The Influence of Deterioration of Kidney Function on the Diagnostic Power of Laboratory Parameters Used in the Prognostic Classification of AL Amyloidosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Laboratory Methods
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dispenzieri, A.; Gertz, M.A.; Buadi, F. What do I need to know about immunoglobulin light chain (AL) amyloidosis? Blood. Rev. 2012, 26, 137–154. [Google Scholar] [CrossRef]
- Charliński, G.; Juryszczyn, A.; Jędrzejczak, W.W. Light chain amyloidosis—Clinical symptoms, updated diagnosis, and treatment. Med. Rev. 2014, 2, 102–109. [Google Scholar]
- Bhutani, D.; Lentzsch, S. Diagnosis and management of systemic light chain AL amyloidosis. Pharmacol. Ther. 2020, 214, 107612. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Colby, C.; Laumann, K.; Zeldenrust, S.R.; Leung, N.; Dingli, D.; et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J. Clin. Oncol. 2012, 30, 989–995. [Google Scholar] [PubMed] [Green Version]
- Palladini, G.; Milani, P.; Foli, A.; Obici, L.; Lavatelli, F.; Nuvolone, M.; Caccialanza, R.; Perlini, S.; Merlini, G. Oral melphalan and dexamethasone grants extended survival with minimal toxicity in AL amyloidosis: Long–term results of a risk–adapted approach. Haematologica 2014, 99, 743–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, J.; Muchtar, E.; Warsame, R. Updates in the diagnosis and management of AL amyloidosis. Curr. Hematol. Malig. Rep. 2020, 15, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Hegenbart, U.; Milani, P.; Kimmich, C.; Foli, A.; Ho, A.D.; Vidus Rosin, M.; Albertini, R.; Moratti, R.; Merlini, G.; et al. A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis. Blood 2014, 124, 2325–2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palladini, G.; Foli, A.; Milani, P.; Russo, P.; Albertini, R.; Lavatelli, F.; Obici, L.; Perlini, S.; Moratti, R.; Merlini, G. Best use of cardiac biomarkers in patients with AL amyloidosis and renal failure. Am. J. Hematol. 2012, 87, 465–471. [Google Scholar] [PubMed]
- White, H.D. Pathobiology of troponin elevations: Do elevations occur with myocardial ischemia as well as necrosis? J. Am. Coll. Cardiol. 2011, 57, 2406–2408. [Google Scholar] [CrossRef] [Green Version]
- Gertz, M.; Lacy, M.; Dispenzieri, A.; Hayman, S.; Kumar, S.; Buadi, F.; Leung, N.; Litzow, M. Troponin T level as an exclusion criteria for stem cell transplantation in light-chain amyloidosis. Leuk. Lymphoma 2008, 49, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Babuin, L.; Jaffe, A.S. Troponin: The biomarker of choice for the detection of cardiac injury. CMAJ 2005, 173, 1191–1202. [Google Scholar] [PubMed] [Green Version]
- Varga, C.; Dorbala, S.; Lousada, I.; Polydefkis, M.J.; Wechalekar, A.; Maurer, M.S.; Comenzo, R.L. The diagnostic challenges of cardiac amyloidosis: A practical approach to the two main types. Blood Rev. 2021, 45, 100720. [Google Scholar] [CrossRef]
- Dmoszyńska, A.; Walter–Croneck, A.; Pieńkowska–Grela, B. Recommendations of Polish Myeloma Group concerning diagnosis and therapy of multiple myeloma and other plasmacytic dyscrasias for 2017. Acta Haematol. Pol. 2016, 2, 39–85. [Google Scholar] [CrossRef]
- Gertz, M.A.; Comenzo, R.; Falk, R.H.; Fermand, J.P.; Hazenberg, B.P.; Hawkins, P.N.; Merlini, G.; Moreau, P.; Ronco, P.; Sanchorawala, V.; et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): A consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am. J. Hematol. 2005, 79, 319–328. [Google Scholar] [CrossRef]
