Do Redox Balance and Inflammatory Events Take Place in Mild Bronchiectasis? A Hint to Clinical Implications
Abstract
:1. Introduction
2. Methods
2.1. Study Subjects
2.2. Clinical Assessment
2.2.1. Bronchiectasis Severity Scores
2.2.2. Radiological Extension
2.2.3. Microbiological Diagnosis
2.3. Blood Samples
2.4. Quantification of Oxidative Stress Markers and Cytokines
2.5. Statistical Analysis
3. Results
3.1. General Clinical Characteristics
3.2. Disease Severity
3.3. Etiology and Microbiology of Bronchiectasis Patients
3.4. Systemic Oxidative Stress Markers
3.5. Systemic Inflammatory Markers
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seitz, A.E.; Olivier, K.N.; Steiner, C.A.; De Oca, R.M.; Holland, S.M.; Prevots, D.R.; Montes de Oca, R.; Holland, S.M.; Prevots, D.R. Trends and Burden of Bronchiectasis-Associated Hospitalizations in the United States, 1993–2006. Chest 2010, 138, 944–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, A.D.; Chalmers, J.D.; De Soyza, A.; Fardon, T.C.; Koustas, S.O.; Scott, J.; Simpson, A.J.; Brown, J.S.; Hurst, J.R. The heterogeneity of systemic inflammation in bronchiectasis. Respir. Med. 2017, 127, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, P. The pathophysiology of bronchiectasis. Int. J. Chron. Obstruct. Pulmon. Dis. 2009, 4, 411. [Google Scholar] [CrossRef] [PubMed]
- De Diego, A.; Milara, J.; Martinez-Moragón, E.; Palop, M.; León, M.; Cortijo, J. Effects of long-term azithromycin therapy on airway oxidative stress markers in non-cystic fibrosis bronchiectasis. Respirology 2013, 18, 1056–1062. [Google Scholar] [CrossRef]
- Olveira, G.; Olveira, C.; Dorado, A.; García-Fuentes, E.; Rubio, E.; Tinahones, F.; Soriguer, F.; Murri, M. Cellular and plasma oxidative stress biomarkers are raised in adults with bronchiectasis. Clin. Nutr. 2013, 32, 112–117. [Google Scholar] [CrossRef]
- Cole, P.J. Inflammation: A two-edged sword--the model of bronchiectasis. Eur. J. Respir. Dis. Suppl. 1986, 147, 6–15. [Google Scholar] [PubMed]
- Morrissey, B.M.; Harper, R.W. Bronchiectasis: Sex and gender considerations. Clin. Chest Med. 2004, 25, 361–372. [Google Scholar] [CrossRef]
- Barreiro, E.; Fermoselle, C.; Mateu-Jimenez, M.; Sánchez-Font, A.; Pijuan, L.; Gea, J.; Curull, V. Oxidative stress and inflammation in the normal airways and blood of patients with lung cancer and COPD. Free Radic. Biol. Med. 2013, 65, 859–871. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.B.B.; Jones, P.W.W.; O’Leary, C.J.J.; Hansell, D.M.M.; Dowling, R.B.B.; Cole, P.J.J.; Wilson, R. Systemic markers of inflammation in stable bronchiectasis. Eur. Respir. J. 1998, 12, 820–824. [Google Scholar] [CrossRef] [Green Version]
- de Camargo, A.A.; de Castro, R.A.S.; Vieira, R.P.; Oliveira-Júnior, M.C.; de Araujo, A.A.; De Angelis, K.; Rached, S.Z.; Athanazio, R.A.; Stelmach, R.; Dal Corso, S.; et al. Systemic Inflammation and Oxidative Stress in Adults with Bronchiectasis: Association with Clinical and Functional Features. Clinics 2021, 76, e2474. [Google Scholar] [CrossRef]
