Clinical and Dietary Determinants of Muscle Mass in Patients with Type 2 Diabetes: Data from the Diabetes and Lifestyle Cohort Twente
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Population
2.3. Dietary Assessment
2.4. Outcome Measurement
2.5. Modifiable and Non-Modifiable Risk Factors
2.6. Statistics
2.7. Sensitivity Analysis
3. Results
3.1. Determinants of CER
3.2. Additional Analyses on Protein Intake
Sensitivity Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ingelfinger, J.R.; Jarcho, J.A. Increase in the Incidence of Diabetes and Its Implications. N. Engl. J. Med. 2017, 376, 1473–1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaacks, L.M.; Vandevijvere, S.; Pan, A.; McGowan, C.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The obesity transition: Stages of the global epidemic. Lancet Diabetes Endocrinol. 2019, 7, 231–240. [Google Scholar] [CrossRef]
- Swinburn, B.A.; Caterson, I.; Seidell, J.C.; James, W.P.T. Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutr. 2004, 7, 123–146. [Google Scholar] [PubMed]
- Patterson, R.; McNamara, E.; Tainio, M.; de Sá, T.H.; Smith, A.D.; Sharp, S.J.; Edwards, P.; Woodcock, J.; Brage, S.; Wijndaele, K. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: A systematic review and dose response meta-analysis. Eur. J. Epidemiol. 2018, 33, 811–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Lifestyle Management: Standards of Medical Care in Diabetes—2018. Diabetes Care 2018, 41 (Suppl. 1), S35–S50. [Google Scholar]
- Barazzoni, R.; Bischoff, S.C.; Boirie, Y.; Busetto, L.; Cederholm, T.; Dicker, D.; Toplak, H.; Van Gossum, A.; Yumuk, V.; Vettor, R. Sarcopenic obesity: Time to meet the challenge. Clin. Nutr. 2018, 37, 1787–1793. [Google Scholar] [CrossRef]
- Leenders, M.; Verdijk, L.; van der Hoeven, L.; Adam, J.J.; van Kranenburg, J.; Nilwik, R.; van Loon, L.J. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with ageing. J. Am. Med. Dir. Assoc. 2013, 14, 585–592. [Google Scholar] [CrossRef]
- Kalyani, R.R.; Corriere, M.; Ferrucci, L. Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014, 2, 819–829. [Google Scholar] [CrossRef] [Green Version]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low Relative Skeletal Muscle Mass (Sarcopenia) in Older Persons Is Associated with Functional Impairment and Physical Disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Sinkeler, S.J.; Kwakernaak, A.J.; Bakker, S.J.; Shahinfar, S.; Esmatjes, E.; De Zeeuw, D.; Navis, G.; Heerspink, H.J.L. Creatinine excretion rate and mortality in type 2 diabetes and nephropathy. Diabetes Care 2013, 36, 1489–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proctor, D.N.; O’Brien, P.C.; Atkinson, E.J.; Nair, K.S. Comparison of techniques to estimate total body skeletal muscle mass in people of different age groups. Am. J. Physiol. 1999, 277, 489. [Google Scholar] [CrossRef] [PubMed]
- Gant, C.M.; Binnenmars, S.H.; Berg Evd Bakker, S.J.L.; Navis, G.; Laverman, G.D. Integrated Assessment of Pharmacological and Nutritional Cardiovascular Risk Management: Blood Pressure Control in the DIAbetes and LifEstyle Cohort Twente(DIALECT). Nutrients 2017, 9, 709. [Google Scholar] [CrossRef] [PubMed]
- Oosterwijk, M.M.; Soedamah-Muthu, S.S.; Geleijnse, J.M.; Bakker, S.J.; Navis, G.; Binnenmars, S.H.; Gant, C.M.; Laverman, G.D. High Dietary Intake of Vegetable Protein Is Associated with Lower Prevalence of Renal Function Impairment: Results of the Dutch DIALECT-1 Cohort. Kidney Int. Rep. 2019, 4, 710–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroni, B.J.; Steinman, T.I.; Mitch, W.E. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int. 1985, 27, 58–65. [Google Scholar] [CrossRef] [Green Version]
- WHO. Protein and Amino Acid Requirements in Human Nutrition. 2007. Available online: http://www.who.int/nutrition/publications/nutrientrequirements/WHO_TRS_935/en/ (accessed on 28 May 2019).