- Gertz, M.A.; Merlini, G. Definition of organ involvement and response to treatment in AL amyloidosis: An updated consensus opinion. Amyloid 2010, 17, 48–49. [Google Scholar]
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; De Francisco, A.L.; De Jong, P.E.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J.; et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practise guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013, 3, 1–150. [Google Scholar]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Lavatelli, F.; Albertini, R.; Di Fonzo, A.; Palladini, G.; Merlini, G. Biochemical markers in early diagnosis and management of systemic amyloidoses. Clin. Chem. Lab. Med. 2014, 52, 1517–1531. [Google Scholar] [CrossRef]
- Palladini, G.; Merlini, G. What is new in diagnosis and management of light chain amyloidosis? Blood 2016, 128, 159–168. [Google Scholar] [CrossRef]
- Merlini, G.; Wechalekar, A.D.; Palladini, G. Systemic light chain amyloidosis: An update for treating physicians. Blood 2013, 121, 5124–5130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dispenzieri, A.; Lacy, M.Q.; Katzmann, J.A.; Rajkumar, S.V.; Abraham, R.S.; Hayman, S.R.; Kumar, S.K.; Clark, R.; Kyle, R.A.; Litzow, M.R.; et al. Absolute values of immunoglobulin free light chains are prognostic in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation. Blood. 2006, 107, 3378–3383. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Milani, P.; Foli, A.; Basset, M.; Russo, F.; Bosoni, T.; Pirolini, L.; Valentini, V.; Ferraro, G.; Lavatelli, F.; et al. The impact of renal function on the clinical performance of FLC measurement in AL amyloidosis. Clin. Chem. Lab. Med. 2016, 54, 939–945. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, C.A.; Harding, S.; Hewins, P.; Mead, G.P.; Townsend, J.; Bradwell, A.R.; Cockwell, P. Quantitative assessment of serum and urinary polyclonal free light chains in patients with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2008, 3, 1684–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchison, C.A.; Burmeister, A.; Harding, S.J.; Basnayake, K.; Church, H.; Jesky, M.D.; White, K.; Green, C.E.; Stringer, S.J.; Bassett, P.; et al. Serum polyclonal immunoglobulin free light chain levels predict mortality in people with chronic kidney disease. Mayo Clin. Proc. 2014, 89, 615–622. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, J.; Bevins, B.; Assi, L.; Hoefield, R.; Cockwell, P.; Kalra, P. High levels of combined serum free light chains are associated with poor outcomes in chronic kidney disease. In Proceedings of the 50th ERA-EDTA (European Renal Association-European Dialysis and Transplant Association) Congress, Istanbul, Turkey, 18–21 May 2013. [Google Scholar]
- Czyżewska, E.; Wiśniewska, A.; Waszczuk–Gajda, A.; Ciepiela, O. The role of light kappa and lambda chains in heart function assessment in patients with AL amyloidosis. J. Clin. Med. 2021, 10, 1274. [Google Scholar] [CrossRef]
- Anandram, S.; Assi, L.K.; Lovatt, T.; Parkes, J.; Taylor, J.; Macwhannell, A.; Jacob, A.; Handa, S.; Harding, S.; Basu, S. Elevated, combined serum free light chain levels and increased mortality: A 5–year follow–up, UK study. J. Clin. Pathol. 2012, 65, 1036–1042. [Google Scholar] [PubMed]
