Sildenafil Citrate Downregulates PDE5A mRNA Expression in Women with Recurrent Pregnancy Loss without Altering Angiogenic Factors—A Preliminary Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Control Group
2.2. Study Group
3. Methods
3.1. The Isolation of Peripheral Blood Mononuclear Cells and CD56+ Cells
3.2. Cell Culture
3.3. Degranulation of idNK Cells—CD107a Expression Determination
3.4. The Determination of the Gene Expression of Selected Angiogenic Factors
3.5. The Determination of the Concentration of Angiogenic Factors
3.6. Statistical Analysis
4. Results
4.1. The Determination of the Gene Expression of PDE5A and Selected Angiogenic Factors
4.2. The Levels of Angiogenic Factors in the Culture Supernatants of idNK Cells
4.3. idNK Cell Activity and CD107a Expression
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Ang II | Angiotensin II |
AZA | 5-aza-2′deoxycytidine |
cGMP | cyclic guanosine monophosphate |
dNK | decidual NK cells |
GMP | guanosine monophosphate |
idNK | induced decidual NK cells |
IL | interleukin |
IUR | intrauterine growth restriction |
L-MNNA | NG-Monomethyl-L-arginine |
NO | nitric oxide |
NOS | nitric oxide synthase |
PBS | phosphate-buffered saline |
PDE-Is | phosphodiesterase inhibitors |
PDEs | phosphodiesterases |
RAS | renin–angiotensin system |
RPL | recurrent pregnancy loss |
RSA | recurrent spontaneous abortions |
SC | sildenafil citrate |
References
- Atik, R.B.; Christiansen, O.B.; Elson, J.; Kolte, A.M.; Lewis, S.; Middeldorp, S.; Nelen, W.; Peramo, B.; Quenby, S.; ESHRE Guideline Group on RPL; et al. ESHRE guideline: Recurrent pregnancy loss. Hum. Reprod. Open 2018, 2018, hoy004. [Google Scholar]
- Cho, H.Y.; Park, H.S.; Ko, E.J.; Ryu, C.S.; Kim, J.O.; Kim, Y.R.; Ahn, E.H.; Lee, W.S.; Kim, N.K. Association of Complement Factor D and H Polymorphisms with Recurrent Pregnancy Loss. Int. J. Mol. Sci. 2019, 21, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak-Kim, J.; Yang, K.M.; Gilman-Sachs, A. Recurrent pregnancy loss: A disease of inflammation and coagulation. J. Obstet. Gynaecol. Res. 2009, 35, 609–622. [Google Scholar] [CrossRef] [PubMed]
- Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2013, 99, 63. [Google Scholar] [CrossRef] [PubMed]
- Ford, H.B.; Schust, D.J. Recurrent Pregnancy Loss: Etiology, Diagnosis, and Therapy. Rev. Obstet. Gynecol. 2009, 2, 76–83. [Google Scholar]
- Mekinian, A.; Cohen, J.; Alijotas-Reig, J.; Carbillon, L.; Nicaise-Roland, P.; Gilles Kayem, G.; Daraï, E.; Fain, O.; Bornes, M. Unexplained Recurrent Miscarriage and Recurrent Implantation Failure: Is There a Place for Immuno-modulation? Am. J. Reprod. Immunol. 2016, 76, 8–28. [Google Scholar] [CrossRef]
- Chen, J.; Gong, X.; Chen, P.; Luo, K.; Zhang, X. Effect of L-arginine and sildenafil citrate on intrauterine growth restriction fetuses: A meta-analysis. BMC Pregnancy Childbirth 2016, 16, 225. [Google Scholar] [CrossRef] [Green Version]
- El-Sayed, M.A.; Saleh, S.A.-A.; Maher, M.A.; Khidre, A.M. Utero-placental perfusion Doppler indices in growth restricted fetuses: Effect of sildenafil citrate. J. Matern. Neonatal Med. 2017, 31, 1045–1050. [Google Scholar] [CrossRef]