- Barreiro, E.; De La Puente, B.; Minguella, J.; Corominas, J.M.; Serrano, S.; Hussain, S.N.A.; Gea, J. Oxidative stress and respiratory muscle dysfunction in severe chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2005, 171, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, E.; Gea, J.; Corominas, J.M.; Hussain, S.N.A. Nitric Oxide Synthases and Protein Oxidation in the Quadriceps Femoris of Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Cell Mol. Biol. 2003, 29, 771–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puig-Vilanova, E.; Rodriguez, D.A.; Lloreta, J.; Ausin, P.; Pascual-Guardia, S.; Broquetas, J.; Roca, J.; Gea, J.; Barreiro, E. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radic. Biol. Med. 2015, 79, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Jaitovich, A.; Barreiro, E. Skeletal muscle dysfunction in chronic obstructive pulmonary disease what we know and can do for our patients. Am. J. Respir. Crit. Care Med. 2018, 198, 175–186. [Google Scholar] [CrossRef]
- Barreiro, E.; Gea, J.; Matar, G.; Hussain, S.N.A. Expression and carbonylation of creatine kinase in the quadriceps femoris muscles of patients with chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 2005, 33, 636–642. [Google Scholar] [CrossRef]
- Barreiro, E.; Jaitovich, A. Muscle atrophy in chronic obstructive pulmonary disease: Molecular basis and potential therapeutic targets. J. Thorac. Dis. 2018, 10, S1415. [Google Scholar] [CrossRef]
- Barreiro, E.; Salazar-Degracia, A.; Sancho-Muñoz, A.; Gea, J.; Salazar-Degracia, A.; Sancho-Muñoz, A.; Gea, J.; Salazar-Degracia, A.; Sancho-Muñoz, A.; Gea, J.; et al. Endoplasmic reticulum stress and unfolded protein response profile in quadriceps of sarcopenic patients with respiratory diseases. J. Cell. Physiol. 2019, 234, 11315–11329. [Google Scholar] [CrossRef]
- Angrill, J.; Agustí, C.; De Celis, R.; Filella, X.; Rañó, A.; Elena, M.; De La Bellacasa, J.P.; Xaubet, A.; Torres, A. Bronchial Inflammation and Colonization in Patients with Clinically Stable Bronchiectasis. Am. J. Respir. Crit. Care Med. 2001, 164, 1628–1632. [Google Scholar] [CrossRef]
- Martínez-García, M.Á.; Perpiñá-Tordera, M.; Román-Sánchez, P.; Soler-Cataluña, J.J.; Carratalá, A.; Yago, M.; José Pastor, M. Association Between Bronchiectasis, Systemic Inflammation, and Tumor Necrosis Factor α. Arch. Bronconeumol. (Engl. Ed.) 2008, 44, 8–14. [Google Scholar] [CrossRef]
- José, A.; Ramos, T.M.; de Castro, R.A.S.; de Oliveira, C.S.; de Camargo, A.A.; Athanazio, R.A.; Rached, S.Z.; Stelmach, R.; Dal Corso, S. Reduced Physical Activity With Bronchiectasis. Respir. Care 2018, 63, 1498–1505. [Google Scholar] [CrossRef]
- Terpstra, L.C.; Biesenbeek, S.; Altenburg, J.; Boersma, W.G. Aetiology and disease severity are among the determinants of quality of life in bronchiectasis. Clin. Respir. J. 2019, 13, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, M.Á.; Máiz, L.; Olveira, C.; Girón, R.M.; de la Rosa, D.; Blanco, M.; Cantón, R.; Vendrell, M.; Polverino, E.; de Gracia, J.; et al. Spanish Guidelines on the Evaluation and Diagnosis of Bronchiectasis in Adults. Arch. Bronconeumol. 2018, 54, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.D.; Chang, A.B.; Chotirmall, S.H.; Dhar, R.; McShane, P.J. Bronchiectasis. Nat. Rev. Dis. Prim. 2018, 4, 45. [Google Scholar] [CrossRef]
- Martínez-García, M.A.; De Gracia, J.; Relat, M.V.; Girón, R.M.; Carro, L.M.; De La Rosa Carrillo, D.; Olveira, C.; Martinez-Garcia, M.A.; De Gracia, J.; Vendrell Relat, M.; et al. Multidimensional approach to non-cystic fibrosis bronchiectasis: The FACED score. Eur. Respir. J. 2014, 43, 1357–1367. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Athanazio, R.A.; Girón, R.; Máiz-Carro, L.; de la Rosa, D.; Olveira, C.; de Gracia, J.; Vendrell, M.; Prados-Sánchez, C.; Gramblicka, G.; et al. Predicting high risk of exacerbations in bronchiectasis: The E-FACED score. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, J.D.; Goeminne, P.; Aliberti, S.; McDonnell, M.J.; Lonni, S.; Davidson, J.; Poppelwell, L.; Salih, W.; Pesci, A.; Dupont, L.J.; et al. The Bronchiectasis Severity Index. An International Derivation and Validation Study. Am. J. Respir. Crit. Care Med. 2014, 189, 576–585. [Google Scholar] [CrossRef]