- Haynes, R.; Hutchison, C.A.; Emberson, J.; Dasgupta, T.; Wheeler, D.C.; Townend, J.N.; Landray, M.J.; Cockwell, P. Serum free light chains and the risk of ESRD and death in CKD. Clin. J. Am. Soc. Nephrol. 2011, 6, 2829–2837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellary, S.; Faint, J.M.; Assi, L.K.; Hutchison, C.A.; Harding, S.J.; Raymond, N.T.; Barnett, A.H. Elevated serum free light chains predict cardiovascular events in type 2 diabetes. Diabetes Care. 2014, 37, 2028–2030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, C.E.; Haig, C.; Welsh, P.; Dalzell, J.R.; Tsorlalis, I.K.; McConnachie, A.; Preiss, D.; McInnes, I.B.; Sattar, N.; Petrie, M.C.; et al. Combined free light chains are novel predictors of prognosis in heart failure. JACC Heart Fail. 2015, 3, 618–625. [Google Scholar]
- Halushka, M.K.; Eng, G.; Collins, A.B.; Judge, D.P.; Semigran, M.J.; Stone, J.R. Optimization of serum immunoglobulin free light chain analysis for subclassification of cardiac amyloidosis. J. Cardiovasc. Transl. Res. 2015, 8, 264–268. [Google Scholar] [PubMed]
- Cappelli, F.; Baldasseroni, S.; Bergesio, F.; Padeletti, L.; Attanà, P.; Pignone, A.M.; Grifoni, E.; Ciuti, G.; Fabbri, A.; Tarantini, F.; et al. Biohumoral markers as predictor of right ventricular dysfunction in AL Amyloidosis. Amyloid 2014, 21, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Charliński, G.; Jędrzejczak, W.W. Primary systemic light–chain amyloidosis: Diagnosis and treatment. In Multiple Myeloma and other Plasma Cell Dyscrasias; Dmoszyńska, A., Giannopoulous, K., Eds.; Wydawnictwo Czelej: Lublin, Poland, 2015. [Google Scholar]
- Walatek, B.; Sułowicz, W. Cardiorenal syndrome—Another challenge for the nephrologist? Med. Rev. 2011, 68, 619–628. [Google Scholar]
- Małyszko, J. Cardio-renal syndrome. Nephrol. Forum 2011, 4, 81–90. [Google Scholar]
Involved Chain | All Me (Q25–75) | Λ Me (Q25–75) | Κ Me (Q25–75) | p-Value |
---|---|---|---|---|
N | 71 | 43 | 28 | |
Age (years) | 58 (49–67) | 59 (49–68) | 56 (49–67) | 0.661 |
Plasmacytes (%) | 14 (6–19) | 15 (10–20) | 8 (6–15) | 0.048 |
TnI (ng/mL) | 0.040 (0.009–0.100) | 0.065 (0.019–0.165) | 0.022 (0.000–0.050) | 0.033 |
NTproBNP(pg/mL) | 2150 (400–6804) | 4721 (1186–11,524) | 432 (270–1810) | <0.001 |
κ (mg/L) | 18.1 (12.4–51.9) | 14.7 (10.9–19.3) | 45.1 (21.3–140.3) | <0.001 |
λ (mg/L) | 68.1 (16.5–215.3) | 161.8 (88.3–312.8) | 15.8 (12.6–28.3) | <0.001 |
dFLC (mg/L) | 92.5 (7.7–236.9) | 133.3 (29.2–298.7) | 23.9 (5.8–109.7) | 0.037 |
κ/λ | 0.60 (0.10–1.69) | 0.12 (0.04–0.50) | 2.20 (1.38–5.14) | <0.001 |
eGFR (mL/min/1.73 m2) | 71 (41–94) | 74 (42–100) | 69 (27–94) | 0.430 |
Group by eGFR [mL/min/1.73 m2] | ≥60 (A) Me (Q25–75) | ≥15<60 (B) Me (Q25–75) | <15 (C) Me (Q25–75) | p-Value |
---|---|---|---|---|
Age (years) | 56 (47–65) | 59 (53–63) | 67 (57–73) | 0.146 |
TnI (ng/mL) | 0.040 (0.009–0.070) | 0.120 (0.001–0.560) | 0.035 (0.009–0.080) | 0.450 |
NT–proBNP (pg/mL) | 1323 (270–4780) | 2340 (531–12,100) | 8155 (1319–26,396) | 0.037 |
κ–„i”(mg/L) | 42.5 (13.6–85.1) | 110.8 (28.2–463.7) | 39.4 (27.4–193.0) | 0.505 |
λ–„ui” (mg/L) | 16.16 (9.0–23.6) | 21.81 (14.0–47.2) | 14.1 (3.6–46.4) | 0.413 |
κ–„ui” (mg/L) | 13.6 (10.8–16.3) | 17.1 (10.6–27.4) | 83.3 (53.4–121.3) | 0.005 |
λ–„i” (mg/L) | 188.7 (99.2–327.5) | 197.1 (63.8–473.0) | 114.8 (110.6–143.7) | 0.670 |
dFLC (mg/L) | 99.55 (12.8–285.49) | 108.20 (6.46–462.40) | 13.26 (−7.00–110.60) | 0.198 |
κ/λ | 0.22 (0.08–1.00) | 1.30 (0.05–2.22) | 0.98 (0.41–1.94) | 0.244 |
eGFR (mL/min/1.73 m2) | 92 (79–110) | 42 (29–51) | 13 (11–14) | <0.001 |
TnI | NT-proBNP | eGFR | dFLC | κ/λ | ||
---|---|---|---|---|---|---|
eGFR | entire group | −0.180 | −0.348 * | NA | 0.133 | −0.217 |
eGFR ≥ 60 mL/min/1.73 m2 | −0.300 | −0.220 | NA | 0.091 | −0.073 | |
eGFR < 60 mL/min/1.73 m2 | 0.251 | −0.113 | NA | 0.145 | −0.171 | |
dFLC | entire group | 0.416 * | 0.364 * | 0.133 | NA | −0.441 * |
