Patients with Minimal Hepatic Encephalopathy Show Altered Thermal Sensitivity and Autonomic Function
Abstract
:1. Introduction
2. Experimental Section
2.1. Patients and Controls
2.2. Neuropsychological Assessment
2.3. Neurophysiological Studies of Large Caliber Fibers: Nerve Conduction Study
2.4. Neurophysiological Studies of Small Caliber Fibers: Autonomous Nervous System and Quantitative Sensory Testing (QST)
2.4.1. Autonomous Nervous System
2.4.2. Quantitative Sensory Testing (QST)
2.5. Statistical Analysis
3. Results
3.1. Neuropsychological Assessment
3.2. Nerve Conduction Study
3.3. Quantitative Sensory Testing (QST)
3.4. Comparisons between Patients with and without MHE with Normal Sural Nerve Amplitude
3.5. Correlations between QST Parameters, Autonomic System, and Psychometric Tests
3.6. Predictive Capacity of QST Parameters for MHE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HE | hepatic encephalopathy |
MHE | minimal hepatic encephalopathy |
PHES | psychometric hepatic encephalopathy score |
SDMT | symbol digit modalities test |
EMG | electromyography |
QST | Quantitative Sensory Testing |
SSR | sympathetic skin response |
VDT | vibration detection test |
CDT | cold detection test |
HPDT | heat pain detection test |
JND | just noticeable differences |
NMHE | patients without MHE |
References
- Vilstrup, H.; Amodio, P.; Bajaj, J.; Cordoba, J.; Ferenci, P.; Mullen, K.D.; Weissenborn, K.; Wong, P. Hepatic encephalopathy in chronic liver disease: 2014 practice guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology 2014, 60, 715–735. [Google Scholar] [CrossRef]
- Felipo, V. Hepatic encephalopathy: Effects of liver failure on brain function. Nat. Rev. Neurosci. 2013, 14, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Nardone, R.; Taylor, A.C.; Höller, Y.; Brigo, F.; Lochner, P.; Trinka, E. Minimal hepatic encephalopathy: A review. Neurosci. Res. 2016, 111, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Amodio, P.; Montagnese, S.; Gatta, A.; Morgan, M.Y. Characteristics of minimal hepatic encephalopathy. Metab. Brain Dis. 2004, 19, 253–267. [Google Scholar] [CrossRef] [PubMed]
- Weissenborn, K.; Heidenreich, S.; Ennen, J.; Rückert, N.; Hecker, H. Attention deficits in minimal hepatic encephalopathy. Metab. Brain Dis. 2001, 16, 13–19. [Google Scholar] [CrossRef]
- Ridola, L.; Nardelli, S.; Gioia, S.; Riggio, O. Quality of life in patients with minimal hepatic encephalopathy. World J. Gastroenterol. 2018, 24, 5446–5453. [Google Scholar] [CrossRef]
- Felipo, V.; Urios, A.; Valero, P.; Sánchez, M.; Serra, M.A.; Pareja, I.; Rodríguez, F.; Gimenez-Garzó, C.; Sanmartín, J.; Montoliu, C. Serum nitrotyrosine and psychometric tests as indicators of impaired fitness to drive in cirrhotic patients with minimal hepatic encephalopathy. Liver Int. 2013, 33, 1478–1489. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Saeian, K.; Schubert, C.M.; Hafeezullah, M.; Franco, J.; Varma, R.R.; Gibson, D.P.; Hoffmann, R.G.; Stravitz, R.T.; Heuman, D.M.; et al. Minimal hepatic encephalopathy is associated with motor vehicle crashes: The reality beyond the driving test. Hepatology 2009, 50, 1175–1183. [Google Scholar] [CrossRef] [Green Version]
