Impact of Early Fluid Balance on Long-Term Mortality in Critically Ill Surgical Patients: A Retrospective Cohort Study in Central Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Study Population
2.3. Data Sources and Covariates
2.4. Fluid Status
2.5. Statistical Analyses
3. Results
3.1. Characteristics of the Enrolled Critically Ill Surgical Patients
3.2. Daily and Cumulative Fluid Status between Day 1 and Day 7
3.3. Both Day 1–3 and Day 4–7 Cumulative Fluid Balance Was Correlated with Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Acheampong, A.; Vincent, J.L. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit. Care 2015, 19, 251. [Google Scholar] [CrossRef] [Green Version]
- Marik, P.E.; Linde-Zwirble, W.T.; Bittner, E.A.; Sahatjian, J.; Hansell, D. Fluid administration in severe sepsis and septic shock, patterns and outcomes: An analysis of a large national database. Intensive Care Med. 2017, 43, 625–632. [Google Scholar] [CrossRef]
- Myles, P.S.; Bellomo, R.; Corcoran, T.; Forbes, A.; Peyton, P.; Story, D.; Christophi, C.; Leslie, K.; McGuinness, S.; Parke, R.; et al. Restrictive versus Liberal Fluid Therapy for Major Abdominal Surgery. N. Engl. J. Med. 2018, 378, 2263–2274. [Google Scholar] [CrossRef]
- Kaukonen, K.M.; Bailey, M.; Suzuki, S.; Pilcher, D.; Bellomo, R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000–2012. JAMA 2014, 311, 1308–1316. [Google Scholar] [CrossRef]
- Mohr, N.M.; Zebrowski, A.M.; Gaieski, D.F.; Buckler, D.G.; Carr, B.G. Inpatient hospital performance is associated with post-discharge sepsis mortality. Crit. Care 2020, 24, 626. [Google Scholar] [CrossRef]
- Shankar-Hari, M.; Harrison, D.A.; Ferrando-Vivas, P.; Rubenfeld, G.D.; Rowan, K. Risk Factors at Index Hospitalization Associated With Longer-term Mortality in Adult Sepsis Survivors. JAMA Netw. Open 2019, 2, e194900. [Google Scholar] [CrossRef] [Green Version]
- COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: A prospective cohort study. Intensive Care Med. 2021, 47, 60–73. [Google Scholar] [CrossRef]
- Besen, B.A.; Taniguchi, L.U. Negative Fluid Balance in Sepsis: When and How? Shock 2017, 47, 35–40. [Google Scholar] [CrossRef]
- Van Mourik, N.; Geerts, B.F.; Binnekade, J.M.; Veelo, D.P.; Bos, L.D.J.; Wiersinga, W.J.; Van Der Poll, T.; Cremer, O.L.; Schultz, M.J.; Vlaar, A.P.J. A Higher Fluid Balance in the Days After Septic Shock Reversal Is Associated With Increased Mortality: An Observational Cohort Study. Crit. Care Explor. 2020, 2, e0219. [Google Scholar] [CrossRef]
- Oh, T.K.; Song, I.A.; Do, S.H.; Jheon, S.; Lim, C. Association of perioperative weight-based fluid balance with 30-day mortality and acute kidney injury among patients in the surgical intensive care unit. J. Anesth. 2019, 33, 354–363. [Google Scholar] [CrossRef]
- Messina, A.; Robba, C.; Calabro, L.; Zambelli, D.; Iannuzzi, F.; Molinari, E.; Scarano, S.; Battaglini, D.; Baggiani, M.; De Mattei, G.; et al. Association between perioperative fluid administration and postoperative outcomes: A 20-year systematic review and a meta-analysis of randomized goal-directed trials in major visceral/noncardiac surgery. Crit. Care 2021, 25, 43. [Google Scholar] [CrossRef]
- Gustafsson, U.O.; Scott, M.J.; Schwenk, W.; Demartines, N.; Roulin, D.; Francis, N.; McNaught, C.E.; Macfie, J.; Liberman, A.S.; Soop, M.; et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations. World J. Surg. 2013, 37, 259–284. [Google Scholar] [CrossRef] [PubMed]
- Wrzosek, A.; Jakowicka-Wordliczek, J.; Zajaczkowska, R.; Serednicki, W.T.; Jankowski, M.; Bala, M.M.; Swierz, M.J.; Polak, M.; Wordliczek, J. Perioperative restrictive versus goal-directed fluid therapy for adults undergoing major non-cardiac surgery. Cochrane Database Syst. Rev. 2019, 12, CD012767. [Google Scholar] [CrossRef] [PubMed]
- Hsing, A.W.; Ioannidis, J.P. Nationwide Population Science: Lessons From the Taiwan National Health Insurance Research Database. JAMA Intern. Med. 2015, 175, 1527–1529. [Google Scholar] [CrossRef] [PubMed]
- National Health Insurance Administration, Ministry of Health and Welfare. The National Health Insurance Statistics 2019; National Health Insurance Administration, Ministry of Health and Welfare: Taipei, Taiwan, 2019.