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef] [PubMed]
- Feunekes, G.I.; Van Staveren, W.A.; De Vries, J.H.; Burema, J.; Hautvast, J.G. Relative and biomarker-based validity of a food-frequency questionnaire estimating intake of fats and cholesterol. Am. J. Clin. Nutr. 1993, 58, 489–496. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Public Health and the Environment. Dutch Food Composition Database; NEVO Online Version 2013/4.0; RIVM: Utrecht, The Netherlands, 2013. [Google Scholar]
- Heymsfield, S.B.; Arteaga, C.; McManus, C.; Smith, J.; Moffitt, S. Measurement of muscle mass in humans: Validity of the 24-hour urinary creatinine method. Am. J. Clin. Nutr. 1983, 37, 478–494. [Google Scholar] [CrossRef] [PubMed]
- Stam, S.P.; Eisenga, M.F.; Gomes-Neto, A.W.; van Londen, M.; de Meijer, V.E.; van Beek, A.P.; Gansevoort, R.T.; Bakker, S.J. Muscle mass determined from urinary creatinine excretion rate, and muscle performance in renal transplant recipients. J. Cachexia Sarcopenia Muscle 2019, 10, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Polinder-Bos, H.A.; Nacak, H.; Dekker, F.W.; Bakker, S.J.L.; Gaillard Carlo AJ, M.; Gansevoort, R.T. Low Urinary Creatinine Excretion Is Associated With Self-Reported Frailty in Patients With Advanced Chronic Kidney Disease. Kidney Int. Rep. 2017, 2, 676–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du Bois, D.; Du Bois, E.F. A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 1989, 5, 303–313. [Google Scholar]
- Wendel-Vos, G.C.W.; Schuit, A.J.; Saris, W.H.M.; Kromhout, D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J. Clin. Epidemiol. 2003, 56, 1163–1169. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association. Lifestyle management. Sec. 4. In Standards of Medical Care in Diabetesd2017. Diabetes Care 2017, 40 (Suppl. 1), S33–S43. [Google Scholar]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, I.I.I.A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Campbell, R.C.; Ruggenenti, P.; Remuzzi, G. Proteinuria in diabetic nephropathy: Treatment and evolution. Curr. Diab. Rep. 2003, 3, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Gant, C.M.; Soedamah-Muthu, S.S.; Binnenmars, S.H.; Bakker, S.J.L.; Navis, G.; Laverman, G.D. Higher Dietary Magnesium Intake and Higher Magnesium Status Are Associated with Lower Prevalence of Coronary Heart Disease in Patients with Type 2 Diabetes. Nutrients 2018, 10, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockcroft, D.W.; Gault, H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef]
- Wang, Z.M.; Gallagher, D.; Nelson, M.E.; Matthews, D.E.; Heymsfield, S.B. Total-body skeletal muscle mass: Evaluation of 24-h urinary creatinine excretion by computerized axial tomography. Am. J. Clin. Nutr. 1996, 63, 863–869. [Google Scholar] [CrossRef]
- Jalving, A.C.; Gant, C.M.; Binnenmars, S.H.; Soedamah-Muthu, S.S.; Bakker, S.J.L.; Navis, G.; Laverman, G.D. Glycaemic control in the diabetes and Lifestyle Cohort Twente: A cross-sectional assessment of lifestyle and pharmacological management on Hba1c target achievement. Diabetes Obes. Metab. 2018, 10, 2494–2499. [Google Scholar] [CrossRef] [Green Version]