- Figueras, F. Sildenafil therapy in early-onset fetal growth restriction: Waiting for the individual patient data meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2019, 126, 1007. [Google Scholar] [CrossRef] [Green Version]
- Maged, M.; Wageh, A.; Shams, M.; Elmetwally, A. Use of sildenafil citrate in cases of intrauterine growth restriction (IUGR); a prospective trial. Taiwan. J. Obstet. Gynecol. 2018, 57, 483–486. [Google Scholar] [CrossRef]
- Paauw, N.D.; Paauw, N.D.; Terstappen, F.; Ganzevoort, W.; Joles, J.A.; Gremmels, H.; Lely, A.T. Sildenafil during Pregnancy: A Preclinical Meta-Analysis on Fetal Growth and Maternal Blood Pressure. Hypertension 2017, 70, 998–1006. [Google Scholar] [CrossRef]
- Jerzak, M.; Kniotek, M.; Mrozek, J.; Górski, A.; Baranowski, W. Sildenafil citrate decreased natural killer cell activity and enhanced chance of successful pregnancy in women with a history of recurrent miscarriage. Fertil. Steril. 2008, 90, 1848–1853. [Google Scholar] [CrossRef]
- Jerzak, M.; Szafarowska, M.; Kniotek, M.; Gorski, A. Successful pregnancy after Intralipid addition to sildenafil and enoxaparin in woman with history of re-current pregnancy loss (RPL). Neuro Endocrinol. Lett. 2016, 37, 473–477. [Google Scholar] [PubMed]
- Luna, R.L.; Vasconcelos, A.G.; Nunes, A.K.S.; De Oliveira, W.H.; Barbosa, K.P.D.S.; Peixoto, C.A. Effects of Sildenafil Citrate and Heparin Treatments on Placental Cell Morphology in a Murine Model of Pregnancy Loss. Cells Tissues Organs 2016, 201, 193–202. [Google Scholar] [CrossRef]
- El-Far, M.; El-Motwally, A.E.-G.; Hashem, I.A.; Bakry, N. Biochemical role of intravaginal sildenafil citrate as a novel antiabortive agent in unexplained recurrent spontaneous miscarriage: First clinical study of four case reports from Egypt. Clin. Chem. Lab. Med. 2009, 47, 1433–1438. [Google Scholar] [CrossRef]
- Renshall, L.J.; Cottrell, E.; Cowley, E.; Sibley, C.P.; Baker, P.N.; Thorstensen, E.B.; Greenwood, S.L.; Wareing, M.; Dilworth, M.R. Antenatal sildenafil citrate treatment increases offspring blood pressure in the placental-specific Igf2 knockout mouse model of FGR. Am. J. Physiol. Circ. Physiol. 2020, 318, H252–H263. [Google Scholar] [CrossRef] [Green Version]
- Pels, A.; Derks, J.; Elvan-Taspinar, A.; van Drongelen, J.; de Boer, M.; Duvekot, H.; van Laar, J.; van Eyck, J.; Al-Nasiry, S.; Sueters, M.; et al. Maternal Sildenafil vs Placebo in Pregnant Women with Severe Early-Onset Fetal Growth Restriction: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e205323. [Google Scholar] [CrossRef]
- Hanna, J.H.; Goldman-Wohl, D.; Hamani, Y.; Avraham, I.; Greenfield, C.; Natanson-Yaron, S.; Prus, D.; Cohen-Daniel, L.; Arnon, T.I.; Manaster, I.; et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat. Med. 2006, 12, 1065–1074. [Google Scholar] [CrossRef]
- Kniotek, M.; Boguska, A. Sildenafil Can Affect Innate and Adaptive Immune System in Both Experimental Animals and Patients. J. Immunol. Res. 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Ohams, M.; Jerzak, M.; Górski, A. Effects of sildenafil citrate and etanercept treatment on TNF-α levels in peripheral blood of women with recurrent miscarriage. Ginekol. Pol. 2015, 86, 520–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrotra, N.; Gupta, M.; Kovar, A.; Meibohm, B. The role of pharmacokinetics and pharmacodynamics in phosphodiesterase-5 inhibitor therapy. Int. J. Impot. Res. 2006, 19, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Oyston, C.; Stanley, J.L.; Oliver, M.H.; Bloomfield, F.H.; Baker, P.N. Maternal Administration of Sildenafil Citrate Alters Fetal and Placental Growth and Fetal-Placental Vas-cular Resistance in the Growth-Restricted Ovine Fetus. Hypertension 2016, 68, 760–767. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.S.; Oh, M.-J.; Jung, J.W.; Lim, J.-E.; Seol, H.-J.; Lee, K.J.; Kim, H.-J. The Levels of Circulating Vascular Endothelial Growth Factor and Soluble Flt-1 in Pregnancies Complicated by Preeclampsia. J. Korean Med Sci. 2007, 22, 94–98. [Google Scholar] [CrossRef]
- Cavalli, R.C.; Cerdeira, A.S.; Pernicone, E.; Korkes, H.A.; Burke, S.D.; Rajakumar, A.; Thadhani, R.I.; Roberts, U.J.; Bhasin, M.; Karumanchi, S.A.; et al. Induced Human Decidual NK-Like Cells Improve Utero-Placental Perfusion in Mice. PLOS ONE 2016, 11, e0164353. [Google Scholar] [CrossRef]
- Wallace, A.E.; Fraser, R.; Gurung, S.; Goulwara, S.S.; Whitley, G.S.; Johnstone, A.P.; Cartwright, J.E. Increased angiogenic factor secretion by decidual natural killer cells from pregnancies with high uterine artery resistance alters trophoblast function. Hum. Reprod. 2014, 29, 652–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, R.; Whitley, G.S.; Johnstone, A.P.; Host, A.J.; Sebire, N.J.; Thilaganathan, B.; Cartwright, J.E. Impaired decidual natural killer cell regulation of vascular remodelling in early human pregnancies with high uterine artery resistance. J. Pathol. 2012, 228, 322–332. [Google Scholar] [CrossRef] [Green Version]
- Jia, N.; Li, J. Human Uterine Decidual NK Cells in Women with a History of Early Pregnancy Enhance Angiogenesis and Trophoblast Invasion. BioMed Res. Int. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Kossmann, S.; Schwenk, M.; Hausding, M.; Karbach, S.H.; Schmidgen, M.I.; Brandt, M.; Knorr, M.; Hu, H.; Kröller-Schön, S.; Schönfelder, T.; et al. Angiotensin II–Induced Vascular Dysfunction Depends on Interferon-γ–Driven Immune Cell Recruitment and Mutual Activation of Monocytes and NK-Cells. Arter. Thromb. Vasc. Biol. 2013, 33, 1313–1319. [Google Scholar] [CrossRef] [Green Version]
- Jurewicz, M.; McDermott, D.; Sechler, J.M.; Tinckam, K.; Takakura, A.; Carpenter, C.B.; Milford, E.; Abdi, R. Human T and Natural Killer Cells Possess a Functional Renin-Angiotensin System: Further Mechanisms of Angiotensin II–Induced Inflammation. J. Am. Soc. Nephrol. 2007, 18, 1093–1102. [Google Scholar] [CrossRef]
- Stettner, D.; Bujak-Gizycka, B.; Olszanecki, R.; Rytlewski, K.; Huras, H.; Korbut, R. Assessment of angiotensin I metabolism in the human placenta using an LC/MS method. Folia medica Cracoviensia 2013, 53, 31–39. [Google Scholar]
- Ramos-Medina, R.; García-Segovia, Á.; De León-Luis, J.; Alonso, B.; Tejera-Alhambra, M.; Gil, J.; Caputo, J.D.; Seyfferth, A.; Aguarón, Á.; Vicente, A.; et al. New Decision-Tree Model for Defining the Risk of Reproductive Failure. Am. J. Reprod. Immunol. 2013, 70, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Fukui, A.; Funamizu, A.; Yokota, M.; Yamada, K.; Nakamua, R.; Fukuhara, R.; Kimura, H.; Mizunuma, H. Uterine and circulating natural killer cells and their roles in women with recurrent pregnancy loss, implantation failure and preeclampsia. J. Reprod. Immunol. 2011, 90, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Yamada, H.; Morikawa, M.; Kato, E.H.; Shimada, S.; Kobashi, G.; Minakami, H. Pre-conceptional Natural Killer Cell Activity and Percentage as Predictors of Biochemical Pregnancy and Spontaneous Abortion with Normal Chromosome Karyotype. Am. J. Reprod. Immunol. 2003, 50, 351–354. [Google Scholar] [CrossRef]