- Aliboni, L.; Pennati, F.; Gelmini, A.; Colombo, A.; Ciuni, A.; Milanese, G.; Sverzellati, N.; Magnani, S.; Vespro, V.; Blasi, F.; et al. Detection and Classification of Bronchiectasis through Convolutional Neural Networks. J. Thorac. Imaging 2021. [Google Scholar] [CrossRef]
- Sancho-Muñoz, A.; Guitart, M.; Rodríguez, D.A.; Gea, J.; Martínez-Llorens, J.; Barreiro, E. Deficient muscle regeneration potential in sarcopenic COPD patients: Role of satellite cells. J. Cell. Physiol. 2021, 236, 3083–3098. [Google Scholar] [CrossRef]
- Puig-Vilanova, E.; Martínez-Llorens, J.; Ausin, P.; Roca, J.; Gea, J.; Barreiro, E. Quadriceps muscle weakness and atrophy are associated with a differential epigenetic profile in advanced COPD. Clin. Sci. 2015, 128, 905–921. [Google Scholar] [CrossRef]
- Puig-Vilanova, E.; Ausin, P.; Martinez-Llorens, J.; Gea, J.; Barreiro, E. Do Epigenetic Events Take Place in the Vastus Lateralis of Patients with Mild Chronic Obstructive Pulmonary Disease? PLoS ONE 2014, 9, e102296. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, D.A.; Kalko, S.; Puig-Vilanova, E.; Perez-Olabarría, M.; Falciani, F.; Gea, J.; Cascante, M.; Barreiro, E.; Roca, J. Muscle and blood redox status after exercise training in severe COPD patients. Free Radic. Biol. Med. 2012, 52, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, M.; Turcios, N.; Aponte, V.; Jenkins, M.; Leitman, B.S.; McCauley, D.I.; Naidich, D.P. Cystic fibrosis: Scoring system with thin-section CT. Radiology 1991, 179, 783–788. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.R. Airflow obstruction in bronchiectasis: Correlation between computed tomography features and pulmonary function tests. Thorax 2000, 55, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Murray, P.R.; Washington, J.A. Microscopic and baceriologic analysis of expectorated sputum. Mayo Clin. Proc. 1975, 50, 339–344. [Google Scholar] [PubMed]
- Mateu-Jiménez, M.; Sánchez-Font, A.; Rodríguez-Fuster, A.; Aguiló, R.; Pijuan, L.; Fermoselle, C.; Gea, J.; Curull, V.; Barreiro, E. Redox Imbalance in Lung Cancer of Patients with Underlying Chronic Respiratory Conditions. Mol. Med. 2016, 22, 85–98. [Google Scholar] [CrossRef]
- Menéndez, R.; Méndez, R.; Amara-Elori, I.; Reyes, S.; Montull, B.; Feced, L.; Alonso, R.; Amaro, R.; Alcaraz, V.; Fernandez-Barat, L.; et al. Systemic Inflammation during and after Bronchiectasis Exacerbations: Impact of Pseudomonas aeruginosa. J. Clin. Med. 2020, 9, 2631. [Google Scholar] [CrossRef]
- Huang, R.Y.; Chen, G.G. Cigarette smoking, cyclooxygenase-2 pathway and cancer. Biochim. Biophys. Acta—Rev. Cancer 2011, 1815, 158–169. [Google Scholar] [CrossRef]
- Hill, S.L.; Mitchell, J.L.; Burnett, D.; Stockley, R.A. IgG subclasses in the serum and sputum from patients with bronchiectasis. Thorax 1998, 53, 463–468. [Google Scholar] [CrossRef] [Green Version]
- De Gracia, J.; Rodrigo, M.J.; Morell, F.; Vendrell, M.; Miravitlles, M.; Cruz, M.J.; Codina, R.; Bofill, J.M. IgG subclass deficiencies associated with bronchiectasis. Am. J. Respir. Crit. Care Med. 1996, 153, 650–655. [Google Scholar] [CrossRef]
