Clinical Characteristics of Patients with Post-Tuberculosis Bronchiectasis: Findings from the KMBARC Registry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Bronchiectasis Aetiology and Definition of Post- TB Bronchiectasis
2.3. Assessments
2.4. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Radiologic, Pulmonary Function, Microbiologic, and Laboratory Test Results and Respiratory Treatment
3.3. Bronchiectasis Severity, Exacerbations, and Quality of Life
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, H.; Yang, B.; Nam, H.; Kyoung, D.-S.; Sim, Y.S.; Park, H.Y.; Lee, J.S.; Lee, S.W.; Oh, Y.-M.; Ra, S.W.; et al. Population-based prevalence of bronchiectasis and associated comorbidities in South Korea. Eur. Respir. J. 2019, 54, 1900194. [Google Scholar] [CrossRef] [PubMed]
- Quint, J.K.; Millett, E.; Joshi, M.; Navaratnam, V.; Thomas, S.L.; Hurst, J.R.; Smeeth, L.; Brown, J.S. Changes in the incidence, prevalence and mortality of bronchiectasis in the UK from 2004 to 2013: A population-based cohort study. Eur. Respir. J. 2016, 47, 186–193. [Google Scholar] [CrossRef]
- Lee, H.; Choi, H.; Sim, Y.S.; Park, S.; Kim, W.J.; Yoo, K.H.; Lee, S.J.; Kim, T.-H.; Yang, B.; Jeong, I.; et al. KMBARC registry: Protocol for a multicentre observational cohort study on non-cystic fibrosis bronchiectasis in Korea. BMJ Open 2020, 10, e034090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, S.K.; Bye, P.T.; Fox, G.J.; Burr, L.D.; Chang, A.B.; Holmes-Liew, C.-L.; King, P.; Middleton, P.G.; Maguire, G.P.; Smith, D.; et al. Australian adults with bronchiectasis: The first report from the Australian Bronchiectasis Registry. Respir. Med. 2019, 155, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Aksamit, T.R.; O’Donnell, A.E.; Barker, A.; Olivier, K.N.; Winthrop, K.L.; Daniels, M.L.A.; Johnson, M.; Eden, E.; Griffith, D.; Knowles, M.; et al. Adult Patients With Bronchiectasis: A First Look at the US Bronchiectasis Research Registry. Chest 2017, 151, 982–992. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Choi, H.; Chalmers, J.D.; Dhar, R.; Nguyen, T.Q.; Visser, S.K.; Morgan, L.C.; Oh, Y. Characteristics of bronchiectasis in Korea: First data from the Korean Multicentre Bronchiectasis Audit and Research Collaboration registry and comparison with other international registries. Respirology 2021, 26, 619–621. [Google Scholar] [CrossRef]
- Dhar, R.; Singh, S.; Talwar, D.; Mohan, M.; Tripathi, S.K.; Swarnakar, R.; Trivedi, S.; Rajagopala, S.; D’Souza, G.; Padmanabhan, A.; et al. Bronchiectasis in India: Results from the European Multicentre Bronchiectasis Audit and Research Collaboration (EMBARC) and Respiratory Research Network of India Registry. Lancet Glob. Health 2019, 7, e1269–e1279. [Google Scholar] [CrossRef]
- Ravimohan, S.; Kornfeld, H.; Weissman, D.; Bisson, G.P. Tuberculosis and lung damage: From epidemiology to pathophysiology. Eur. Respir. Rev. 2018, 27, 170077. [Google Scholar] [CrossRef] [Green Version]