- Gant, C.M.; Binnenmars, S.H.; Harmelink, M.; Soedamah-Muthu, S.S.; Bakker, S.J.; Navis, G.; Laverman, G.D. Real-life achievement of lipid-lowering treatment targets in the DIAbetes and LifEstyle Cohort Twente: Systemic assessment of pharmacological and nutritional factors. Nutr. Diabetes 2018, 8, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute for Public Health and the Environment. The Diet of the Dutch—Results of the Dutch National Food Consumption Survey 2012–2016; RIVM: Utrecht, The Netherlands, 2020. [Google Scholar]
- Rydén, L.; Grant, P.J.; Anker, S.D.; Berne, C.; Cosentino, F.; Danchin, N.; Deaton, C.; Escaned, J.; Hammes, H.P.; Huikuri, H. ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and developed in collaboration with the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2013, 34, 3035–3087. [Google Scholar] [PubMed] [Green Version]
- Eknoyan, G.; Lameire, N.; Eckardt, K.; Kasiske, B.; Wheeler, D.; Levin, A.; Stevens, P.E.; Bilous, R.W.; Lamb, E.J.; Coresh, J.; et al. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2013, 3, 5–14. [Google Scholar]
- Gant, C.M.; Mensink, I.; Binnenmars, S.H.; van der Palen, J.A.; Bakker, S.J.; Navis, G.; Laverman, G.D. Body weight course in the DIAbetes and LifEstyle Cohort Twente (DIALECT-1)-A 20-year observational study. PLoS ONE 2019, 14, e0218400. [Google Scholar] [CrossRef] [PubMed]
- Trouwborst, I.; Verreijen, A.; Memelink, R.; Massanet, P.; Boirie, Y.; Weijs, P.; Tieland, M. Exercise and Nutrition Strategies to Counteract Sarcopenic Obesity. Nutrients 2018, 10, 605. [Google Scholar] [CrossRef] [Green Version]
- Gorissen, S.H.M.; Witard, O.C. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc. Nutr. Soc. 2018, 77, 20–31. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005, 35, 339–361. [Google Scholar] [CrossRef] [PubMed]
- Bloise, F.F.; Cordeiro, A.; Ortiga-Carvalho, T.M. Role of thyroid hormone in skeletal muscle physiology. J. Endocrinol. 2018, 236, R57–R68. [Google Scholar] [CrossRef] [PubMed]
- Oosterom, N.; Gant, C.M.; Ruiterkamp, N.; Van Beijnum, B.-J.F.; Hermens, H.; Bakker, S.J.; Navis, G.; Vollenbroek-Hutten, M.M.; Laverman, G.D. Physical Activity in Patients with Type 2 Diabetes: The Case for Objective Measurement in Routine Clinical Care. Diabetes Care 2018, 41, e50–e51. [Google Scholar] [CrossRef] [Green Version]
- Hagedoorn, I.J.M.; Braber, N.D.; Oosterwijk, M.M.; Gant, C.M.; Navis, G.; Vollenbroek-Hutten, M.M.R.; Van Beijnum, B.-J.F.; Bakker, S.J.L.; Laverman, G.D. Low Physical Activity in Patients with Complicated Type 2 Diabetes Mellitus Is Associated with Low Muscle Mass and Low Protein Intake. J. Clin. Med. 2020, 9, 3104. [Google Scholar] [CrossRef]
- Alexandrov, N.V.; Eelderink, C.; Singh-Povel, C.M.; Navis, G.J.; Bakker, S.J.L.; Corpeleijn, E. Dietary Protein Sources and Muscle Mass over the Life Course: The Lifelines Cohort Study. Nutrients 2018, 10, 1471. [Google Scholar] [CrossRef] [Green Version]
- Oterdoom, L.H.; van Ree, R.M.; de Vries, A.P.; Gansevoort, R.T.; Schouten, J.P.; van Son, W.J.; van der Heide, J.J.; Navis, G.; de Jong, P.E.; Gans, R.O.; et al. Urinary Creatinine Excretion Reflecting Muscle Mass is a Predictor of Mortality and Graft Loss in Renal Trans-plant Recipients. Transplantation 2008, 86, 391–398. [Google Scholar] [CrossRef] [Green Version]