- Román, E.; Córdoba, J.; Torrens, M.; Torras, X.; Villanueva, C.; Vargas, V.; Guarner, C.; Soriano, G. Minimal hepatic encephalopathy is associated with falls. Am. J. Gastroenterol. 2011, 106, 476–482. [Google Scholar] [CrossRef]
- Urios, A.; Mangas-Losada, A.; Gimenez-Garzó, C.; González-López, O.; Giner-Durán, R.; Serra, M.A.; Noe, E.; Felipo, V.; Montoliu, C. Altered postural control and stability in cirrhotic patients with minimal hepatic encephalopathy correlate with cognitive deficits. Liver Int. 2017, 37, 1013–1022. [Google Scholar] [CrossRef]
- Poordad, F.F. Review article: The burden of hepatic encephalopathy. Aliment. Pharmacol. Ther. 2007, 25, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Ferenci, P.; Lockwood, A.; Mullen, K.; Tarter, R.; Weissenborn, K.; Blei, A.T. Hepatic encephalopathy—Definition, nomenclature, diagnosis, and quantification: Final report of the Working Party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 2002, 35, 716–721. [Google Scholar] [CrossRef]
- Weissenborn, K.; Ennen, J.C.; Schomerus, H.; Rückert, N.; Hecker, H. Neuropsychological characterization of hepatic encephalopathy. J. Hepatol. 2001, 34, 768–773. [Google Scholar] [CrossRef]
- Giménez-Garzó, C.; Garcés, J.J.; Urios, A.; Mangas-Losada, A.; García-García, R.; González-López, O.; Giner-Durán, R.; Escudero-García, D.; Serra, M.A.; Soria, E.; et al. The PHES battery does not detect all cirrhotic patients with early neurological deficits, which are different in different patients. PLoS ONE 2017, 12, e0171211. [Google Scholar] [CrossRef] [Green Version]
- Felipo, V.; Ordoño, J.F.; Urios, A.; El Mlili, N.; Giménez-Garzó, C.; Aguado, C.; González-Lopez, O.; Giner-Duran, R.; Serra, M.A.; Wassel, A.; et al. Patients with minimal hepatic encephalopathy show impaired mismatch negativity correlating with reduced performance in attention tests. Hepatology 2012, 55, 530–539. [Google Scholar] [CrossRef]
- Felipo, V.; Urios, A.; Giménez-Garzó, C.; Cauli, O.; Andrés-Costa, M.J.; González, O.; Serra, M.A.; Sánchez-González, J.; Aliaga, R.; Giner-Durán, R.; et al. Non-invasive blood flow measurement in cerebellum detects minimal hepatic encephalopathy earlier than psychometric tests. World. J. Gastroenterol. 2014, 20, 11815–11825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butz, M.; Timmermann, L.; Braun, M.; Groiss, S.J.; Wojtecki, L.; Ostrowski, S.; Krause, H.; Pollok, B.; Gross, J.; Südmeyer, M.; et al. Motor impairment in liver cirrosis without and with minimal hepatic encephalopathy. Acta Neurol. Scand. 2010, 122, 27–35. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Thacker, L.R.; Heuman, D.M.; Fuchs, M.; Sterling, R.K.; Sanyal, A.J.; Puri, P.; Siddiqui, M.S.; Stravitz, R.T.; Bouneva, I.; et al. The Stroop smartphone application is a short and valid method to screen for minimal hepatic encephalopathy. Hepatology 2013, 58, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, V.; Corse, A.M.; O’brian, R.; Cornblath, D.R.; Klein, A.S.; Thuluvat, P.J. Autonomic and peripheral (sensorimotor) neuropathy in chronic liver disease: A clinical and electrophysiologic study. Hepatology 1999, 29, 1698–1703. [Google Scholar] [CrossRef] [PubMed]
- Hoitsma, E.; Reulena, J.P.H.; de Baetsb, M.; Drentc, M.; Spaansa, F.; Faber, C.G. Small fiber neuropathy: A common and important clinical disorder. J. Neurol. Sci. 2004, 227, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.; Lin, C.S.Y.; Murray, N.M.F.; Burroughs, A.K.; Bostock, H. Conduction and Excitability Properties of Peripheral Nerves in End-Stage Liver Disease. Muscle Nerve 2007, 35, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Knill-Jones, R.P.; Goodwill, C.J.; Dayan, A.D.; Williams, R. Peripheral neuropathy in chronic liver disease: Clinical, electrodiagnostic, and nerve biopsy findings. J. Neurol. Neurosurg. Psychiatry 1972, 35, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Manzano, G.M.; Giuliano, L.M.P.; Nóbrega, J.A.M. A brief historical note on the classification of nerve fibers. Arq. Neuropsiquiatr. 2008, 66, 117–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, M.; Butz, M.; May, E.; Kahlbrock, N.; Kircheis, G.; Häussinger, D.; Schnitzler, A. Patients with manifest hepatic encephalopathy can reveal impaired thermal perception. Acta Neurol. Scand. 2015, 32, 156–163. [Google Scholar] [CrossRef]
- Picard, F.; Friston, K. Predictions, perception, and a sense of self. Neurology 2014, 83, 1112–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephen, J.; Montaño, R.; Donahue, C.; Adair, J.C.; Knoefel, J.; Qualls, C.; Hart, B.; Ranken, D.; Aine, C.J. Somatosensory responses in normal aging, mild cognitive impairment, and Alzheimer’s disease. J. Neural Transm. 2010, 117, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Nolano, M.; Provitera, V.; Estraneo, A.; Selim, M.M.; Caporaso, G.; Stancanelli, A.; Saltalamacchia, A.M.; Lanzillo, B.; Santoro, L. Sensory deficit in Parkinson’s disease: Evidence of a cutaneous denervation. Brain 2008, 131, 1903–1911. [Google Scholar] [CrossRef] [Green Version]
- Falck, B.; Stålberg, E. Polyneuropathies. In Strategies in Electrodiagnostic Medicine. Expected Findings, Procedures and Differential Diagnosis; Department of Clinical Neurophysiology, University Hospital: Uppsala, Sweden, 1997; pp. 8–9. [Google Scholar]
- Preston, D.; Shapiro, B.E. Electromyography and Neuromuscular Disorders: Clinical-Electrophysiologic Correlations; Elsevier: Amsterdam, The Netherlands, 2005; p. 403. [Google Scholar]
- Murota, H. Old and new approaches for assessing sweating. Curr. Probl. Dermatol. 2016, 51, 22–29. [Google Scholar]