- Roberts, H.R.; Wells, A.U.; Milne, D.G.; Rubens, M.B.; Kolbe, J.; Cole, P.J.; Hansell, D.M. Airflow obstruction in bronchiectasis: Correlation between computed tomography features and pulmonary function tests. Thorax 2000, 55, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Milliron, B.; Henry, T.S.; Veeraraghavan, S.; Little, B.P. Bronchiectasis: Mechanisms and Imaging Clues of Associated Common and Uncommon Diseases. Radiographics 2015, 35, 1011–1030. [Google Scholar] [CrossRef]
- Wang, H.; Ji, X.-B.; Li, C.-W.; Lu, H.-W.; Mao, B.; Liang, S.; Cheng, K.-B.; Bai, J.-W.; Martinez-Garcia, M.A.; Xu, J.-F. Clinical characteristics and validation of bronchiectasis severity score systems for post-tuberculosis bronchiectasis. Clin. Respir. J. 2018, 12, 2346–2353. [Google Scholar] [CrossRef] [PubMed]
- Al-Harbi, A.; Al-Ghamdi, M.; Khan, M.; Al-Rajhi, S.; Al-Jahdali, H. Performance of Multidimensional Severity Scoring Systems in Patients with Post-Tuberculosis Bronchiectasis. Int. J. Chronic Obstr. Pulm. Dis. 2020, ume 15, 2157–2165. [Google Scholar] [CrossRef]
- Polverino, E.; Goeminne, P.C.; McDonnell, M.J.; Aliberti, S.; Marshall, S.E.; Loebinger, M.R.; Murris, M.; Cantón, R.; Torres, A.; Dimakou, K.; et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur. Respir. J. 2017, 50, 1700629. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.T.; Sullivan, A.L.; Chalmers, J.D.; De Soyza, A.; Elborn, J.S.; Floto, R.A.; Grillo, L.; Gruffydd-Jones, K.; Harvey, A.; Haworth, C.S.; et al. British Thoracic Society Guideline for bronchiectasis in adults. Thorax 2019, 74, 1–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.K.; Paek, D.; Lee, J.O. Normal Predictive Values of Spirometry in Korean Population. Tuberc. Respir. Dis. 2005, 58, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.J.; Kim, H.I.; Yang, B.; Kim, T.; Sim, Y.S.; Kang, H.K.; Kim, S.H.; Yoon, H.J.; Choi, H.; Lee, H. Impact of the severity of restrictive spirometric pattern on nutrition, physical activity, and quality of life: Results from a nationally representative data-base. Sci. Rep. 2020, 10, 19672. [Google Scholar] [CrossRef] [PubMed]
- Sim, Y.S.; Lee, J.-H.; Lee, W.-Y.; Suh, D.I.; Oh, Y.-M.; Yoon, J.-S.; Lee, J.H.; Cho, J.H.; Kwon, C.S.; Chang, J.H. Spirometry and Bronchodilator Test. Tuberc. Respir. Dis. 2017, 80, 105–112. [Google Scholar] [CrossRef]
- Reiff, D.B.; Wells, A.U.; Carr, D.H.; Cole, P.J.; Hansell, D.M. CT findings in bronchiectasis: Limited value in distinguishing between idiopathic and specific types. Am. J. Roentgenol. 1995, 165, 261–267. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Goeminne, P.; Aliberti, S.; McDonnell, M.J.; Lonni, S.; Davidson, J.; Poppelwell, L.; Salih, W.; Pesci, A.; Dupont, L.J.; et al. The Bronchiectasis Severity Index. An International Derivation and Validation Study. Am. J. Respir. Crit. Care Med. 2014, 189, 576–585. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; de Gracia, J.; Vendrell Relat, M.; Giron, R.M.; Maiz Carro, L.; de la Rosa Carrillo, D.; Olveira, C. Mul-tidimensional approach to non-cystic fibrosis bronchiectasis: The FACED score. Eur. Respir. J. 2014, 43, 1357–1367. [Google Scholar] [CrossRef]
