Induction of Immune Tolerance in Islet Transplantation Using Apoptotic Donor Leukocytes
Abstract
:1. Introduction
2. General Understanding of the Relationship between the Immune System and Immunological Tolerance
3. Operative Tolerance Induction Using Low-Affinity TIM-1 mAb in an Islet Transplantation Model
4. Important Evidence for Inducing Donor-Specific Tolerance to Preclinical Implementation
5. Effect of ADL on Tolerance Induction in Sensitized Recipients
6. Obstacles toward Inducing Tolerance That May Be Specific to Islet Transplantation Immunogenicity of Islet Grafts
7. Preconditioning Islets Prior to Transplantation: A Possible Challenge for Reducing Immunogenicity of Islets
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bellin, M.D.; Barton, F.B.; Heitman, A.; Harmon, J.V.; Kandaswamy, R.; Balamurugan, A.N.; Sutherland, D.E.; Alejandro, R.; Hering, B.J. Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes. Am. J. Transpl. Off. J. Am. Soc. Transpl. Surg. 2012, 12, 1576–1583. [Google Scholar] [CrossRef] [Green Version]
- Alejandro, R.; Barton, F.B.; Hering, B.J.; Wease, S. Collaborative islet transplant registry, I. 2008 update from the collaborative islet transplant registry. Transplantation. 2008, 86, 1783–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, A.M.; Ricordi, C.; Hering, B.J.; Auchincloss, H.; Lindblad, R.; Robertson, R.P.; Secchi, A.; Brendel, M.D.; Berney, T.; Brennan, D.C. International trial of the Edmonton protocol for islet transplantation. New Engl. J. Med. 2006, 355, 1318–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 2012, 12, 325–338. [Google Scholar] [CrossRef]
- Lewis, R.S. Calcium signaling mechanisms in T lymphocytes. Annu. Rev. Immunol 2001, 19, 497–521. [Google Scholar] [CrossRef] [PubMed]
- Vallabhajosyula, P.; Hirakata, A.; Shimizu, A.; Okumi, M.; Tchipashvili, V.; Hong, H.; Yamada, K.; Sachs, D.H. Assessing the effect of immunosuppression on engraftment of pancreatic islets. Transplantation 2013, 96, 372–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Doesum, W.B.; Gard, L.; Bemelman, F.J.; de Fijter, J.W.; Homan van der Heide, J.J.; Niesters, H.G.; van Son, W.J.; Stegeman, C.A.; Groen, H.; Riezebos-Brilman, A.; et al. Incidence and outcome of BK polyomavirus infection in a multicenter randomized controlled trial with renal transplant patients receiving cyclosporine-, mycophenolate sodium-, or everolimus-based low-dose immunosuppressive therapy. Transpl. Infect. Dis. 2017, 19, e12687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domhan, S.; Zeier, M.; Abdollahi, A. Immunosuppressive therapy and post-transplant malignancy. Nephrol. Dial. Transpl. 2009, 24, 1097–1103. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.W. Cardiovascular toxicities of immunosuppressive agents. Am. J. Transpl. Off. J. Am. Soc. Transpl. Surg. 2002, 2, 807–818. [Google Scholar] [CrossRef]
- Lentine, K.L.; Brennan, D.C.; Schnitzler, M.A. Incidence and predictors of myocardial infarction after kidney transplantation. J. Am. Soc. Nephrol. 2005, 16, 496–506. [Google Scholar] [CrossRef] [Green Version]
- Paramesh, A.S.; Roayaie, S.; Doan, Y.; Schwartz, M.E.; Emre, S.; Fishbein, T.; Florman, S.; Gondolesi, G.E.; Krieger, N.; Ames, S.; et al. Post-liver transplant acute renal failure: Factors predicting development of end-stage renal disease. Clin. Transpl. 2004, 18, 94–99. [Google Scholar] [CrossRef]
- Rodriguez-Rodriguez, A.E.; Porrini, E.; Hornum, M.; Donate-Correa, J.; Morales-Febles, R.; Khemlani Ramchand, S.; Molina Lima, M.X.; Torres, A. Post-transplant diabetes mellitus and prediabetes in renal transplant recipients: An update. Nephron 2021, 145, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Mizrahi, N.; Braun, M.; Ben Gal, T.; Rosengarten, D.; Kramer, M.R.; Grossman, A. Post-transplant diabetes mellitus: Incidence, predicting factors and outcomes. Endocrine 2020, 69, 303–309. [Google Scholar] [CrossRef]
- Wijdicks, E.F. Neurotoxicity of immunosuppressive drugs. Liver Transpl. 2001, 7, 937–942. [Google Scholar] [CrossRef]
- Singh, A.; Ramachandran, S.; Graham, M.L.; Daneshmandi, S.; Heller, D.; Suarez-Pinzon, W.L.; Balamurugan, A.N.; Ansite, J.D.; Wilhelm, J.J.; Yang, A.; et al. Long-term tolerance of islet allografts in nonhuman primates induced by apoptotic donor leukocytes. Nat. Commun. 2019, 10, 3495. [Google Scholar] [CrossRef] [Green Version]