- Chémali, K.R.; Chelimsky, T.C. Testing of Autonomic Function. In Neuromuscular Disorders in Clinical Practice; Katirji, B., Kaminski, H., Ruff, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 201–221. [Google Scholar]
- Rolke, R.; Magerl, W.; Campbell, K.; Schalber, C.; Caspari, S.; Birklein, F.; Treede, R.D. Quantitative sensory testing: A comprehensive protocol for clinical trials. Eur. J. Pain 2006, 10, 77–88. [Google Scholar] [CrossRef]
- Vollert, J.; Attal, N.; Baron, R.; Freynhagen, R.; Haanpää, M.; Hansson, P.; Jensen, T.S.; Rice, A.S.; Segerdahl, M.; Serra, J.; et al. Quantitative sensory testing using DFNS protocol in Europe. Pain 2016, 57, 750–758. [Google Scholar] [CrossRef]
- Kruijf, M.; Peters, M.; Jacobs, L.; Tiemeier, H.; Nijsten, T.; Hofman, A.; Uitterlinden, A.G.; Huygen, F.J.; van Meurs, J.B. Determinants for quantitative sensory testing and the association with chronic musculoskeletal pain in the general elderly population. Pain Pract. 2016, 16, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Dyck, P.; Zimmerman, I.; Gillen, D.; Johnson, D.; Karnes, J.; O’Brien, P. Cool, warm, and heat-pain detection thresholds: Testing methods and inferences about anatomic distribution of receptors. Neurology 1993, 43, 1500–1508. [Google Scholar] [CrossRef] [PubMed]
- Devigili, G.; Tugnoli, V.; Penza, P.; Camozzi, F.; Lombardi, R.; Melli, G.; Broglio, L.; Granieri, E.; Lauria, G. The diagnostic criteria for small fiber neuropathy: From symptoms to neuropathology. Brain 2008, 131, 1912–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katirji, B. Electromyography in Clinical Practice, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 55–56. [Google Scholar]
- Themistocleous, A.C.; Ramirez, J.D.; Serra, J.; Bennett, D.L. The clinical approach to small fiber neuropathy and painful channelopathy. Pract. Neurol. 2014, 14, 368–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathias, C.J.; Bannister, R. Autonomic Failure: A Textbook of Clinical Disorders of the Autonomic Nervous System, 5th ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Toru, S.; Kanouchi, T.; Yokota, T.; Yagi, Y.; Machida, A.; Kobayashi, T. Utility of autonomic function tests to differentiate dementia with Lewy bodies and Parkinson disease with dementia from Alzheimer disease. Eur. Neurol. 2018, 79, 27–32. [Google Scholar] [CrossRef]
- Nicolini, P.; Ciulla, M.M.; Malfatto, G.; Abbate, C.; Mari, D.; Rossi, P.D.; Pettenuzzo, E.; Magrini, F.; Consonni, D.; Lombardi, F. Autonomic dysfunction in mild cognitive impairment: Evidence from power spectral analysis of heart rate variability in a cross-sectional case-control study. PLoS ONE 2014, 9, e96656. [Google Scholar] [CrossRef]
- Uddin, L.Q.; Nomi, J.S.; Hebert-Seropian, B.; Ghaziri, J.; Boucher, O. Structure and function of the human insula. J. Clin. Neurophysiol. 2017, 34, 300–306. [Google Scholar] [CrossRef]
- Gasquoine, P.G. Contributions of the Insula to Cognition and Emotion. Neuropsychol. Rev. 2014, 24, 77–87. [Google Scholar] [CrossRef]