- Cerdeira, A.S.; Rajakumar, A.; Royle, C.M.; Lo, A.; Husain, Z.; Thadhani, R.I.; Sukhatme, V.P.; Karumanchi, S.A.; Kopcow, H.D. Conversion of Peripheral Blood NK Cells to a Decidual NK-like Phenotype by a Cocktail of Defined Factors. J. Immunol. 2013, 190, 3939–3948. [Google Scholar] [CrossRef] [PubMed]
- Practice Committee of the American Society for Reproductive Medicine. Definitions of infertility and recurrent pregnancy loss. Fertil. Steril. 2008, 89, 1603. [Google Scholar] [CrossRef]
- Padron, J.; Glaria, L.; Martínez, O.; Torres, M.; López, E.; Delgado, R.; Caveda, L.; Rojas, A. Nitric oxide modulates interleukin-2-induced proliferation in CTLL-2 cells. Mediat. Inflamm. 1996, 5, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Levesque, M.C.; Misukonis, M.A.; O’Loughlin, C.W.; Chen, Y.; Beasley, B.E.; Wilson, D.L.; Adams, D.J.; Silber, R.; Weinberg, J.B. IL-4 and interferon gamma regulate expression of inducible nitric oxide synthase in chronic lympho-cytic leukemia cells. Leukemia 2003, 17, 442–450. [Google Scholar] [CrossRef] [Green Version]
- Glossmann, H.; Petrischor, G.; Bartsch, G. Molecular mechanisms of the effects of sildenafil (VIAGRA®). Exp. Gerontol. 1999, 34, 305–318. [Google Scholar] [CrossRef]
- Oei, V.Y.S.; Siernicka, M.; Graczyk-Jarzynka, A.; Hoel, H.J.; Yang, W.; Palacios, D.; Almåsbak, H.; Bajor, M.; Clement, D.; Brandt, L.; et al. Intrinsic Functional Potential of NK-Cell Subsets Constrains Retargeting Driven by Chimeric Antigen Receptors. Cancer Immunol. Res. 2018, 6, 467–480. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Klutzny, S.; Anurin, A.; Nicke, B.; Regan, J.; Lange, M.; Schulze, L.; Parczyk, K.; Steigemann, P. PDE5 inhibition eliminates cancer stem cells via induction of PKA signaling. Cell Death Dis. 2018, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Jelińska, M.; Skrajnowska, D.; Wrzosek, M.; Domanska, K.; Bielecki, W.; Zawistowska, M.; Korczak, B.B. Inflammation factors and element supplementation in cancer. J. Trace Elements Med. Biol. 2020, 59, 126450. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dunk, C.E.; Shynlova, O.; Caniggia, I.; Lye, S.J. TGFb1 suppresses the activation of distinct dNK subpopulations in preeclampsia. EBioMedicine 2019, 39, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Dunk, C.; Croy, A.B.; Lye, S.J. To serve and to protect: The role of decidual innate immune cells on human pregnancy. Cell and Tissue Research 2015, 363, 249–265. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, D.I.; Mikhailova, V.A.; Agnayeva, A.O.; Bazhenov, D.; Khokhlova, E.V.; Bespalova, O.N.; Gzgzyan, A.M.; Selkov, S.A. NK and trophoblast cells interaction: Cytotoxic activity on recurrent pregnancy loss. Gynecol. Endocrinol. 2019, 35, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.E.; Fraser, R.; Cartwright, J.E. Extravillous trophoblast and decidual natural killer cells: A remodelling partner-ship. Hum. Reprod Update 2012, 18, 458–471. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yan, L.; Liu, J.; Cui, S.; Qiu, J. cGMP-dependent protein kinase II determines β-catenin accumulation that is essential for uterine decidual-ization in mice. Am. J. Physiol. Cell Physiol. 2019, 317, C1115–C1127. [Google Scholar] [CrossRef] [PubMed]
