Severe Hypoalbuminemia at Admission Is Strongly Associated with Worse Prognosis in Older Adults with SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Patients and Methods
2.1. Ethics Considerations
2.2. Statistical Analysis
3. Results
3.1. Subsection
3.1.1. Older Adults with and without Severe Hypoalbuminemia
3.1.2. Correlation of Albumin and Clinical Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nomura, Y.; Kakuta, E.; Okada, A.; Otsuka, R.; Shimada, M.; Tomizawa, Y. Impact of the serum level of albumin and self-assessed chewing ability on mortality, qol, and adls for community-dwelling older adults at the age of 85: A 15 year follow up study. Nutrients 2020, 12, 3315. [Google Scholar] [CrossRef] [PubMed]
- Gomi, I.; Fukushima, H.; Shiraki, M.; Miwa, Y.; Ando, T.; Takai, K.; Moriwaki, H. Relationship between serum albumin level and aging in community-dwelling self-supported elderly population. J. Nutr. Sci. Vitaminol 2007, 53, 37–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horwich, T.B.; Kalantar-Zadeh, K.; MacLellan, R.W.; Fonarow, G.C. Albumin levels predict survival in patients with systolic heart failure. Am. Heart J. 2008, 155, 883–889. [Google Scholar] [CrossRef] [Green Version]
- Arnau-Barrés, I.; Güerri-Fernández, R.; Luque, S.; Sorli, L.; Vázquez, O.; Miralles, R. Serum albumin is a strong predictor of sepsis outcome in elderly patients. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 743–746. [Google Scholar] [CrossRef]
- Pimlott, B.J.; Jones, C.A.; Beaupre, L.A.; Johnston, D.W.C.; Majumdar, S.R. Prognostic impact of pre-operative albumin on short-term mortality and complications in patients with hip fracture. Arch Gerontol. Geriatr. 2011, 53, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Fatima, R.; Lee-Smith, W.; Assaly, R. The association of low serum albumin level with severe COVID-19: A systematic review and meta-analysis. Crit Care. 2020, 24, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Weaving, G.; Batstone, G.F.; Jones, R.G. Age and sex variation in serum albumin concentration: An observational study. Ann Clin. Biochem. 2016, 53, 106–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soeters, P.B.; Wolfe, R.R.; Shenkin, A. Hypoalbuminemia: Pathogenesis and Clinical Significance. J. Parenter Enter Nutr. 2019, 43, 181–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrerizo, S.; Cuadras, D.; Gomez-Busto, F.; Artaza-Artabe, I.; Marín-Ciancas, F.; Malafarina, V. Serum albumin and health in older people: Review and meta analysis. Maturitas 2015, 81, 17–27. [Google Scholar] [CrossRef]
- Brown, M.; Sinacore, D.R.; Binder, E.F.; Kohrt, W.M. Physical and performance measures for the identification of mild to moderate frailty. J. Gerontol. Ser A Biol. Sci. Med. Sci. 2000, 55, 350–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannaga, A.S.; Tabuso, M.; Farrugia, A.; Chandrapalan, S.; Somal, K.; Lim, V.K. C-reactive protein and albumin association with mortality of hospitalised SARS-CoV-2 patients: A tertiary hospital experience. Clin. Med. 2020, 20, 463–467. [Google Scholar] [CrossRef]