- Hu, C.A.; Chen, C.M.; Fang, Y.C.; Liang, S.J.; Wang, H.C.; Fang, W.F.; Sheu, C.C.; Perng, W.C.; Yang, K.Y.; Kao, K.C.; et al. Using a machine learning approach to predict mortality in critically ill influenza patients: A cross-sectional retrospective multicentre study in Taiwan. BMJ Open 2020, 10, e033898. [Google Scholar] [CrossRef] [Green Version]
- Chao, W.C.; Tseng, C.H.; Chien, Y.C.; Sheu, C.C.; Tsai, M.J.; Fang, W.F.; Chen, Y.M.; Kao, K.C.; Hu, H.C.; Perng, W.C.; et al. Association of day 4 cumulative fluid balance with mortality in critically ill patients with influenza: A multicenter retrospective cohort study in Taiwan. PLoS ONE 2018, 13, e0190952. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Zheng, Z.R.; Wang, C.Y.; Chao, W.C. Impact of Early Fluid Balance on 1-Year Mortality in Critically Ill Patients With Cancer: A Retrospective Study in Central Taiwan. Cancer Control 2020, 27. [Google Scholar] [CrossRef]
- Shankar-Hari, M.; Rubenfeld, G.D. Understanding Long-Term Outcomes Following Sepsis: Implications and Challenges. Curr. Infect. Dis. Rep. 2016, 18, 37. [Google Scholar] [CrossRef] [Green Version]
- Van Vught, L.A.; Klein Klouwenberg, P.M.; Spitoni, C.; Scicluna, B.P.; Wiewel, M.A.; Horn, J.; Schultz, M.J.; Nurnberg, P.; Bonten, M.J.; Cremer, O.L.; et al. Incidence, Risk Factors, and Attributable Mortality of Secondary Infections in the Intensive Care Unit After Admission for Sepsis. JAMA 2016, 315, 1469–1479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgan, A. Long-term outcomes from critical care. Surgery 2021, 39, 53–57. [Google Scholar] [CrossRef]
- Vincent, J.L.; Sakr, Y.; Sprung, C.L.; Ranieri, V.M.; Reinhart, K.; Gerlach, H.; Moreno, R.; Carlet, J.; Le Gall, J.R.; Payen, D.; et al. Sepsis in European intensive care units: Results of the SOAP study. Crit. Care Med. 2006, 34, 344–353. [Google Scholar] [CrossRef]
- Vincent, J.L.; De Backer, D. Circulatory shock. N. Engl. J. Med. 2013, 369, 1726–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malbrain, M.; Van Regenmortel, N.; Saugel, B.; De Tavernier, B.; Van Gaal, P.J.; Joannes-Boyau, O.; Teboul, J.L.; Rice, T.W.; Mythen, M.; Monnet, X. Principles of fluid management and stewardship in septic shock: It is time to consider the four D’s and the four phases of fluid therapy. Ann. Intensive Care 2018, 8, 66. [Google Scholar] [CrossRef]