Variable | Total Population | Tertile 1 | Tertile 2 | Tertile 3 | p-Value |
---|---|---|---|---|---|
n = 375 | n = 126 | n = 124 | n = 125 | ||
CER a, 1, mmol/24 h | 13.9 ± 4.9 | 9.9 ± 2.6 | 13.7 ± 2.6 | 18.3 ± 4.7 | <0.001 |
CER a, 1 females, mmol/24 h | 10.9 ± 2.9 | 7.8 ± 1.6 | 10.9 ± 0.6 | 14.0 ± 1.9 | <0.001 |
CER a, 1 males, mmol/24 h | 16.1 ± 4.8 | 11.3 ± 2.1 | 15.7 ± 1.1 | 21.3 ± 3.6 | <0.001 |
Sex, female (%) | 158 (42) | 53 (42) | 53 (43) | 52 (42) | 0.98 |
Age, years | 63 ± 9 | 66 ± 9 | 64 ± 8 | 60 ± 8 | <0.001 |
Diabetes duration, years | 11 (7–18) | 11 (7–18) | 12 (7–18) | 11 (6–18) | 0.50 |
Height, cm | 172 ± 10 | 170 ± 9 | 172 ± 10 | 174 ± 9 | 0.002 |
Weight, kg | 97 ± 18 | 89 ± 17 | 95 ± 16 | 106 ± 18 | <0.001 |
BMI, kg/m2 | 32.7 ± 5.8 | 30.9 ± 5.3 | 32.2 ± 5.9 | 35.0 ± 5.3 | <0.001 |
Waist circumference, cm * | 112 ± 13 | 109 ± 13 | 110 ± 13 | 116 ± 13 | <0.001 |
Body surface area, m2 | 2.09 ± 0.22 | 2.01 ± 0.22 | 2.08 ± 0.19 | 2.20 ± 0.21 | <0.001 |
Serum HbA1c, (mmol/mol) * | 57 ± 12 | 56 ± 13 | 57 ± 11 | 58 ± 11 | 0.21 |
Insulin use, n (%) | 235 (63) | 75 (60) | 84 (68) | 76 (61) | 0.35 |
Systolic blood pressure, mmHg | 139 ± 16 | 138 ± 17 | 142 ± 17 | 138 ± 14 | 0.047 |
Diastolic blood pressure, mmHg | 76 ± 10 | 74 ± 10 | 77 ± 9 | 77 ± 9 | 0.025 |
LDL, mmol/L * | 1.99 ± 0.72 | 2.00 ± 0.72 | 1.98 ± 0.72 | 2.00 ± 0.73 | 0.97 |
Total urinary volume (mL/24 h) | 2025 ± 804 | 1804 ± 680 | 2068 ± 820 | 2208 ± 855 | <0.001 |
Urinary creatinine concentration (mmol/L) | 7.6 ± 3.1 | 6.2 ± 2.5 | 7.5 ± 2.8 | 9.0 ± 3.1 | <0.001 |
Urinary urea excretion, mmol/24 h | 417 ± 150 | 313 ± 107 | 408 ± 113 | 529 ± 141 | <0.001 |
Microvascular disease, n (%) | 243 (65) | 81 (64) | 88 (71) | 74 (59) | 0.15 |
Nephropathy, n (%) | 145 (39) | 58 (46) | 44 (36) | 43 (34) | 0.11 |
eGFR b < 60, n (%) | 87 (23) | 37 (29) | 23 (19) | 27 (22) | 0.11 |
Albuminuria, n (%) | 116 (31) | 46 (37) | 34 (27) | 36 (29) | 0.25 |
Retinopathy, n (%) | 88 (24) | 27 (21) | 35 (28) | 26 (21) | 0.31 |
Peripheral neuropathy, n (%) | 136 (36) | 46 (37) | 43 (35) | 47 (38) | 0.89 |
Macrovascular disease, n (%) | 139 (37) | 54 (43) | 47 (38) | 38 (30) | 0.12 |
Coronary artery disease, n (%) | 84 (22) | 30 (24) | 28 (23) | 26 (21) | 0.85 |
Cerebrovascular disease, n (%) | 45 (12) | 19 (15) | 17 (14) | 9 (7) | 0.12 |
Peripheral artery disease, n (%) | 21 (6) | 13 (10) | 3 (2) | 5 (4) | 0.016 |
Lifestyle parameters | |||||
Target physical activity, n (%) | 197 (53) | 74 (59) | 59 (48) | 64 (52) | 0.20 |
Physical exercise, n (%) | 86 (26) | 21 (19) | 27 (25) | 38 (35) | 0.023 |
Current smokers, n (%) | 64 (17) | 24 (19) | 19 (15) | 21 (17) | 0.73 |
Units of alcohol/month | 6 (0–29) | 8 (0–32) | 5 (0–28) | 8 (0–34) | 0.31 |
Dietary intake | |||||
Maroni-based protein intake, g/day | 91 ± 27 | 72 ± 19 | 89 ± 20 | 112 ± 25 | <0.001 |
Maroni-based protein intake, g/kg/day | 0.95 ± 0.27 | 0.83 ± 0.26 | 0.95 ± 0.23 | 1.07 ± 0.25 | <0.001 |
Adjusted Maroni-based protein intake, g/kg/day c | 1.22 ± 0.32 | 0.99 ± 0.25 | 1.20 ± 0.24 | 1.47 ± 0.28 | <0.001 |
FFQ d Total energy intake, kCal/day | 2010 ± 677 | 1932 ± 697 | 1985 ± 596 | 2112 ± 723 | 0.10 |