- García-García, R.; Cruz-Gómez, Á.J.; Mangas-Losada, A.; Urios, A.; Forn, C.; Escudero-García, D.; Kosenko, E.; Ordoño, J.F.; Tosca, J.; Giner-Durán, R.; et al. Reduced resting state connectivity and gray matter volume correlate with cognitive impairment in minimal hepatic encephalopathy. PLoS ONE 2017, 12, e0186463. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, J.; Sanyal, A.; Bell, D.; Gilles, H.; Hueuman, D. Predictors of the recurrence of hepatic encephalopathy in lactulose-treated patients. Aliment Pharmacol. Ther. 2010, 31, 1012–1017. [Google Scholar] [CrossRef]
- Hudson, M.; Schuchmann, M. Long-term management of hepatic encephalopathy with lactulose and/or rifaximin: A review of the evidence. Eur. J. Gastroenterol. Hepatol. 2019, 31, 434–450. [Google Scholar] [CrossRef] [PubMed]
Control | NMHE Patients | MHE Patients | |
---|---|---|---|
Number of subjects | 39 | 38 | 20 |
Sex (male/female) | 13/24 | 36/2 | 18/2 |
Age † | 64 ± 2 | 60 ± 1 | 64 ± 1 |
Etiology of cirrhosis | |||
Alcohol | 18 | 10 | |
HCV/HBV/HCV + alcohol | 13/0/1 | 4/1/0 | |
NASH/NASH + alcohol | 1/3 | 4 | |
other | 2 | 1 | |
Diabetes (without/DM NID) | 31/7 | 12/8 | |
Child Pugh score (A/B/C) | 29/9/0 | 14/6/0 | |
MELD score † | 9.4 ± 2.7 | 9.1 ± 2.3 | |
Lactulose | 3 (8%) | 4 (20%) | |
Beta-blockers | 2 (5%) | 15 (39%) | 5 (25%) |
Polyneuropathy (no/yes) (%) | 37/2 (95/5) | 24/14 (63/37) | 12/8 (60/40) |
Controls | NMHE Patients p vs. Control | MHE Patients p vs. Control | MHE Patients p vs. NMHE | Global ANOVA p Values | |
---|---|---|---|---|---|
PHES Global score | 0.0 ± 0.2 | −0.8 ± 0.2 | −7.5 ± 0.7 *** | <0.001 | <0.001 |
Bimanual coordination (min) | 2.2± 0.1 | 2.3 ± 0.1 | 3.4 ± 0.3 *** | <0.001 | <0.001 |
Visual-motor coordination (min) | 2.7 ± 0.1 | 2.9 ± 0.1 | 3.7 ± 0.2 *** | <0.001 | <0.001 |
d2 Test | |||||
TR Values | 378 ± 19 | 322 ± 11 * | 271 ± 14 *** | 0.03 | <0.001 |
TOT Values | 366 ± 16 | 292 ± 12 ** | 245 ± 15 *** | 0.05 | <0.001 |
CON Values | 146 ± 7 | 114 ± 6 * | 89 ± 10 *** | 0.04 | <0.001 |
TA Values | 142 ± 7 | 117 ± 6 * | 98 ± 7 ** | ns | 0.001 |
Stroop test | |||||
Congruent Task † | 103 ± 4 | 94 ± 3 | 81 ± 4 ** | 0.04 | 0.003 |
Neutral Task † | 78 ± 3 | 69 ± 2 * | 57 ± 2 *** | 0.001 | <0.001 |
Incongruent Task † | 47 ± 2 | 37 ± 2 ** | 30 ± 2 *** | 0.02 | <0.001 |
Oral SDMT (correct pairings) | 44 ± 2 | 38 ± 1 * | 26 ± 2 *** | <0.001 | <0.001 |
Digits Span-Total score | 14 ± 0.7 | 12 ± 0.6 * | 11 ± 0.7 ** | ns | 0.007 |
Letter-Number Sequencing test (right answers) | 9 ± 0.6 | 7 ± 0.6 | 5 ± 0.7 ** | 0.02 | 0.001 |
QST Parameters | Controls | NMHE Patients p vs Control | MHE Patients p vs Control | MHE Patients p vs. NMHE | ANOVA Global p Values | |
---|---|---|---|---|---|---|
Vibration detection (JND) | hand | 7 ± 0.5 | 9 ± 0.5 ** | 10 ± 0.5 ** | ns | <0.0001 |
foot | 13 ± 0.6 | 17 ± 0.4 **** | 17 ± 0.6 **** | ns | <0.0001 | |
Cooling detection (JND) | hand | 7 ± 0.3 | 10 ± 0.5 **** | 11 ± 0.8 **** | ns | <0.0001 |