- Bassoli, C.; Oreni, L.; Ballone, E.; Foschi, A.; Perotti, A.; Mainini, A.; Casalini, G.; Galimberti, L.; Meroni, L.; Antinori, S. Role of serum albumin and proteinuria in patients with SARS-CoV-2 pneumonia. Int. J. Clin. Pract. 2021, 75, e13946. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.; Zhu, J.; Zhong, Z.; Li, H.; Pang, J.; Li, B.; Zhang, J. Association of elevated inflammatory markers and severe COVID-19: A meta-analysis. Medicine 2020, 99, e23315. [Google Scholar] [CrossRef] [PubMed]
- Viana-Llamas, M.C.; Arroyo-Espliguero, R.; Silva-Obregón, J.A.; Uribe-Heredia, G.; Núñez-Gil, I.; García-Magallón, B. Hypoalbuminemia on admission in COVID-19 infection: An early predictor of mortality and adverse events. A retrospective observational study. Med. Clin. 2021, 156, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Cheng, A.; Kumar, R.; Fang, Y.; Chen, G.; Zhu, Y.; Lin, S. Hypoalbuminemia predicts the outcome of COVID-19 independent of age and co-morbidity. J Med Virol. 2020, 92, 2152–2158. [Google Scholar] [CrossRef] [PubMed]
- Subbe, C.P.; Williams, E.; Fligelstone, L.; Gemmell, L. Does earlier detection of critically ill patients on surgical wards lead to better outcomes? Ann. R Coll. Surg. Engl. 2005, 87, 226–232. Available online: http://www.ncbi.nlm.nih.gov/pubmed/16053678 (accessed on 27 August 2020). [CrossRef]
- Subbe, C.P.; Davies, R.G.; Williams, E.; Rutherford, P.; Gemmell, L. Effect of introducing the Modified Early Warning score on clinical outcomes, cardio-pulmonary arrests and intensive care utilisation in acute medical admissions. Anaesthesia 2003, 58, 797–802. Available online: http://www.ncbi.nlm.nih.gov/pubmed/12859475 (accessed on 21 September 2021). [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. Available online: www.ncbi.nlm.nih.gov/pubmed/3558716 (accessed on 14 November 2020). [CrossRef]
- Famakin, B.; Weiss, P.; Hertzberg, V.; McClellan, W.; Presley, R.; Krompf, K.; Karp, H.; Frankel, M.R. Hypoalbuminemia predicts acute stroke mortality: Paul Coverdell Georgia Stroke Registry. J. Stroke Cerebrovasc Dis. 2010, 19, 17–22. Available online: http://linkinghub.elsevier.com/retrieve/pii/S105230570900038X (accessed on 21 September 2021). [CrossRef] [PubMed]
- Carter, A.M.; Catto, A.J.; Mansfield, M.W.; Bamford, J.M.; Grant, P.J. Predictive variables for mortality after acute ischemic stroke. Stroke 2007, 38, 1873–1880. Available online: http://stroke.ahajournals.org/cgi/doi/10.1161/STROKEAHA.106.474569 (accessed on 21 September 2021). [CrossRef] [Green Version]
- Plakht, Y.; Gilutz, H.; Shiyovich, A. Decreased admission serum albumin level is an independent predictor of long-term mortality in hospital survivors of acute myocardial infarction. Soroka Acute Myocardial Infarction II (SAMI-II) project. Int. J. Cardiol. 2016, 219, 20–24. Available online: http://linkinghub.elsevier.com/retrieve/pii/S0167527316309585 (accessed on 21 September 2021). [CrossRef] [PubMed]
- Pioli, G.; Barone, A.; Giusti, A.; Oliveri, M.; Pizzonia, M.; Razzano, M.; Palummeri, E. Predictors of mortality after hip fracture: Results from 1-year follow-up. Aging Clin. Exp. Res. 2006, 18, 381–387. Available online: http://www.ncbi.nlm.nih.gov/pubmed/17167302 (accessed on 21 September 2021). [CrossRef] [PubMed]