- Supinski, G.S.; Morris, P.E.; Dhar, S.; Callahan, L.A. Diaphragm Dysfunction in Critical Illness. Chest 2018, 153, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.K.; Uray, K.S.; Stewart, R.H.; Laine, G.A.; Cox, C.S., Jr. Resuscitation-induced intestinal edema and related dysfunction: State of the science. J. Surg. Res. 2011, 166, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Efron, P.A.; Mohr, A.M.; Bihorac, A.; Horiguchi, H.; Hollen, M.K.; Segal, M.S.; Baker, H.V.; Leeuwenburgh, C.; Moldawer, L.L.; Moore, F.A.; et al. Persistent inflammation, immunosuppression, and catabolism and the development of chronic critical illness after surgery. Surgery 2018, 164, 178–184. [Google Scholar] [CrossRef]
- Gomez-Izquierdo, J.C.; Trainito, A.; Mirzakandov, D.; Stein, B.L.; Liberman, S.; Charlebois, P.; Pecorelli, N.; Feldman, L.S.; Carli, F.; Baldini, G. Goal-directed Fluid Therapy Does Not Reduce Primary Postoperative Ileus after Elective Laparoscopic Colorectal Surgery: A Randomized Controlled Trial. Anesthesiology 2017, 127, 36–49. [Google Scholar] [CrossRef]
- Silversides, J.A.; Major, E.; Ferguson, A.J.; Mann, E.E.; McAuley, D.F.; Marshall, J.C.; Blackwood, B.; Fan, E. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: A systematic review and meta-analysis. Intensive Care Med. 2017, 43, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Oddo, M.; Poole, D.; Helbok, R.; Meyfroidt, G.; Stocchetti, N.; Bouzat, P.; Cecconi, M.; Geeraerts, T.; Martin-Loeches, I.; Quintard, H.; et al. Fluid therapy in neurointensive care patients: ESICM consensus and clinical practice recommendations. Intensive Care Med. 2018, 44, 449–463. [Google Scholar] [CrossRef]
- Vergouw, L.J.M.; Egal, M.; Bergmans, B.; Dippel, D.W.J.; Lingsma, H.F.; Vergouwen, M.D.I.; Willems, P.W.A.; Oldenbeuving, A.W.; Bakker, J.; Van Der Jagt, M. High Early Fluid Input After Aneurysmal Subarachnoid Hemorrhage: Combined Report of Association With Delayed Cerebral Ischemia and Feasibility of Cardiac Output-Guided Fluid Restriction. J. Intensive Care Med. 2020, 35, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Rass, V.; Gaasch, M.; Kofler, M.; Schiefecker, A.J.; Ianosi, B.A.; Steinkohl, F.; Beer, R.; Pfausler, B.; Gizewski, E.R.; Thome, C.; et al. Fluid Intake But Not Fluid Balance Is Associated With Poor Outcome in Nontraumatic Subarachnoid Hemorrhage Patients. Crit. Care Med. 2019, 47, e555–e562. [Google Scholar] [CrossRef] [PubMed]
- Martini, R.P.; Deem, S.; Brown, M.; Souter, M.J.; Yanez, N.D.; Daniel, S.; Treggiari, M.M. The association between fluid balance and outcomes after subarachnoid hemorrhage. Neurocrit. Care 2012, 17, 191–198. [Google Scholar] [CrossRef] [PubMed]
All | No Survival | Survival | p-Value | |
---|---|---|---|---|
(N = 6978) | (N = 2211) | (N = 4767) | ||
