, 162, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Ofstad, A.P.; Urheim, S.; Dalen, H.; Orvik, E.; Birkeland, K.I.; Gullestad, L.M.W.F.; Johansen, O.E.; Aakhus, S. Identification of a definite diabetic cardiomyopathy in type 2 diabetes by comprehensive echocardiographic evaluation: A cross-sectional comparison with non-diabetic weight-matched controls. J. Diabetes 2015, 7, 779–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Marco, M.; de Simone, G.; Roman, M.J.; Chinali, M.; Lee, E.T.; Calhoun, D.; Howard, B.V.; Devereux, R.B. Cardiac geometry and function in diabetic or prediabetic adolescents and young adults: The Strong Heart Study. Diabetes Care 2011, 34, 2300–2305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmieri, V.; Bella, J.N.; Arnett, D.K.; Liu, J.E.; Oberman, A.; Schuck, M.Y.; Kitzman, D.W.; Hopkins, P.N.; Morgan, D.; Rao, D.C.; et al. Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation 2001, 103, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Ilercil, A.; Devereux, R.B.; Roman, M.J.; Paranicas, M.; O’Grady, M.J.; Welty, T.K.; Robbins, D.C.; Fabsitz, R.R.; Howard, B.V.; Lee, E.T. Relationship of impaired glucose tolerance to left ventricular structure and function: The Strong Heart Study. Am. Heart J. 2001, 141, 992–998. [Google Scholar] [CrossRef]
- Capaldo, B.; Di Bonito, P.; Iaccarino, M.; Roman, M.J.; Lee, E.T.; Devereux, R.B.; Riccardi, G.; Howard, B.V.; de Simone, G. Cardiovascular characteristics in subjects with increasing levels of abnormal glucose regulation: The Strong Heart Study. Diabetes Care 2013, 36, 992–997. [Google Scholar] [CrossRef] [Green Version]
- Devereux, R.B.; Roman, M.J.; Paranicas, M.; O’Grady, M.J.; Lee, E.T.; Welty, T.K.; Fabsitz, R.R.; Robbins, D.; Rhoades, E.R.; Howard, B.V. Impact of diabetes on cardiac structure and function: The strong heart study. Circulation 2000, 101, 2271–2276. [Google Scholar] [CrossRef] [Green Version]
- Bertoni, A.G.; Goff, D.C., Jr.; D’Agostino, R.B., Jr.; Liu, K.; Hundley, W.G.; Lima, J.A.; Polak, J.F.; Saad, M.F.; Szklo, M.; Tracy, R.P.; et al. Diabetic cardiomyopathy and subclinical cardiovascular disease: The Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 2006, 29, 588–594. [Google Scholar] [CrossRef] [Green Version]
- Young, M.E.; McNulty, P.; Taegtmeyer, H. Adaptation and maladaptation of the heart in diabetes: Part II: Potential mechanisms. Circulation 2002, 105, 1861–1870. [Google Scholar] [CrossRef]
- Adameova, A.; Dhalla, N.S. Role of microangiopathy in diabetic cardiomyopathy. Heart Fail. Rev. 2014, 19, 25–33. [Google Scholar] [CrossRef]
- Nunes, S.; Soares, E.; Fernandes, J.; Viana, S.; Carvalho, E.; Pereira, F.C.; Reis, F. Early cardiac changes in a rat model of prediabetes: Brain natriuretic peptide overexpression seems to be the best marker. Cardiovasc. Diabetol. 2013, 12, 44. [Google Scholar] [CrossRef] [Green Version]
- Bella, J.N.; Devereux, R.B.; Roman, M.J.; Palmieri, V.; Liu, J.E.; Paranicas, M.; Welty, T.K.; Lee, E.T.; Fabsitz, R.R.; Howard, B.V. Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study). Am. J. Cardiol. 2001, 87, 1260–1265. [Google Scholar] [CrossRef]