- Hill, A.T.; Haworth, C.S.; Aliberti, S.; Barker, A.; Blasi, F.; Boersma, W.; Chalmers, J.D.; De Soyza, A.; Dimakou, K.; Elborn, J.S.; et al. Pulmonary exacerbation in adults with bronchiectasis: A consensus definition for clinical research. Eur. Respir. J. 2017, 49, 1700051. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Lee, H.; Kim, S.H.; Choi, H.; Lee, J.H.; Lee, J.S.; Lee, S.W.; Oh, Y.M. Validation of the Korean Version of the Bron-chiectasis Health Questionnaire. Tuberc. Respir. Dis. (Seoul) 2020, 83, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Boaventura, R.; Sibila, O.; Agusti, A.; Chalmers, J.D. Treatable traits in bronchiectasis. Eur. Respir. J. 2018, 52, 1801269. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.J.; Lee, H.; Carriere, K.C.; Kim, J.H.; Han, J.-H.; Shin, B.; Jeong, B.-H.; Koh, W.-J.; Kwon, O.J.; Park, H.Y. Effects of long-term bronchodilators in bronchiectasis patients with airflow limitation based on bronchodilator response at baseline. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 2757–2764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Lee, J.S.; Lee, S.W.; Oh, Y.M. Effects of treatment with long-acting muscarinic antagonists (LAMA) and long-acting beta-agonists (LABA) on lung function improvement in patients with bronchiectasis: An observational study. J. Thorac. Dis. 2021, 13, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Baek, S.; Kim, H.J.; Lee, J.S.; Oh, Y.-M.; Lee, S.-D.; Lee, S.W. The Impact of Smoking on Airflow Limitation in Subjects with History of Asthma and Inactive Tuberculosis. PLOS ONE 2015, 10, e0125020. [Google Scholar] [CrossRef] [PubMed]
- Spinou, A.; Chalmers, J.D. Using Airway Clearance Techniques in Bronchiectasis: Halfway There. Chest 2020, 158, 1298–1300. [Google Scholar] [CrossRef]
- O’Neill, K.; O’Donnell, A.E.; Bradley, J.M. Airway clearance, mucoactive therapies and pulmonary rehabilitation in bronchi-ectasis. Respirology 2019, 24, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-L.; Cheng, M.-H.; Lu, P.-L.; Shu, C.-C.; Wang, J.-Y.; Wang, J.-T.; Chong, I.-W.; Lee, L.-N. Epidemiology and Predictors of NTM Pulmonary Infection in Taiwan—A Retrospective, Five-Year Multicenter Study. Sci. Rep. 2017, 7, 16300. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Ryu, J.; Kim, T.; Jo, Y.S.; Kim, Y.; Park, H.Y.; Kang, Y.A.; Lee, S.J.; Lee, O.-J.; Moon, J.-Y.; et al. Impact of Bronchiectasis on Incident Nontuberculous Mycobacterial Pulmonary Disease. Chest 2021, 159, 1807–1811. [Google Scholar] [CrossRef]
- Choi, H.; Kim, S.-Y.; Kim, D.H.; Huh, H.J.; Ki, C.-S.; Lee, N.Y.; Lee, S.-H.; Shin, S.; Shin, S.J.; Daley, C.L.; et al. Clinical Characteristics and Treatment Outcomes of Patients with Acquired Macrolide-Resistant Mycobacterium abscessus Lung Disease. Antimicrob. Agents Chemother. 2017, 61, e01146-17. [Google Scholar] [CrossRef] [Green Version]
Post-TB (n = 118) | Post-Infectious (n = 117) | Idiopathic (n = 244) | Others (n = 119) | p Value | |