- Habesoglu, M.A.; Tercan, F.; Ozkan, U.; Fusun, E.O. Effect of radiological extent and severity of bronchiectasis on pulmonary function. Multidiscip. Respir. Med. 2011, 6, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Friguet, B.; Stadtman, E.R.R.; Szweda, L.I.I. Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. Formation of cross-linked protein that inhibits the multicatalytic protease. J. Biol. Chem. 1994, 269, 21639–21643. [Google Scholar] [CrossRef]
- Requena, J.R.; Fu, M.-X.; Ahmed, M.U.; Jenkins, A.J.; Lyons, T.J.; Thorpe, S.R. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions. Nephrol. Dial. Transplant. 1996, 11, 48–53. [Google Scholar] [CrossRef]
- Stadtman, E.R.; Levine, R.L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 2003, 25, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, E.; Puig-Vilanova, E.; Salazar-Degracia, A.; Pascual-Guardia, S.; Casadevall, C.; Gea, J. The phosphodiesterase-4 inhibitor roflumilast reverts proteolysis in skeletal muscle cells of patients with COPD cachexia. J. Appl. Physiol. 2018, 125, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Dickerhof, N.; Pearson, J.F.; Hoskin, T.S.; Berry, L.J.; Turner, R.; Sly, P.D.; Kettle, A.J. Oxidative stress in early cystic fibrosis lung disease is exacerbated by airway glutathione deficiency. Free Radic. Biol. Med. 2017, 113, 236–243. [Google Scholar] [CrossRef] [Green Version]
Healthy Controls | Bronchiectasis Patients | |
---|---|---|
N = 26 | N = 30 | |
Clinical characteristics, mean (SD) | ||
Age, years | 61 (11) | 66 (12) |
Female, N/male, N | 17/9 | 23/7 |
Smoking history | ||
Ex-smokers, N (%) | 0 | 9 (30) ** |
Never smokers, N (%) | 26 (100) | 21 (70) ** |
Packs-year, mean (SD) | NA | 22 (15) |
Lung functional assessment, mean (SD) | ||
FEV1, % predicted | 100 (13) | 76 (25) *** |
FVC, % predicted | 100 (12) | 85 (18) *** |
FEV1/FVC | 80 (9) | 68 (11) *** |
RV, % predicted | NA | 151 (36) |
TLC, % predicted | NA | 102 (16) |
RV/TLC | NA | 55 (9) |
DLCO, % predicted | NA | 76 (15) |
KCO, % predicted | NA | 80 (11) |
Exercise capacity, mean (SD) | ||
6-min walking distance, meters | 536 (72) | 473 (96) * |
Distance, % predicted | 107 (12) | 98 (17) * |
Disease severity | ||
FACED score, mean (SD) | NA | 1.9 (1.3) |
Mild, N | NA | 20 |
Moderate, N | NA | 8 |
Severe, N | NA | 2 |
EFACED score, mean (SD) | NA | 2.1 (1.5) |
Mild, N | NA | 25 |
Moderate, N | NA | 5 |
Severe, N | NA | 0 |
BSI score, mean (SD) | NA | 5.5 (3.2) |
Mild, N | NA | 13 |
Moderate, N | NA | 12 |
Severe, N | NA | 5 |
Radiological extension, mean (SD) | ||
Total extension score | NA | 8.1 (3.3) |
Bronchial dilatation score | NA | 1.2 (0.2) |
Bronchial wall thickness score | NA | 1.3 (0.3) |
Global score | NA | 10.6 (3.4) |
Healthy Controls | Bronchiectasis Patients | |
---|---|---|
N = 26 | N = 30 | |
Nutritional parameters, mean (SD) | ||
BMI (kg/m2) | 27 (4) | 25 (4) |
FFMI (kg/m2) | 17 (2) | 16 (3) |
Hemoglobin, g/dL | 14.3 (1.3) | 13.9 (1.1) |
Hematocrit, % | 42.9 (3.9) | 42.0 (3.7) |
Glucose, mg/dL | 102.9 (20.6) | 94.4 (25.5) |
Creatinine, mg/dL | 0.8 (0.2) | 0.7 (0.3) |
Albumin, g/dL | 4.6 (0.2) | 4.4 (0.3) *** |
Total proteins, g/dL | 7.3 (0.3) | 7.3 (0.4) |
Prealbumin, g/dL | 26.0 (4.9) | 22.1 (5.0) ** |
Bronchiectasis Patients | |
---|---|
N = 30 | |
Etiology | |
Post-infectious, N (%) | 22 (73) |
COPD, N (%) | 1 (3) |
Unknown etiology, N (%) | 7 (24) |
Patients | Germs | Score |
---|---|---|
Patient # 1 | Haemophilus influenza, S | 5 |
Patient # 2 | Moraxella catarrhalis, S | 5 |
Patient # 3 | Pseudomona aeruginosa, S | 3 |