- Adler, A.I.; Stratton, I.M.; Neil, H.A.; Yudkin, J.S.; Matthews, D.R.; Cull, C.A.; Wright, A.D.; Turner, R.C.; Holman, R.R. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): Prospective observational study. BMJ 2000, 321, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Group, U.P.D.S. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998, 317, 703–713. [Google Scholar]
- Shah, A.S.; Khoury, P.R.; Dolan, L.M.; Ippisch, H.M.; Urbina, E.M.; Daniels, S.R.; Kimball, T.R. The effects of obesity and type 2 diabetes mellitus on cardiac structure and function in adolescents and young adults. Diabetologia 2011, 54, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Jing, L.; Binkley, C.M.; Suever, J.D.; Umasankar, N.; Haggerty, C.M.; Rich, J.; Wehner, G.J.; Hamlet, S.M.; Powell, D.K.; Radulescu, A.; et al. Cardiac remodeling and dysfunction in childhood obesity: A cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. Off. J. Soc. Cardiovasc. Magn. Reson. 2016, 18, 28. [Google Scholar] [CrossRef] [Green Version]
- Turkbey, E.B.; McClelland, R.L.; Kronmal, R.A.; Burke, G.L.; Bild, D.E.; Tracy, R.P.; Arai, A.E.; Lima, J.A.; Bluemke, D.A. The impact of obesity on the left ventricle: The Multi-Ethnic Study of Atherosclerosis (MESA). Jacc. Cardiovasc. Imaging 2010, 3, 266–274. [Google Scholar] [CrossRef] [Green Version]
- Karason, K.; Sjostrom, L.; Wallentin, I.; Peltonen, M. Impact of blood pressure and insulin on the relationship between body fat and left ventricular structure. Eur. Heart J. 2003, 24, 1500–1505. [Google Scholar] [CrossRef] [Green Version]
- Dawson, A.; Morris, A.D.; Struthers, A.D. The epidemiology of left ventricular hypertrophy in type 2 diabetes mellitus. Diabetologia 2005, 48, 1971–1979. [Google Scholar] [CrossRef] [Green Version]
- Somaratne, J.B.; Whalley, G.A.; Poppe, K.K.; ter Bals, M.M.; Wadams, G.; Pearl, A.; Bagg, W.; Doughty, R.N. Screening for left ventricular hypertrophy in patients with type 2 diabetes mellitus in the community. Cardiovasc. Diabetol. 2011, 10, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rospleszcz, S.; Schafnitzel, A.; Koenig, W.; Lorbeer, R.; Auweter, S.; Huth, C.; Rathmann, W.; Heier, M.; Linkohr, B.; Meisinger, C.; et al. Association of glycemic status and segmental left ventricular wall thickness in subjects without prior cardiovascular disease: A cross-sectional study. BMC Cardiovasc. Disord. 2018, 18, 162. [Google Scholar] [CrossRef] [Green Version]
- Tenenbaum, A.; Fisman, E.Z.; Schwammenthal, E.; Adler, Y.; Benderly, M.; Motro, M.; Shemesh, J. Increased prevalence of left ventricular hypertrophy in hypertensive women with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2003, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, V.H.; Leuschner, A.; Junger, C.; Pinto, A.; Hahad, O.; Schulz, A.; Arnold, N.; Trobs, S.O.; Panova-Noeva, M.; Keller, K.; et al. Cardiovascular profiling in the diabetic continuum: Results from the population-based Gutenberg Health Study. Clin. Res. Cardiol. Off. J. Ger. Card. Soc. 2021. [Google Scholar] [CrossRef] [PubMed]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corra, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef]
Euglycemia (N = 9426) | Prediabetes (N = 4128) | T2DM (N = 1316) | ||||
---|---|---|---|---|---|---|
no LVH | LVH | no LVH | LVH | no LVH | LVH | |