---|---|---|---|---|---|
Age, years | 66 (60–72) | 67 (60–71) | 65 (60–71) | 66 (60–73) | 0.408 |
Males | 62 (52.5) | 50 (42.7) | 100 (41.0) | 52 (43.7) | 0.215 |
BMI, kg/m2 | 22.1 (19.5–24.6) | 22.6 (20.4–24.6) | 23.2 (21.0–25.8) * | 23.2 (20.7–25.1) | 0.002 |
Smoking history | 0.349 | ||||
Never-smoker | 68 (57.6) | 77 (65.8) | 162 (66.4) | 80 (67.2) | |
Current- or ex-smoker | 50 (42.4) | 40 (34.2) | 82 (33.6) | 39 (32.8) | |
Sputum volume, mL | 10 (5–25) | 20 (5–50) | 11 (5–32) | 10 (5–25) | 0.701 |
mMRC dyspnoea scale | 0.107 | ||||
<2 | 83 (70.3) | 91 (77.8) | 199 (81.6) | 95 (79.8) | |
≥2 | 35 (29.7) | 26 (22.2) | 45 (18.4) | 24 (20.2) | |
Comorbidities | |||||
Pulmonary comorbidities | |||||
COPD | 53 (44.9) | 59 (50.4) | 69 (28.3) * | 45 (37.8) | <0.001 |
Asthma | 17 (14.4) | 31 (26.5) | 37 (15.2) | 49 (41.2) * | <0.001 |
Cardiovascular diseases | |||||
Myocardial infarction | 2 (1.7) | 2 (1.7) | 2 (0.8) | 2 (1.7) | 0.759 |
Angina | 4 (3.4) | 3 (2.6) | 6 (2.5) | 6 (5.0) | 0.592 |
Stroke or TIA | 2 (1.7) | 2 (1.7) | 3 (1.2) | 4 (3.4) | 0.524 |
CHF | 2 (1.7) | 5 (4.3) | 4 (1.6) | 2 (1.7) | 0.450 |
Rheumatoid arthritis | 5 (4.2) | 6 (5.1) | 10 (4.1) | 16 (13.6) | 0.008 |
Liver cirrhosis | 4 (3.4) | 3 (2.6) | 1 (0.4) | 0 | 0.024 |
Chronic kidney disease | 2 (2.6) | 3 (2.6) | 4 (1.7) | 2 (1.7) | 0.891 |
Malignancy | 16 (13.7) | 13 (11.1) | 16 (6.6) | 9 (7.8) | 0.127 |
Diabetes mellitus | 13 (11.1) | 11 (9.4) | 34 (13.9) | 15 (12.6) | 0.640 |
Osteoporosis | 13 (11.1) | 22 (19.0) | 22 (9.0) | 13 (10.9) | 0.052 |
Depression | 0 | 5 (4.3) | 11 (4.5) | 4 (6.7) | 0.024 |
Post-TB (n = 118) | Post-Infectious (n = 117) | Idiopathic (n = 244) | Others (n = 119) | p Value | |
---|---|---|---|---|---|
Radiology | |||||
No of involved lobes | 3 (2–5) | 3 (2–5) | 3 (2–4) | 3 (2–4) | 0.052 |
Involved lobe | |||||
RUL | 74 (63.3) | 49 (41.9) * | 88 (37.0) * | 36 (32.7) * | <0.001 |
RML | 66 (56.4) | 76 (65.0) | 144 (60.5) | 75 (68.2) | 0.262 |
RLL | 59 (50.4) | 80 (68.4) | 143 (60.1) | 64 (58.2) | 0.047 |
LUL upper division | 63 (53.9) | 46 (39.3) | 79 (33.2) * | 26 (23.6) * | <0.001 |
LUL lingular division | 58 (49.6) | 65 (55.6) | 137 (57.6) | 51 (46.4) | 0.191 |
LLL | 79 (67.5) | 100 (85.5) | 180 (75.6) | 78 (70.9) | 0.010 |
Modified Reiff score | 6.4 ± 3.8 | 6.8 ± 4.2 | 6.0 ± 4.2 | 4.9 ± 3.3 * | 0.002 |
Pulmonary function | |||||
FVC, L | 2.3 (1.9–3.1) | 2.5 (2.0–3.0) | 2.5 (2.0–3.0) | 2.5 (2.0–3.2) | 0.887 |
FVC, % predicted | 70.1 (54.4–84.4) | 72.6 (60.5–79.8) | 74.4 (64.1–85.6) * | 74.7 (63.2–82.9) | 0.027 |
FEV1, L | 1.5 (1.1–1.9) | 1.5 (1.1–1.9) | 1.7 (1.3–2.1) | 1.7 (1.2–2.1) | 0.163 |
FEV1, % predicted | 57.6 (43.0–74.2) | 58.7 (46.5–71.3) | 65.8 (53.2–81.2) * | 64.4 (51.6–77.6) | 0.001 |
FEV1/FVC ratio | 0.6 (0.5–0.7) | 0.6 (0.5–0.7) | 0.7 (0.6–0.8) | 0.7 (0.5–0.7) | 0.025 |
FEV1/FVC < 0.7 | 71 (65.7) | 71 (68.9) | 119 (55.1) | 64 (61.0) | 0.075 |
Microbiology | |||||
NTM | 16 (13.6) | 9 (7.7) | 15 (6.2) | 22 (18.6) | 0.001 |