- Bologa, R.M.; Levine, D.M.; Parker, T.S.; Cheigh, J.S.; Serur, D.; Stenzel, K.H.; Rubin, A.L. Interleukin-6 Predicts Hypoalbuminemia, Hypocholesterolemia, and Mortality in Hemodialysis Patients. Am. J. Kidney Dis. 1998, 32, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Iwata, M.; Kuzuya, M.; Kitagawa, Y.; Iguchi, A. Prognostic value of serum albumin combined with serum C-reactive protein levels in older hospitalized patients: Continuing importance of serum albumin. Aging Clin. Exp. Res. 2006, 18, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. Available online: http://www.ncbi.nlm.nih.gov/pubmed/32171076 (accessed on 14 March 2021). [CrossRef]
- Ballmer, P.E. Causes and mechanisms of hypoalbuminaemia. Clin. Nutr. 2001, 20, 271–273. [Google Scholar] [CrossRef] [PubMed]
- Coulon, S.; Heindryckx, F.; Geerts, A.; Van Steenkiste, C.; Colle, I.; Van Vlierberghe, H. Angiogenesis in chronic liver disease and its complications. Liver Int. 2011, 31, 146–162. [Google Scholar] [CrossRef] [PubMed]
- Posso, M.; Comas, M.; Román, M.; Domingo, L.; Louro, J.; González, C. Comorbidities and Mortality in Patients With COVID-19 Aged 60 Years and Older in a University Hospital in Spain. Arch Bronconeumol 2020, 56, 756–758. Available online: http://www.ncbi.nlm.nih.gov/pubmed/32782092 (accessed on 21 September 2021). [CrossRef] [PubMed]
Overall (n = 405) | Survivors (n = 313) | Non-Survivors (n = 92) | p-Value | |||
---|---|---|---|---|---|---|
Age, years | 79 (8.6) | 78 | (8.6) | 83 | (8.4) | <0.001 |
Male (%) | 180 (46%) | 122 | (44%) | 46 | (50%) | 0.432 |
Comorbidities | ||||||
Current smoker (%) | 11 (3%) | 9 | (3%) | 2 | (2%) | 0.702 |
High blood pressure (%) | 275 (72%) | 202 | (64%) | 73 | (78%) | 0.013 |
Diabetes Mellitus (%) | 106 (28%) | 83 | (26%) | 23 | (24%) | 0.719 |
Chronic lung disease (%) | 40 (10%) | 29 | (9%) | 11 | (12%) | 0.472 |
Chronic heart disease (%) | 86 (21%) | 57 | (18%) | 29 | (31%) | 0.008 |
Chronic renal disease (%) | 158 (39%) | 129 | (41%) | 29 | (31%) | 0.078 |
Chronic liver disease (%) | 21 (5%) | 15 | (5%) | 6 | (6%) | 0.530 |
Charlson Comorbidy Index, median (IQR) | 2 (1–3) | 1 | (0–3) | 2 | (1–5) | <0.001 |
No comorbitiy, n (%) | 142 (35%) | 122 | (39%) | 20 | (22%) | 0.002 |
Medium-low (1–2), n (%) | 124 (30%) | 97 | (31%) | 27 | (29%) | 0.535 |
High (≥3), n (%) | 139 (34%) | 93 | (29%) | 46 | (48%) | 0.001 |
Clinical Markers at Admission | ||||||
C-Reactive Protein mg/dL | 11.1 (14.7) | 9.1 | (16.1) | 14.1 | (10.9) | 0.017 |
Procalcitonin mg/dL | 0.83 (2.7) | 0.68 | (2.6) | 1.16 | (3.1) | 0.322 |
IL-6 pg/mL | 94.2 (154) | 76.9 | (130.2) | 183.3 | (220.1) | 0.001 |
Albumin mg/dL | 3.45 (0.45) | 3.52 | (0.43) | 3.10 | (0.51) | <0.001 |
D-Dimer UI/L | 2786 (5658) | 2602 | (5897) | 3161 | (4118) | 0.488 |
Creatinin mg/dL | 1.22 (0.86) | 1.06 | (0.62) | 1.64 | (1.26) | <0.001 |
PaFi | 205 (108) | 228 | (104) | 137 | (85) | <0.001 |
Median MEWS (IQR) | 2 (1–3) | 1 | (1–2) | 2 | (2–3) | <0.001 |
Albumin > 3 g/dL (n = 380) | Albumin ≤ 3 g/dL (n = 25) | p-Value | |||
---|---|---|---|---|---|
Age, years | 79 | (8.6) | 80 | (8.4) | 0.543 |
Male sex (%) | 120 | (42%) | 14 | (56%) | 0.194 |
Comorbidities | |||||
Current smoker (%) | 11 | (4%) | 0 | (0%) | 0.320 |
Hypertension (%) | 209 | (72%) | 21 | (84%) | 0.214 |
Diabetes Mellitus (%) | 77 | (26%) | 10 | (40%) | 0.156 |