foot | 8 ± 0.4 | 13 ± 0.7 **** | 16 ± 1 **** | 0.04 | <0.0001 | |
Heat pain 0.5 (JND) | hand | 16 ± 0.5 | 18 ± 0.5 ** | 19 ± 0.7 ** | ns | 0.0006 |
foot | 18 ± 0.4 | 19 ± 0.3 ** | 21 ± 0.5 **** | 0.01 | <0.0001 | |
Heat pain 5.0 (JND) | hand | 20 ± 0.5 | 22 ± 0.4 ** | 22 ± 0.7 * | ns | 0.004 |
foot | 21 ± 0.3 | 22 ± 0.2 | 23 ± 0.6 ** | 0.04 | 0.005 | |
Vibration detection time (s) | hand | 127 ± 1 | 132 ± 2 * | 138 ± 3 ** | ns | 0.004 |
foot † | 127 ± 2 | 132 ± 2 | 141 ± 4 *** | 0.04 | 0.0007 | |
Cooling detection time (s) | hand † | 141 ± 1 | 154 ± 5 | 155 ± 3 ** | ns | 0.004 |
foot † | 144 ± 2 | 176 ± 8 ** | 213 ± 15 **** | 0.01 | <0.0001 | |
Heat pain time (s) | hand | 115 ± 8 | 182 ± 11 *** | 189 ± 18 *** | ns | 0.0001 |
foot | 125 ± 8 | 149 ± 9 | 187 ± 14 *** | 0.01 | 0.0009 | |
Autonomic testing | ||||||
R-R Interval variation (%) | Basal † | 3.2 ± 0.7 | 3.1 ± 0.5 | 2.0 ± 0.2 | ns | 0.264 |
Hyperventilation | 11.4 ± 2.0 | 5.9 ± 0.8 * | 7.1 ± 1.8 | ns | 0.021 | |
Valsalva | 15.6 ± 2.1 | 9.3 ± 1.3 | 9.9 ± 2.0 | ns | 0.389 | |
Orthostatic test | 8.2 ± 2.5 | 5.5 ± 1.0 | 3.5 ± 0.7 | ns | 0.130 | |
Sympathetic skin response | Amplitude | 4.1 ± 0.6 | 2.6 ± 0.3 | 1.5 ± 0.3 ** | 0.047 | <0.001 |
Latency | 1.40 ± 0.04 | 1.57 ± 0.04 ** | 1.59 ± 0.06 * | ns | 0.015 |
QST Parameters | Controls | NMHE Patients p vs. Control (n = 18) | MHE Patients p vs. Control (n = 11) | MHE Patients p vs. NMHE | ANOVA Global p Values | |
---|---|---|---|---|---|---|
Vibration detection (JND) | hand | 7 ± 0.5 | 9.5 ± 0.7 ** | 9.3 ± 0.7 * | ns | 0.0008 |
foot | 13 ± 0.6 | 16 ± 0.5 * | 17 ± 0.8 ** | ns | 0.002 | |
Cooling detection (JND) | hand | 7 ± 0.3 | 9.4 ± 0.6 *** | 11 ± 1 **** | ns | <0.001 |
foot | 8 ± 0.4 | 11 ± 1 *** | 15 ± 1.4 **** | 0.004 | <0.001 | |
Heat pain 0.5 (JND) | hand | 16 ± 0.5 | 17.5 ± 0.8 | 19 ± 1 * | ns | 0.04 |
foot | 18 ± 0.4 | 19 ± 0.5 | 20 ± 0.5 ** | 0.06 | 0.01 | |
Heat pain 5.0 (JND) | hand | 20 ± 0.5 | 22 ± 0.6 * | 22 ± 0.4 | ns | 0.013 |
foot | 21 ± 0.3 | 21 ± 0.2 | 22 ± 0.3 | 0.04 | 0.04 | |
Vibration detection time (s) | hand | 127 ± 1 | 132 ± 3 | 135 ± 3 * | ns | 0.04 |
foot † | 127 ± 2 | 134 ± 3 * | 137 ± 2 ** | ns | 0.001 | |
Cooling detection time (s) | hand † | 141 ± 1 | 149 ± 7 | 156 ± 5 * | ns | 0.014 |
foot † | 144 ± 2 | 156 ± 6 | 205 ± 22 **** | 0.007 | <0.001 | |
Heat pain time (s) | hand | 115 ± 8 | 166 ± 16 ** | 167 ± 20 * | ns | 0.004 |
foot | 125 ± 8 | 153 ± 13 | 160 ± 16 | ns | 0.06 | |
Autonomic testing | ||||||
RR Interval variation (%) | Basal † | 3.7 ± 0.7 | 4.3 ± 0.9 | 1.8 ± 0.1 * | 0.007 | 0.008 |
Hyperventilation | 9.5 ± 1.4 | 6.7 ± 1.3 | 6.8 ± 2 | ns | 0.15 | |
Valsalva | 12 ± 2 | 11 ± 2 | 10 ± 3 | ns | 0.95 | |
Orthostatic test | 5 ± 1 | 6.9 ± 1.4 | 2.6 ± 0.4 | 0.04 | 0.05 | |
Sympathetic skin response | Amplitude | 4.6 ± 0.5 | 3.1 ± 0.4 * | 1.4 ± 0.2 **** | 0.03 | 0.0001 |
Latency | 1.4 ± 0.02 | 1.5 ± 0.03 * | 1.5 ± 0.06 * | ns | 0.04 |
QST Parameters | PHES Score | Stroop Test | d2 Test | Oral SDMT | Digit Span | Letter-Number Sequencing | Coordination Tests | ||