Age (years), mean (SD) | 51.4 (10.6) | 57.8 (10.9) | 58.7 (9.8) | 62.8 (8.4) | 62.4 (8.5) | 64.9 (7.5) |
Female sex, % (n) | 50.7 (4310) | 50.8 (439) | 49.3 (1713) | 54.3 (335) | 35.9 (356) | 45.8 (142) |
Traditional cardiovascular risk factors | ||||||
Active smoking, % (n) | 19.2 (1629) | 17.7 (152) | 22.0 (761) | 16.9 (104) | 15.8 (156) | 16.9 (52) |
Arterial Hypertension, % (n) | 38.9 (3306) | 63.4 (548) | 56.7 (1968) | 75.0 (463) | 77.9 (772) | 87.4 (271) |
Dyslipidemia, % (n) | 34.8 (2958) | 43.8 (378) | 52.8 (1831) | 59.9 (369) | 75.3 (745) | 79.6 (246) |
FH of MI/stroke, % (n) | 20.3 (1724) | 24.3 (210) | 23.2 (805) | 26.4 (163) | 27.1 (269) | 28.4 (88) |
Obesity, % (n) | 17.7 (1500) | 27.9 (241) | 28.9 (1004) | 38.7 (239) | 52.5 (520) | 63.9 (198) |
Comorbidities | ||||||
Atrial fibrillation, % (n) | 1.6 (133) | 5.4 (47) | 2.7 (95) | 8.4 (52) | 4.6 (46) | 9.7 (30) |
Chronic kidney disease, % (n) | 0.9 (73) | 1.7 (15) | 1.1 (37) | 0.6 (4) | 1.7 (17) | 2.3 (7) |
Congestive heart failure, % (n) | 0.6 (49) | 3.1 (27) | 1.4 (48) | 4.2 (26) | 1.8 (18) | 8.1 (25) |
Coronary artery disease, % (n) | 1.9 (158) | 6.0 (52) | 5.1 (176) | 11.3 (70) | 11.2 (111) | 20.0 (62) |
Myocardial infarction, % (n) | 1.2 (99) | 4.4 (38) | 3.4 (117) | 8.6 (53) | 7.4 (73) | 16.1 (50) |
Peripheral artery disease, % (n) | 2.0 (173) | 3.2 (28) | 4.2 (147) | 5.7 (35) | 7.5 (74) | 10.6 (33) |
Stroke, % (n) | 1.1 (93) | 2.1 (18) | 2.3 (80) | 2.4 (15) | 4.4 (44) | 6.5 (20) |
Venous thromboembolism, % (n) | 2.9 (248) | 4.6 (39) | 5.1 (176) | 7.2 (44) | 5.6 (55) | 6.8 (21) |
Echocardiographic measurements | ||||||
Left ventricular mass index (g/m2.7), median (Q1/Q3) | 34.1 (29.0/39.3) | 52.4 (48.1/57.9) | 36.6 (31.4/41.9) | 54.5 (50.4/60.8) | 39.8 (33.7/45.6) | 59.3 (54.0/66.8) |
Relative wall thickness, median (Q1/Q3) | 0.38 (0.34/0.44) | 0.43 (0.38/0.50) | 0.39 (0.34/0.45) | 0.43 (0.38/0.49) | 0.42 (0.37/0.48) | 0.44 (0.38/0.50) |
A. Diabetic State and Continuous Traits of Left Ventricular Mass | ||||||||
---|---|---|---|---|---|---|---|---|
Relative Wall Thickness | Left Ventricular Mass Index (g/m2.7) | |||||||
Model 1: Age, Sex | Model 2: Add. Traditional CVRF | Model 1: Age, Sex | Model 2: Add. Traditional CVRF | |||||
β (95% CI) | p-Value | β (95% CI) | p-Value | β (95% CI) | p-Value | β (95% CI) | p-Value | |
Prediabetes vs. euglycemia | −0.0072 (−0.010; −0.004) | <0.0001 | −0.0111 (−0.014; −0.008) | <0.0001 | 1.81 (1.44; 2.18) | <0.0001 | 0.784 (0.43; 1.14) | <0.0001 |
Type 2 diabetes vs. euglycemia | 0.0104 (0.0055; 0.0152) | <0.0001 | −0.000008 (−0.005; 0.005) | 1.0 | 5.78 (5.19; 6.36) | <0.0001 | 2.48 (1.91; 3.05) | <0.0001 |
B. Diabetic State and Phenotypes of LV Geometry | ||||||||
LV Hypertrophy | Concentric Remodeling | Concentric Hypertrophy | Eccentric Hypertrophy | |||||
PR (95% CI) | p-Value | PR (95% CI) | p-Value | PR (95% CI) | p-Value | PR (95% CI) | p-Value | |
Prediabetes vs. euglycemia | 1.093 (0.988; 1.208) | 0.084 | 0.829 (0.785; 0.874) | <0.0001 | 0.918 (0.805; 1.047) | 0.2 | 1.103 (0.942; 1.290) | 0.22 |
Type 2 diabetes vs. euglycemia | 1.219 (1.070; 1.388) | 0.0029 | 0.957 (0.888; 1.031) | 0.25 | 1.065 (0.898; 1.264) | 0.47 | 1.410 (1.147, 1.733) | 0.0011 |
Model 1: Age, Sex | Model 2: Add. Traditional CVRF | Model 3: Add. Comorbidities | ||||