Pseudomonas aeruginosa | 23 (19.5) | 23 (19.7) | 50 (20.5) | 10 (8.4) | 0.030 |
Haemophilus influenzae | 2 (1.7) | 4 (3.4) | 2 (0.8) | 1 (0.8) | 0.243 |
Staphylococcus aureus | 0 | 1 (0.9) | 2 (0.8) | 1 (0.8) | 0.921 |
Moraxella catarrhalis | 0 | 0 | 2 (0.8) | 1 (0.8) | 1.000 |
Enterobacteriaceae | 5 (4.2) | 4 (3.4) | 13 (5.3) | 1 (0.8) | 0.192 |
Laboratory | |||||
WBC | 6700 (5300–8300) | 7200 (6100–9100) | 7100 (5800–9000) | 6500 (5800–9000) | 0.149 |
Haemoglobin | 13.3 (12.0–14.0) | 13.3 (12.1–14.2) | 12.9 (12.3–14.2) | 13.4 (12.3–14.2) | 0.689 |
ESR | 23 (13–49) | 29 (15–39) | 26 (14–47) | 25 (14–56) | 0.925 |
CRP | 0.6 (0.2–2.1) | 0.4 (0.2–1.5) | 0.4 (0.1–1.5) | 0.5 (0.2–1.3) | 0.274 |
Post-TB (n = 118) | Post-Infectious (n = 117) | Idiopathic (n = 244) | Others (n = 119) | p Value | |
---|---|---|---|---|---|
Disease severity | |||||
BSI | 7 (5–9) | 6 (5–9) | 6 (4–9) | 5 (4–8) | 0.082 |
FACED | 2.4 ± 1.6 | 2.2 ± 1.7 | 1.9 ± 1.6 | 1.9 ± 1.4 | 0.042 |
E-FACED | 3 (1–4) | 3 (1–3) | 2 (1–3) | 2 (1–3) | 0.101 |
Exacerbations | |||||
Any exacerbation | 1 (0–3) | 1 (0–2) | 1 (0–2) | 0 (0–2) | 0.892 |
Requiring admission | 22 (18.6) | 22 (18.8) | 45 (18.4) | 20 (16.8) | 0.976 |
Requiring ER visits | 7 (5.9) | 9 (7.7) | 21 (8.6) | 8 (6.7) | 0.812 |
Severe exacerbation ≥ 2/year | 6 (5.1) | 8 (6.8) | 12 (4.9) | 6 (5.0) | 0.887 |
Haemoptysis requiring admission | 7 (6.1) | 7 (6.2) | 16 (7.0) | 2 (2.4) | 0.501 |
Bronchial artery embolization | 3 (2.6) | 1 (0.9) | 3 (1.3) | 0 | 0.422 |
Quality of life | |||||
BHQ | 53 (49–58) | 50 (45–56) | 53 (46–59) | 53 (45–59) | 0.111 |
PHQ-9 | 3 (1–9) | 3 (1–9) | 3 (1–8) | 4 (2–10) | 0.495 |
FSS | 19 (12–33) | 18 (12–32) | 19 (12–32) | 23 (14–37) | 0.219 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.; Lee, H.; Ra, S.W.; Kim, H.K.; Lee, J.S.; Um, S.-J.; Kim, S.-H.; Oh, Y.-M.; Kwon, Y.-S.; on behalf of the KMBARC. Clinical Characteristics of Patients with Post-Tuberculosis Bronchiectasis: Findings from the KMBARC Registry. J. Clin. Med. 2021, 10, 4542. https://doi.org/10.3390/jcm10194542
Choi H, Lee H, Ra SW, Kim HK, Lee JS, Um S-J, Kim S-H, Oh Y-M, Kwon Y-S, on behalf of the KMBARC. Clinical Characteristics of Patients with Post-Tuberculosis Bronchiectasis: Findings from the KMBARC Registry. Journal of Clinical Medicine. 2021; 10(19):4542. https://doi.org/10.3390/jcm10194542
Chicago/Turabian StyleChoi, Hayoung, Hyun Lee, Seung Won Ra, Hyun Kuk Kim, Jae Seung Lee, Soo-Jung Um, Sang-Heon Kim, Yeon-Mok Oh, Yong-Soo Kwon, and on behalf of the KMBARC. 2021. "Clinical Characteristics of Patients with Post-Tuberculosis Bronchiectasis: Findings from the KMBARC Registry" Journal of Clinical Medicine 10, no. 19: 4542. https://doi.org/10.3390/jcm10194542
APA StyleChoi, H., Lee, H., Ra, S. W., Kim, H. K., Lee, J. S., Um, S. -J., Kim, S. -H., Oh, Y. -M., Kwon, Y. -S., & on behalf of the KMBARC. (2021). Clinical Characteristics of Patients with Post-Tuberculosis Bronchiectasis: Findings from the KMBARC Registry. Journal of Clinical Medicine, 10(19), 4542. https://doi.org/10.3390/jcm10194542