Patient # 4 | Pseudomona aeruginosa, S | 3 |
Patient # 5 | Commensal microbiota, S | 5 |
Patient # 6 | Pseudomona aeruginosa, S | 5 |
Patient # 7 | Commensal microbiota, S | 6 |
Patient # 8 | Pseudomona aeruginosa, S | 5 |
Patient # 9 | Pseudomona aeruginosa, S | 5 |
Patient # 10 | Commensal microbiota, S | 5 |
Patient # 11 | Commensal microbiota, S | 5 |
Patient # 12 | Commensal microbiota, S | 5 |
Patient # 13 | NSA, I | NA |
Patient # 14 | Pseudomona aeruginosa, S | 5 |
Patient # 15 | Commensal microbiota, S | 6 |
Patient # 16 | Pseudomona aeruginosa, S | 5 |
Patient # 17 | Commensal microbiota, S | 5 |
Patient # 18 | NSA, I | NA |
Patient # 19 | Commensal microbiota, S | 5 |
Patient # 20 | Commensal microbiota, S | 5 |
Patient # 21 | Commensal microbiota, S | 6 |
Patient # 22 | NC, S | 2 |
Patient # 23 | Commensal microbiota, S | 3 |
Patient # 24 | NSA, I | NA |
Patient # 25 | NSA, I | NA |
Patient # 26 | Commensal microbiota, S | 6 |
Patient # 27 | Pseudomona aeruginosa, S | 6 |
Patient # 28 | Commensal microbiota, S | 6 |
Patient # 29 | Pseudomona aeruginosa, S | 6 |
Patient # 30 | Commensal microbiota, S | 6 |
Healthy Controls | Bronchiectasis Patients | |
---|---|---|
N = 26 | N = 30 | |
Systemic inflammatory parameters, mean (SD) | ||
Total leukocytes, ×103/µL | 6.3 (1.6) | 6.4 (1.6) |
Total neutrophils, ×103/µL | 3.9 (1.2) | 4.1 (1.4) |
Neutrophils, % | 57.6 (6.9) | 63.2 (7.8) ** |
Total lymphocytes, ×103/µL | 2.1 (0.6) | 1.5 (0.40) *** |
Lymphocytes, % | 31.7 (6.3) | 24.5 (6.2) *** |
Total eosinophils, ×103/ µL | 0.15 (0.12) | 0.16 (0.09) |
Eosinophils, % | 2.3 (1.6) | 2.5 (1.4) |
Platelets, ×103/µL | 246 (63) | 257 (69) |
CRP, mg/dL | 0.23 (0.4) | 0.70 (0.9) * |
ESR, mm/h | 8 (7) | 15 (12) ** |
Fibrinogen, mg/dL | 305 (69) | 370 (84) ** |
Alpha-1 antitrypsin, mg/dL | 117.9 (18.3) | 132.5 (25.4) * |
Ceruloplasmin, mg/dL | 22.7 (5.1) | 27.0 (5.4) ** |
IgE, IU/mL | 44 (42) | 66 (81) |
IgG aspergillus, mg/L | 26 (23) | 37 (35) |
IgM, mg/dL | 96 (44) | 112 (85) |
IgA, mg/dL | 249 (131) | 330 (134) * |
IgG, mg/dL | 1089 (199) | 1273 (384) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.; Guitart, M.; Admetlló, M.; Esteban-Cucó, S.; Maiques, J.M.; Xia, Y.; Zha, J.; Carbullanca, S.; Duran, X.; Wang, X.; et al. Do Redox Balance and Inflammatory Events Take Place in Mild Bronchiectasis? A Hint to Clinical Implications. J. Clin. Med. 2021, 10, 4534. https://doi.org/10.3390/jcm10194534
Qin L, Guitart M, Admetlló M, Esteban-Cucó S, Maiques JM, Xia Y, Zha J, Carbullanca S, Duran X, Wang X, et al. Do Redox Balance and Inflammatory Events Take Place in Mild Bronchiectasis? A Hint to Clinical Implications. Journal of Clinical Medicine. 2021; 10(19):4534. https://doi.org/10.3390/jcm10194534
Chicago/Turabian StyleQin, Liyun, Maria Guitart, Mireia Admetlló, Sandra Esteban-Cucó, José María Maiques, Yingchen Xia, Jianhua Zha, Santiago Carbullanca, Xavier Duran, Xuejie Wang, and et al. 2021. "Do Redox Balance and Inflammatory Events Take Place in Mild Bronchiectasis? A Hint to Clinical Implications" Journal of Clinical Medicine 10, no. 19: 4534. https://doi.org/10.3390/jcm10194534
APA StyleQin, L., Guitart, M., Admetlló, M., Esteban-Cucó, S., Maiques, J. M., Xia, Y., Zha, J., Carbullanca, S., Duran, X., Wang, X., & Barreiro, E. (2021). Do Redox Balance and Inflammatory Events Take Place in Mild Bronchiectasis? A Hint to Clinical Implications. Journal of Clinical Medicine, 10(19), 4534. https://doi.org/10.3390/jcm10194534