Basic characteristics | ||||
Age (years) | 60.9 ± 15.9 | 66.39 ± 15.3 | 58.39 ± 15.54 | <0.01 |
Sex (male) | 4459 (63.9%) | 1530 (69.2%) | 2929 (61.4%) | <0.01 |
Body mass index | 24.6 ± 4.5 | 23.8 ± 4.5 | 25 ± 4.5 | <0.01 |
Charlson comorbidity index | 1.6 ± 1.3 | 2.3 ± 1.4 | 1.3 ± 1.2 | <0.01 |
Surgical departments | <0.01 | |||
Neurosurgery | 3463 (49.6%) | 845 (38.2%) | 2618 (54.9%) | |
Cardiovascular surgery | 1421 (20.4%) | 263 (11.9%) | 1158 (24.3%) | |
General surgery | 474 (6.8%) | 226 (10.2%) | 248 (5.2%) | |
Chest surgery | 476 (6.8%) | 235 (10.6%) | 241 (5.1%) | |
Colorectal surgery | 386 (5.5%) | 241 (10.9%) | 145 (3.0%) | |
Otorhinolaryngology surgery | 206 (3%) | 132 (6.0%) | 74 (1.6%) | |
Urology | 173 (2.5%) | 109 (4.9%) | 64 (1.3%) | |
Plastic surgery | 97 (1.4%) | 45 (2.0%) | 52 (1.1%) | |
Others | 282 (4%) | 115 (5.2%) | 167 (3.5%) | |
Severity and managements | ||||
APACHE II score | 20.3 ± 6.4 | 23.2 ± 6.6 | 19.0 ± 5.9 | <0.01 |
Presence of shock | 2047 (29.3%) | 902 (40.8%) | 1145 (24.0%) | <0.01 |
Use of mechanical ventilation | 2307 (33.1%) | 1081 (48.9%) | 1226 (25.7%) | <0.01 |
Receiving surgery during admission | 4995 (71.6%) | 1371 (62.0%) | 3624 (76.0%) | <0.01 |
Emergency surgery | 1019 (14.6%) | 334 (15.1%) | 685 (14.4%) | 0.42 |
Renal replacement therapy (RRT) | ||||
Temporal RRT during admission | 353 (5.1%) | 257 (11.6%) | 96 (2.0%) | <0.01 |
RRT for ESRD | 67 (1%) | 32 (1.5%) | 35 (0.7%) | <0.01 |
Outcomes | ||||
ICU-stay, days | 8.7 ± 11.3 | 12.14 ± 15.34 | 7.07 ± 8.38 | <0.01 |
Hospital-stay, days | 22.4 ± 24.2 | 29.37 ± 33.08 | 19.1 ± 17.71 | <0.01 |
Ventilator-day | 7.87 ± 12.13 | 12.3 ± 15.4 | 5.5 ± 9.1 | <0.01 |
Mortality at distinct time points | <0.01 | |||
In-hospital mortality | 719 (10.3%) | 719 (32.5%) | NA | NA |
90-day mortality | 1103 (15.8%) | 1103 (49.9%) | NA | NA |
1-year mortality | 1663 (23.8%) | 1663 (75.2%) | NA | NA |
Follow-up period, years | 1.7 ± 1.4 | 0.7 ± 0.91 | 2.17 ± 1.34 | <0.01 |
All (N = 6978) | Non-Survivors (N = 2211) | Survivors (N = 4767) | p-Value | |
---|---|---|---|---|
Daily fluid balance (mL) | ||||
Day 1 | 1027.0 ± 1876.7 | 1254.7 ± 2285.5 | 921.4 ± 1642.7 | <0.01 |
Day 2 | 119.3 ± 1040.8 | 235.7 ± 1226.8 | 65.3 ± 937.4 | <0.01 |
Day 3 | −8.1 ± 923.5 | 116.6 ± 1058.6 | −66.0 ± 847.5 | <0.01 |
Day 4 | −8.6 ± 827.9 | 89.8 ± 974.5 | −54.2 ± 746.0 | <0.01 |
Day 5 | −3.0 ± 750.0 | 77.6 ± 915.5 | −40.3 ± 656.1 | <0.01 |
Day 6 | −4.0 ± 679.0 | 52.3 ± 859 | −30.0 ± 575.0 | <0.01 |
Day 7 | 1.6 ± 627.6 | 49.8 ± 790.3 | −20.8 ± 534.3 | <0.01 |