---|---|---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
All-cause mortality in individuals without LVH | ||||||
Prediabetes | 1.25 (1.04; 1.51) | 0.017 | 1.15 (0.96; 1.39) | 0.13 | 1.13 (0.94; 1.37) | 0.19 |
Type 2 diabetes | 2.00 (1.60; 2.48) | <0.0001 | 1.72 (1.37; 2.16) | <0.0001 | 1.63 (1.29; 2.06) | <0.0001 |
All-cause mortality in individuals with LVH | ||||||
Prediabetes | 1.03 (0.73; 1.47) | 0.86 | 1.02 (0.72; 1.45) | 0.90 | 0.99 (0.69; 1.42) | 0.95 |
Type 2 diabetes | 2.47 (1.78; 3.44) | <0.0001 | 2.43 (1.71; 3.46) | <0.0001 | 2.18 (1.52; 3.15) | <0.0001 |
Cardiovascular mortality in individuals without LVH | ||||||
Prediabetes | 1.22 (0.78; 1.92) | 0.39 | 1.12 (0.71; 1.76) | 0.62 | 1.07 (0.67; 1.70) | 0.78 |
Type 2 diabetes | 3.12 (1.97; 4.89) | <0.0001 | 2.56 (1.55; 4.25) | 0.00026 | 2.41 (1.44; 4.03) | 0.00079 |
Cardiovascular mortality in individuals with LVH | ||||||
Prediabetes | 0.98 (0.52; 1.87) | 0.95 | 0.92 (0.48; 1.76) | 0.80 | 0.90 (0.46; 1.79) | 0.77 |
Type 2 diabetes | 2.20 (1.21; 3.98) | 0.0096 | 1.95 (1.07; 3.57) | 0.029 | 1.91 (1.04; 3.51) | 0.038 |
Model 1: Age, Sex | Model 2: Add. Traditional CVRF | |||
---|---|---|---|---|
Relative Risk (95% CI) | p-Value | Relative Risk (95% CI) | p-Value | |
Incident left ventricular hypertrophy | ||||
Prediabetes vs. euglycemia | 1.24 (1.05; 1.48) | 0.013 | 0.94 (0.79; 1.12) | 0.50 |
Type 2 diabetes vs. euglycemia | 1.78 (1.40; 2.26) | <0.0001 | 0.89 (0.68; 1.17) | 0.41 |
Incident concentric hypertrophy | ||||
Prediabetes vs. euglycemia | 0.96 (0.55; 1.70) | 0.90 | 0.61 (0.33; 1.13) | 0.11 |
Type 2 diabetes vs. euglycemia | 1.74 (0.67; 4.56) | 0.26 | 0.78 (0.24; 2.58) | 0.69 |
Incident eccentric hypertrophy | ||||
Prediabetes vs. euglycemia | 1.27 (1.06; 1.52) | 0.0097 | 0.97 (0.81; 1.17) | 0.74 |
Type 2 diabetes vs. euglycemia | 1.89 (1.47; 2.44) | <0.0001 | 0.95 (0.72; 1.25) | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitt, V.H.; Billaudelle, A.-M.; Schulz, A.; Keller, K.; Hahad, O.; Tröbs, S.-O.; Koeck, T.; Michal, M.; Schuster, A.K.; Toenges, G.; et al. Disturbed Glucose Metabolism and Left Ventricular Geometry in the General Population. J. Clin. Med. 2021, 10, 3851. https://doi.org/10.3390/jcm10173851
Schmitt VH, Billaudelle A-M, Schulz A, Keller K, Hahad O, Tröbs S-O, Koeck T, Michal M, Schuster AK, Toenges G, et al. Disturbed Glucose Metabolism and Left Ventricular Geometry in the General Population. Journal of Clinical Medicine. 2021; 10(17):3851. https://doi.org/10.3390/jcm10173851
Chicago/Turabian StyleSchmitt, Volker H., Anna-Maria Billaudelle, Andreas Schulz, Karsten Keller, Omar Hahad, Sven-Oliver Tröbs, Thomas Koeck, Matthias Michal, Alexander K. Schuster, Gerrit Toenges, and et al. 2021. "Disturbed Glucose Metabolism and Left Ventricular Geometry in the General Population" Journal of Clinical Medicine 10, no. 17: 3851. https://doi.org/10.3390/jcm10173851
APA StyleSchmitt, V. H., Billaudelle, A. -M., Schulz, A., Keller, K., Hahad, O., Tröbs, S. -O., Koeck, T., Michal, M., Schuster, A. K., Toenges, G., Lackner, K. J., Prochaska, J. H., Münzel, T., & Wild, P. S. (2021). Disturbed Glucose Metabolism and Left Ventricular Geometry in the General Population. Journal of Clinical Medicine, 10(17), 3851. https://doi.org/10.3390/jcm10173851