eGFR ≥ 60 mL/min/1.73 m2 | 0.559 * | 0.648* | 0.091 | NA | −0.586 | |
GFR <60 mL/min/1.73 m2 | 0.310 | 0.115 | 0.145 | NA | −0.210 | |
κ/λ | entire group | −0.442 * | −0.464 * | −0.217 | −0.441 * | NA |
eGFR ≥ 60 mL/min/1.73 m2 | −0.536 * | −0.573 * | −0.073 | −0.586 * | NA | |
eGFR < 60 mL/min/1.73 m2 | −0.365 | −0.613 * | −0.171 | −0.210 | NA | |
κ–„i” | entire group | 0.218 | 0.251 | −0.158 | 0.932 * | 0.848 * |
eGFR ≥ 60 mL/min/1.73 m2 | 0.219 | 0.434 | 0.227 | 0.921 * | 0.878 * | |
eGFR < 60 mL/min/1.73 m2 | −0.371 | −0.321 | −0.146 | 0.891 * | 0.800 * | |
λ–„ui” | entire group | 0.188 | 0.253 | −0.145 | 0.058 | −0.219 |
eGFR ≥ 60 mL/min/1.73 m2 | 0.188 | 0.028 | −0.103 | −0.121 | −0.306 | |
eGFR < 60 mL/min/1.73 m2 | 0.314 | 0.455 | 0.191 | 0.109 | −0.146 | |
κ–„ui” | entire group | 0.001 | 0.233 | −0.400 # | −0.419 # | 0.522* |
eGFR ≥ 60 mL/min/1.73 m2 | −0.033 | −0.023 | −0.012 | −0.336 | 0.366 | |
eGFR < 60 mL/min/1.73 m2 | 0.063 | 0.464 | −0.582 | −0.439 | 0.546 | |
Λ–„i” | entire group | 0.527 * | 0.445 # | 0.110 | 0.965 * | −0.912 * |
eGFR ≥ 60 mL/min/1.73 m2 | 0.410 | 0.438 | 0.035 | 0.997 * | −0.954 * | |
eGFR < 60 mL/min/1.73 m2 | 0.725 * | 0.622 | 0.193 | 0.921 * | −0.879 * |
eGFR | AUC | Youden’s Index | Cut Off | Sensitivity [%] | Specificity [%] | |
---|---|---|---|---|---|---|
TnI | entire group | 0.823 | 0.61 | 0.05 | 61 | 100 |
eGFR ≥ 60 mL/min/1.73 m2 | 0.883 | 0.66 | 0.009 | 96 | 70 | |
eGFR < 60 mL/min/1.73 m2 | 0.713 | 0.67 | 0.08 | 67 | 100 | |
NT-pro BNP | entire group | 0.906 | 0.68 | 500 | 89 | 79 |
eGFR ≥ 60 mL/min/1.73 m2 | 0.914 | 0.69 | 973 | 84 | 85 | |
GFR <60 mL/min/1.73 m2 | 0.881 | 0.67 | 4546 | 67 | 100 | |
dFLC | entire group | 0.723 | 0.47 | 45.40 | 75 | 72 |
eGFR ≥ 60 mL/min/1.73 m2 | 0.855 | 0.64 | 23.86 | 89 | 75 | |
eGFR < 60 mL/min/1.73 m2 | 0.550 | 0.32 | 45.40 | 65 | 67 | |
κ–„i” | entire group | 0.630 | 0.32 | 85.07 | 50 | 82 |
eGFR ≥ 60 mL/min/1.73 m2 | 0.792 | 0.58 | 45.06 | 75 | 83 | |
eGFR < 60 mL/min/1.73 m2 | 0.400 | 0.10 | 138.00 | 50 | 60 | |
λ–„i” | entire group | 0.840 | 0.62 | 68.10 | 91 | 71 |
eGFR ≥ 60 mL/min/1.73 m2 | 0.886 | 0.68 | 188.66 | 68 | 100 | |
eGFR < 60 mL/min/1.73 m2 | 0.857 | 0.86 | 68.10 | 86 | 100 | |
κ/λ | entire group | 0.733 | 0.48 | <0.41 | 60 | 89 |
eGFR ≥ 60 mL/min/1.73 m2 | 0.715 | 0.58 | <0.2 | 67 | 92 | |
eGFR < 60 mL/min/1.73 m2 | 0.9 | 0.8 | <1.38 | 80 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czyżewska, E.; Ciepiela, O. The Influence of Deterioration of Kidney Function on the Diagnostic Power of Laboratory Parameters Used in the Prognostic Classification of AL Amyloidosis. J. Clin. Med. 2021, 10, 4903. https://doi.org/10.3390/jcm10214903
Czyżewska E, Ciepiela O. The Influence of Deterioration of Kidney Function on the Diagnostic Power of Laboratory Parameters Used in the Prognostic Classification of AL Amyloidosis. Journal of Clinical Medicine. 2021; 10(21):4903. https://doi.org/10.3390/jcm10214903
Chicago/Turabian StyleCzyżewska, Emilia, and Olga Ciepiela. 2021. "The Influence of Deterioration of Kidney Function on the Diagnostic Power of Laboratory Parameters Used in the Prognostic Classification of AL Amyloidosis" Journal of Clinical Medicine 10, no. 21: 4903. https://doi.org/10.3390/jcm10214903
APA StyleCzyżewska, E., & Ciepiela, O. (2021). The Influence of Deterioration of Kidney Function on the Diagnostic Power of Laboratory Parameters Used in the Prognostic Classification of AL Amyloidosis. Journal of Clinical Medicine, 10(21), 4903. https://doi.org/10.3390/jcm10214903