---|---|---|---|---|---|---|---|---|---|
d2-TOT | d2-CON | ||||||||
Vibration detection (JND) | hand | −0.23 (0.06) | −0.40 (0.002) | ||||||
foot | −0.31 (0.01) | −0.27 (0.03) | −0.26 (0.04) | −0.23 (0.06) | −0.39 (0.001) | −0.29 (0.02) | 0.23 (0.07) § | ||
Cooling detection (JND) | hand | −0.33 (0.004) | −0.47 (<0.001) | −0.31 (0.01) | −0.36 (0.002) | −0.25 (0.04) | −0.38 (0.002) | 0.23 (0.05) | |
foot | −0.37 (0.002) | −0.25 (0.04) | −0.28 (0.02) | −0.36 (0.002) | −0.29 (0.02) | −0.30 (0.02) | |||
Heat pain 0.5 (JND) | hand | −0.21 (0.08) | −0.25 (0.04) ‡ | −0.27 (0.03) | |||||
foot | −0.34 (0.005) | −0.22 (0.07) | 0.29 (0.02) § | ||||||
Heat pain 5.0 (JND) | hand | −0.24 (0.06) | −0.32 (0.01) | −0.28 (0.03) | |||||
foot | |||||||||
Vibration detection time (s) | hand | −0.32 (0.008) | −0.30 (0.02) | −0.34 (0.006) | −0.34 (0.009) | −0.25 (0.06) | 0.24 (0.06) § | ||
foot | −0.35 (0.003) | −0.24 (0.05) | −0.25 (0.06) | 0.24 (0.06) § | |||||
Cooling detection time (s) | hand | −0.22 (0.06) | −0.26 (0.03) | −0.26 (0.04) ‡ | −0.38 (0.001) | 0.25 (0.04) | |||
foot | −0.24 (0.04) | −0.29 (0.01) | −0.31 (0.01) | −0.32 (0.009) | −0.34 (0.004) | −0.41 (0.001) | −0.40 (0.001) | ||
Heat pain time (s) | hand | −0.25 (0.04) † | −0.24 (0.05) | −0.33 (0.006) | −0.34 (0.006) | −0.30 (0.02) | |||
foot | −0.29 (0.02) | −0.29 (0.02) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rega, D.; Aiko, M.; Peñaranda, N.; Urios, A.; Gallego, J.-J.; Giménez-Garzó, C.; Casanova, F.; Fiorillo, A.; Cabrera-Pastor, A.; San-Miguel, T.; et al. Patients with Minimal Hepatic Encephalopathy Show Altered Thermal Sensitivity and Autonomic Function. J. Clin. Med. 2021, 10, 239. https://doi.org/10.3390/jcm10020239
Rega D, Aiko M, Peñaranda N, Urios A, Gallego J-J, Giménez-Garzó C, Casanova F, Fiorillo A, Cabrera-Pastor A, San-Miguel T, et al. Patients with Minimal Hepatic Encephalopathy Show Altered Thermal Sensitivity and Autonomic Function. Journal of Clinical Medicine. 2021; 10(2):239. https://doi.org/10.3390/jcm10020239
Chicago/Turabian StyleRega, Dalia, Mika Aiko, Nicolás Peñaranda, Amparo Urios, Juan-José Gallego, Carla Giménez-Garzó, Franc Casanova, Alessandra Fiorillo, Andrea Cabrera-Pastor, Teresa San-Miguel, and et al. 2021. "Patients with Minimal Hepatic Encephalopathy Show Altered Thermal Sensitivity and Autonomic Function" Journal of Clinical Medicine 10, no. 2: 239. https://doi.org/10.3390/jcm10020239
APA StyleRega, D., Aiko, M., Peñaranda, N., Urios, A., Gallego, J. -J., Giménez-Garzó, C., Casanova, F., Fiorillo, A., Cabrera-Pastor, A., San-Miguel, T., Ipiens, C., Escudero-García, D., Tosca, J., Montón, C., Ballester, M. -P., Ballester, J., Aparicio, L., Ríos, M. -P., Durbán, L., ... Montoliu, C. (2021). Patients with Minimal Hepatic Encephalopathy Show Altered Thermal Sensitivity and Autonomic Function. Journal of Clinical Medicine, 10(2), 239. https://doi.org/10.3390/jcm10020239