Chronic lung disease (%) | 33 | (6%) | 11 | (12%) | 0.027 |
Chronic heart disease (%) | 52 | (22%) | 26 | (31%) | 0.098 |
Chronic renal disease (%) | 63 | (27%) | 24 | (29%) | 0.787 |
Chronic liver disease (%) | 12 | (5%) | 5 | (6%) | 0.757 |
Charlson Comorbidy Index, median (IQR) | 1 | (0-3) | 2 | (1–5) | <0.001 |
No comorbitiy, n (%) | 70 | (30%) | 16 | (19%) | 0.060 |
Medium-low (1–2), n (%) | 82 | (35%) | 26 | (31%) | 0.535 |
High (≥3), n (%) | 79 | (34%) | 40 | (48%) | 0.019 |
Clinical Markers at Admission | |||||
C-Reactive Protein mg/dL | 10.1 | (16.1) | 14.1 | (10.9) | 0.047 |
Procalcitonin mg/dL | 0.68 | (2.6) | 1.16 | (3.1) | 0.322 |
IL-6 pg/mL | 76.9 | (130.2) | 183.3 | (220.1) | 0.001 |
D-Dimer UI/L | 2642 | (5425) | 4585 | (7118) | 0.138 |
Creatinin mg/dL | 1.19 | (0.82) | 1.54 | (1.16) | 0.032 |
PaFi | 210 | (104) | 159 | (116) | 0.072 |
Median MEWS (IQR) | 1 | (1–2) | 2 | (2–3) | <0.001 |
Time to clinical stability, days | 14 | (16) | 24 | (16) | 0.003 |
In-hospital mortality, n (%) | 82 | (21) | 11 | (44) | 0.010 |
OR Adjusted (95% CI) | p-Value | |
---|---|---|
Albumin < 3 g/dL | 2.18 (1.03–4.62) | 0.039 |
Age | 1.11 (1.09–1.14) | 0.047 |
Male gender | 1.03 (0.65–1.63) | 0.148 |
Hypertension | 2.38 (1.42–3.99) | 0.002 |
Diabetes mellitus | 0.61 (0.33–1.11) | 0.103 |
Chronic heart disease | 1.64 (0.91–2.97) | 0.322 |
Chronic Kidney Failure | 0.88 (0.33–1.54) | 0.655 |
High Charlson Comorbidity Index (≥3) | 1.28 (1.28–3.52) | 0.004 |
C-Reactive Protein > 5 mg/dL | 2.03 (1.25–3.30) | 0.007 |
MEWS score > 3 | 2.11 (1.28–3.77) | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnau-Barrés, I.; Pascual-Dapena, A.; López-Montesinos, I.; Gómez-Zorrilla, S.; Sorlí, L.; Herrero, M.; Nogués, X.; Navarro-Valls, C.; Ibarra, B.; Canchucaja, L.; et al. Severe Hypoalbuminemia at Admission Is Strongly Associated with Worse Prognosis in Older Adults with SARS-CoV-2 Infection. J. Clin. Med. 2021, 10, 5134. https://doi.org/10.3390/jcm10215134
Arnau-Barrés I, Pascual-Dapena A, López-Montesinos I, Gómez-Zorrilla S, Sorlí L, Herrero M, Nogués X, Navarro-Valls C, Ibarra B, Canchucaja L, et al. Severe Hypoalbuminemia at Admission Is Strongly Associated with Worse Prognosis in Older Adults with SARS-CoV-2 Infection. Journal of Clinical Medicine. 2021; 10(21):5134. https://doi.org/10.3390/jcm10215134
Chicago/Turabian StyleArnau-Barrés, Isabel, Ana Pascual-Dapena, Inmaculada López-Montesinos, Silvia Gómez-Zorrilla, Luisa Sorlí, Marta Herrero, Xavier Nogués, Claudia Navarro-Valls, Beatriz Ibarra, Lizzeth Canchucaja, and et al. 2021. "Severe Hypoalbuminemia at Admission Is Strongly Associated with Worse Prognosis in Older Adults with SARS-CoV-2 Infection" Journal of Clinical Medicine 10, no. 21: 5134. https://doi.org/10.3390/jcm10215134
APA StyleArnau-Barrés, I., Pascual-Dapena, A., López-Montesinos, I., Gómez-Zorrilla, S., Sorlí, L., Herrero, M., Nogués, X., Navarro-Valls, C., Ibarra, B., Canchucaja, L., da Costa Venancio, E., Blasco-Hernando, F., Cruz, J., Vázquez, O., Miralles, R., García-Giralt, N., & Güerri-Fernández, R. (2021). Severe Hypoalbuminemia at Admission Is Strongly Associated with Worse Prognosis in Older Adults with SARS-CoV-2 Infection. Journal of Clinical Medicine, 10(21), 5134. https://doi.org/10.3390/jcm10215134