- Celik, O.; Celik, N.; Ugur, K.; Hatirnaz, S.; Celik, S.; Muderris, I.I.; Yavuzkir, S.; Sahin, I.; Yardim, M.; Aydin, S. Nppc/Npr2/cGMP signaling cascade maintains oocyte developmental capacity. Cell. Mol. Biol. 2019, 65, 83–89. [Google Scholar] [CrossRef]
- Durán-Reyes, G.; Gómez-Meléndez, M.D.R.; la Brena, G.M.-D.; Mercado-Pichardo, E.; Medina-Navarro, R.; Hicks-Gómez, J.J. Nitric oxide synthesis inhibition suppresses implantation and decreases cGMP concentration and protein peroxidation. Life Sci. 1999, 65, 2259–2268. [Google Scholar] [CrossRef]
- Cifone, M.; Ulisse, S.; Santoni, A. Natural killer cells and nitric oxide. Int. Immunopharmacol. 2001, 1, 1513–1524. [Google Scholar] [CrossRef]
- Sanson, A.J.; Malangoni, M.A. Hypoxia increases nitric oxide concentrations that are not completely inhibited by l-NMMA. J. Surg. Res. 2003, 110, 202–206. [Google Scholar] [CrossRef]
- Wagner, J.A.; Rosario, M.; Romee, R.; Berrien-Elliott, M.; Schneider, S.E.; Leong, J.W.; Sullivan, R.P.; Jewell, B.A.; Becker-Hapak, M.; Schappe, T.; et al. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J. Clin. Investig. 2017, 127, 4042–4058. [Google Scholar] [CrossRef] [Green Version]
- Krock, B.L.; Skuli, N.; Simon, M.C. Hypoxia-Induced Angiogenesis: Good and Evil. Genes Cancer 2011, 2, 1117–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, L.; Wei, Z.; Li, O.; Huang, R.; Qin, J.; Chen, H.; Fan, X.; Chen, Z.-J. An Increase in Vascular Endothelial Growth Factor (VEGF) and VEGF Soluble Receptor-1 (sFlt-1) Are Associated with Early Recurrent Spontaneous Abortion. PLOS ONE 2013, 8, e75759. [Google Scholar] [CrossRef] [Green Version]
- Atalay, M.A.; Ugurlu, N.; Zulfikaroglu, E.; Danisman, N. Clinical significance of maternal serum vascular endothelial growth factor (VEGF) level in idiopathic recurrent pregnancy loss. Eur. Rev. Med. Pharm. Sci 2016, 20, 2974–2982. [Google Scholar]
- Bansal, R.; Ford, B.; Bhaskaran, S.; Thum, M.; Bansal, A. Elevated Levels of Serum Vascular Endothelial Growth Factor-A Are Not Related to NK Cell Parameters in Recurrent IVF Failure. J. Reprod. Infertil. 2017, 18, 280–287. [Google Scholar] [PubMed]
- Lash, G.E.; Robson, S.C.; Bulmer, J.N. Review: Functional role of uterine natural killer (uNK) cells in human early pregnancy decidua. Placenta 2010, 31, S87–S92. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.; Dunn, L.; Kumar, S. Oral sildenafil citrate during labor mitigates the intrapartum decline in placental growth factor in term pregnancies. Am. J. Obstet. Gynecol. 2020, 223, 588–590. [Google Scholar] [CrossRef]
- Brownfoot, F.C.; Tong, S.; Hannan, N.J.; Cannon, P.; Nguyen, V.; Kaitu’U-Lino, T. Effect of sildenafil citrate on circulating levels of sFlt-1 in preeclampsia. Pregnancy Hypertens. 2018, 13, 1–6. [Google Scholar] [CrossRef]