FFQ Protein, g/day | 80 ± 23 | 76 ± 23 | 78 ± 21 | 84 ± 25 | 0.018 |
FFQ Protein, en% | 16 ± 3 | 16 ± 3 | 16 ± 3 | 17 ± 4 | 0.58 |
FFQ Carbohydrates, g/day | 207 ± 69 | 200 ± 72 | 210 ± 61 | 212 ± 73 | 0.34 |
FFQ Carbohydrates, en% | 42 ± 7 | 42 ± 8 | 43 ± 6 | 40 ± 7 | 0.012 |
FFQ Fat, g/day | 89 ± 40 | 85 ± 42 | 86 ± 36 | 96 ± 40 | 0.06 |
FFQ Fat, en% | 39 ± 7 | 38 ± 8 | 38 ± 6 | 40 ± 6 | 0.027 |
Model 1 | Model 2 | Model 3 | Model 4 | |||||
---|---|---|---|---|---|---|---|---|
Std. Beta | p-Value | Std. Beta | p-Value | Std. Beta | p-Value | Std. Beta | p-Value | |
Age, years | −0.254 | <0.001 | −0.138 | 0.001 | −0.129 | <0.001 | −0.124 | <0.001 |
Sex, female | −0.557 | <0.001 | −0.430 | <0.001 | −0.298 | <0.001 | −0.311 | <0.001 |
Weight, kg | 0.275 | <0.001 | 0.096 | 0.004 | 0.111 | 0.002 | ||
Height, cm | 0.103 | 0.09 | −0.024 | 0.58 | −0.049 | 0.29 | ||
Dietary protein intake (g/day) | 0.634 | <0.001 | 0.640 | <0.001 | ||||
Physical exercise, yes | −0.030 | 0.32 |
Sex-Stratified Tertiles of Creatinine Excretion Rate | |||||
---|---|---|---|---|---|
Variable | Total Population | Tertile 1 | Tertile 2 | Tertile 3 | p-Value |
n = 375 | n = 126 | n = 124 | n = 125 | ||
Total protein intake, g/day | 80 ± 23 | 76 ± 23 | 78 ± 21 | 84 ± 25 | 0.018 |
Origin of protein | |||||
Plant based, g/day | 28 ± 9 | 27 ± 10 | 27 ± 8 | 28 ± 9 | 0.54 |
Plant based, en% | 5.6 ± 1.2 | 5.8 ± 1.4 | 5.6 ± 1.0 | 5.5 ± 1.1 | 0.18 |
Animal based, g/day | 52 ± 18 | 49 ± 18 | 51 ± 16 | 56 ± 20 | 0.011 |
Animal based, en% | 10.8 ± 3.4 | 10.6 ± 3.2 | 10.6 ± 2.8 | 11.1 ± 4.0 | 0.34 |
Sources of protein | |||||
Animal origin, meat, poultry, fish, g/day | 28 ± 11 | 27 ± 11 | 27 ± 11 | 31 ± 12 | 0.002 |
Animal origin, dairy and eggs, g/day | 23 ± 13 | 22 ± 12 | 23 ± 12 | 24 ± 15 | 0.31 |
Plant origin, g/day | 28 ± 9 | 28 ± 10 | 28 ± 8 | 29 ± 10 | 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalving, A.C.; Oosterwijk, M.M.; Hagedoorn, I.J.M.; Navis, G.; Bakker, S.J.L.; Laverman, G.D. Clinical and Dietary Determinants of Muscle Mass in Patients with Type 2 Diabetes: Data from the Diabetes and Lifestyle Cohort Twente. J. Clin. Med. 2021, 10, 5227. https://doi.org/10.3390/jcm10225227
Jalving AC, Oosterwijk MM, Hagedoorn IJM, Navis G, Bakker SJL, Laverman GD. Clinical and Dietary Determinants of Muscle Mass in Patients with Type 2 Diabetes: Data from the Diabetes and Lifestyle Cohort Twente. Journal of Clinical Medicine. 2021; 10(22):5227. https://doi.org/10.3390/jcm10225227
Chicago/Turabian StyleJalving, Annis C., Milou M. Oosterwijk, Ilse J. M. Hagedoorn, Gerjan Navis, Stephan J. L. Bakker, and Gozewijn D. Laverman. 2021. "Clinical and Dietary Determinants of Muscle Mass in Patients with Type 2 Diabetes: Data from the Diabetes and Lifestyle Cohort Twente" Journal of Clinical Medicine 10, no. 22: 5227. https://doi.org/10.3390/jcm10225227
APA StyleJalving, A. C., Oosterwijk, M. M., Hagedoorn, I. J. M., Navis, G., Bakker, S. J. L., & Laverman, G. D. (2021). Clinical and Dietary Determinants of Muscle Mass in Patients with Type 2 Diabetes: Data from the Diabetes and Lifestyle Cohort Twente. Journal of Clinical Medicine, 10(22), 5227. https://doi.org/10.3390/jcm10225227