Cumulative fluid balance (mL) | ||||
Day 1–3 | 1138.2 ± 2667.4 | 1607.0 ± 3326.5 | 920.8 ± 2266.1 | <0.01 |
Day 4–7 | −13.9 ± 1817.8 | 269.5 ± 2300.3 | 145.4 ± 1526.2 | <0.01 |
Characteristics | Univariable | Multivariable | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age, per 1 year increment | 1.029 (1.026–1.032) | <0.001 | 1.010 (1.007–1.013) | <0.001 |
Sex (male) | 1.303 (1.190–1.426) | <0.001 | 1.238 (1.130–1.356) | <0.001 |
BMI, per 1 year increment | 0.946 (0.937–0.956) | <0.001 | 0.945 (0.936–0.955) | <0.001 |
CCI, per 1 year increment | 1.469 (1.433–1.505) | <0.001 | 1.298 (1.263–1.335) | <0.001 |
APACHE II score, per 1 year increment | 1.116 (1.108–1.124) | <0.001 | 1.068 (1.060–1.077) | <0.001 |
Presence of shock | 2.005 (1.842–2.183) | <0.001 | 1.597 (1.460–1.746) | <0.001 |
Use of mechanical ventilation | 2.306 (2.121–2.507) | <0.001 | 1.260 (1.148–1.384) | <0.001 |
Surgery during ICU admission | 0.541 (0.497–0.590) | <0.001 | 0.604 (0.553–0.660) | <0.001 |
Temporal RRT during ICU admission | 4.398 (3.858–5.015) | <0.001 | 1.874 (1.625–2.162) | <0.001 |
RRT for ESRD | 1.808 (1.275–2.563) | 0.001 | 0.953 (0.670–1.357) | 0.789 |
Cumulative day 1–3 fluid balance * | 1.104 (1.088–1.121) | <0.001 | 1.027 (1.011–1.043) | 0.001 |
Cumulative day 4–7 fluid balance * | 1.139 (1.113–1.165) | <0.001 | 1.083 (1.062–1.105) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-L.; Pai, K.-C.; Wong, L.-T.; Wang, M.-S.; Chao, W.-C. Impact of Early Fluid Balance on Long-Term Mortality in Critically Ill Surgical Patients: A Retrospective Cohort Study in Central Taiwan. J. Clin. Med. 2021, 10, 4873. https://doi.org/10.3390/jcm10214873
Wu C-L, Pai K-C, Wong L-T, Wang M-S, Chao W-C. Impact of Early Fluid Balance on Long-Term Mortality in Critically Ill Surgical Patients: A Retrospective Cohort Study in Central Taiwan. Journal of Clinical Medicine. 2021; 10(21):4873. https://doi.org/10.3390/jcm10214873
Chicago/Turabian StyleWu, Chieh-Liang, Kai-Chih Pai, Li-Ting Wong, Min-Shian Wang, and Wen-Cheng Chao. 2021. "Impact of Early Fluid Balance on Long-Term Mortality in Critically Ill Surgical Patients: A Retrospective Cohort Study in Central Taiwan" Journal of Clinical Medicine 10, no. 21: 4873. https://doi.org/10.3390/jcm10214873
APA StyleWu, C. -L., Pai, K. -C., Wong, L. -T., Wang, M. -S., & Chao, W. -C. (2021). Impact of Early Fluid Balance on Long-Term Mortality in Critically Ill Surgical Patients: A Retrospective Cohort Study in Central Taiwan. Journal of Clinical Medicine, 10(21), 4873. https://doi.org/10.3390/jcm10214873