- Giannattasio, S.; Corinaldesi, C.; Colletti, M.; Luigi, L.D.; Antinozzi, C.; Filardi, T.; Scolletta, S.; Basili, S.; Lenzi, A.; Morano, S.; et al. The phosphodiesterase 5 inhibitor sildenafil decreases the proinflammatory chemokine IL-8 in dia-betic cardiomyopathy: In Vivo and in vitro evidence. J. Endocrinol. Invest. 2019, 42, 715–725. [Google Scholar]
- Dias, A.T.; Leal, M.A.S.; Zanardo, T.C.; Alves, G.M.; Porto, M.L.; Nogueira, B.V.; Gava, A.L.; Campagnaro, B.P.; Pereira, T.M.C.; Meyrelles, S.S.; et al. Beneficial Morphofunctional Changes Promoted by Sildenafil in Resistance Vessels in the Angiotensin II-Induced Hypertension Model. Curr. Pharm. Biotechnol. 2018, 19, 483–494. [Google Scholar] [CrossRef]
- Chiu, Y.J.; Reid, I.A. Effect of sildenafil on renin secretion in human subjects. Exp. Biol. Med. 2002, 227, 620–625. [Google Scholar] [CrossRef]
- Raposo, C.; de Santana Nunes, A.K.; de Almeida Luna, R.L.; da Rocha Araújo, S.M.; da Cruz-Höfling, M.A.; Peixoto, C.A. Sildenafil (Viagra) protective effects on neuroinflammation: The role of iNOS/NO system in an inflam-matory demyelination model. Mediat. Inflamm. 2013, 2013, 321460. [Google Scholar] [CrossRef] [Green Version]
- Zych, M.; Roszczyk, A.; Kniotek, M.; Kaleta, B.; Zagozdzon, R. Sildenafil Citrate Influences Production of TNF-αin Healthy Men Lymphocytes. J. Immunol. Res. 2019, 2019, 8478750. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Gene Symbol | Assay ID |
---|---|---|
Phosphodiesterase 5A | PDE5A | Hs00153649_m1 |
Vascular endothelial growth factor A | VEGF-A | Hs00900055_m1 |
Placental growth factor | PIGF | Hs00182176_m1 |
Renin binding protein | RENBP | Hs00234138_m1 |
C-X-C motif chemokine ligand 8 | CXCL8 (IL-8) | Hs00174103_m1 |
Glyceraldehyde-3-phosphate dehydrogenase | GAPDH | Hs99999905_m1 |
Beta-2-microglobulin | B2M | Hs99999907_m1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kniotek, M.; Roszczyk, A.; Zych, M.; Wrzosek, M.; Szafarowska, M.; Zagożdżon, R.; Jerzak, M. Sildenafil Citrate Downregulates PDE5A mRNA Expression in Women with Recurrent Pregnancy Loss without Altering Angiogenic Factors—A Preliminary Study. J. Clin. Med. 2021, 10, 5086. https://doi.org/10.3390/jcm10215086
Kniotek M, Roszczyk A, Zych M, Wrzosek M, Szafarowska M, Zagożdżon R, Jerzak M. Sildenafil Citrate Downregulates PDE5A mRNA Expression in Women with Recurrent Pregnancy Loss without Altering Angiogenic Factors—A Preliminary Study. Journal of Clinical Medicine. 2021; 10(21):5086. https://doi.org/10.3390/jcm10215086
Chicago/Turabian StyleKniotek, Monika, Aleksander Roszczyk, Michał Zych, Małgorzata Wrzosek, Monika Szafarowska, Radosław Zagożdżon, and Małgorzata Jerzak. 2021. "Sildenafil Citrate Downregulates PDE5A mRNA Expression in Women with Recurrent Pregnancy Loss without Altering Angiogenic Factors—A Preliminary Study" Journal of Clinical Medicine 10, no. 21: 5086. https://doi.org/10.3390/jcm10215086
APA StyleKniotek, M., Roszczyk, A., Zych, M., Wrzosek, M., Szafarowska, M., Zagożdżon, R., & Jerzak, M. (2021). Sildenafil Citrate Downregulates PDE5A mRNA Expression in Women with Recurrent Pregnancy Loss without Altering Angiogenic Factors—A Preliminary Study. Journal of Clinical Medicine, 10(21), 5086. https://doi.org/10.3390/jcm10215086