- Suchin, E.J.; Langmuir, P.B.; Palmer, E.; Sayegh, M.H.; Wells, A.D.; Turka, L.A. Quantifying the frequency of alloreactive T cells in vivo: New answers to an old question. J. Immunol. 2001, 166, 973–981. [Google Scholar] [CrossRef] [Green Version]
- Anderton, S.; Burkhart, C.; Metzler, B.; Wraith, D. Mechanisms of central and peripheral T-cell tolerance: Lessons from experimental models of multiple sclerosis. Immunol. Rev. 1999, 169, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Lodhi, S.A.; Lamb, K.E.; Meier-Kriesche, H.U. Solid organ allograft survival improvement in the United States: The long-term does not mirror the dramatic short-term success. Am. J. Transpl. Off. J. Am. Soc. Transpl. Surg. 2011, 11, 1226–1235. [Google Scholar] [CrossRef] [PubMed]
- Karahan, G.E.; Claas, F.H.; Heidt, S. B Cell immunity in solid organ transplantation. Front. Immunol. 2016, 7, 686. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.; Yeung, M.; Camirand, G.; Zeng, Q.; Akiba, H.; Yagita, H.; Chalasani, G.; Sayegh, M.H.; Najafian, N.; Rothstein, D.M. Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in mice. J. Clin. Investig. 2011, 121, 3645–3656. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.M.; Kim, J.I.; Stott, R.; Soohoo, J.; O’Connor, M.R.; Yeh, H.; Zhao, G.; Eliades, P.; Fox, C.; Cheng, N.; et al. Anti-CD45RB/anti-TIM-1-induced tolerance requires regulatory B cells. Am. J. Transpl. Off. J. Am. Soc. Transpl. Surg. 2012, 12, 2072–2078. [Google Scholar] [CrossRef]
- D’Orsogna, L.J.; van der Meer-Prins, E.M.; Zoet, Y.M.; Roelen, D.L.; Doxiadis, I.I.; Claas, F.H. Detection of allo-HLA cross-reactivity by virus-specific memory T-cell clones using single HLA-transfected K562 cells. Methods Mol. Biol. 2012, 882, 339–349. [Google Scholar]
- Kawai, T.; Sogawa, H.; Boskovic, S.; Abrahamian, G.; Smith, R.N.; Wee, S.L.; Andrews, D.; Nadazdin, O.; Koyama, I.; Sykes, M.; et al. CD154 blockade for induction of mixed chimerism and prolonged renal allograft survival in nonhuman primates. Am. J. Transpl. Off. J. Am. Soc. Transpl. Surg. 2004, 4, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Cosimi, A.B.; Spitzer, T.R.; Tolkoff-Rubin, N.; Suthanthiran, M.; Saidman, S.L.; Shaffer, J.; Preffer, F.I.; Ding, R.; Sharma, V.; et al. HLA-mismatched renal transplantation without maintenance immunosuppression. New Engl. J. Med. 2008, 358, 353–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scandling, J.D.; Busque, S.; Dejbakhsh-Jones, S.; Benike, C.; Millan, M.T.; Shizuru, J.A.; Hoppe, R.T.; Lowsky, R.; Engleman, E.G.; Strober, S. Tolerance and chimerism after renal and hematopoietic-cell transplantation. N. Engl. J. Med. 2008, 358, 362–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leventhal, J.; Abecassis, M.; Miller, J.; Gallon, L.; Ravindra, K.; Tollerud, D.J.; King, B.; Elliott, M.J.; Herzig, G.; Herzig, R.; et al. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci. Transl. Med. 2012, 4, 124ra28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomita, Y.; Khan, A.; Sykes, M. Role of intrathymic clonal deletion and peripheral anergy in transplantation tolerance induced by bone marrow transplantation in mice conditioned with a nonmyeloablative regimen. J. Immunol. 1994, 153, 1087–1098. [Google Scholar] [PubMed]
- Kawai, T.; Sachs, D.H.; Sprangers, B.; Spitzer, T.R.; Saidman, S.L.; Zorn, E.; Tolkoff-Rubin, N.; Preffer, F.; Crisalli, K.; Gao, B.; et al. Long-term results in recipients of combined HLA-mismatched kidney and bone marrow transplantation without maintenance immunosuppression. Am. J. Transpl. Off. J. Am. Soc. Transpl. Surg. 2014, 14, 1599–1611. [Google Scholar] [CrossRef]
- Oura, T.; Ko, D.S.; Boskovic, S.; O’Neil, J.J.; Chipashvili, V.; Koulmanda, M.; Hotta, K.; Kawai, K.; Nadazdin, O.; Smith, R.N.; et al. Kidney Versus Islet Allograft Survival After Induction of Mixed Chimerism With Combined Donor Bone Marrow Transplantation. Cell Transpl. 2016, 25, 1331–1341. [Google Scholar] [CrossRef] [Green Version]
- Kawai, T.; Cosimi, A.B.; Wee, S.L.; Houser, S.; Andrews, D.; Sogawa, H.; Phelan, J.; Boskovic, S.; Nadazdin, O.; Abrahamian, G.; et al. Effect of mixed hematopoietic chimerism on cardiac allograft survival in cynomolgus monkeys. Transplantation 2002, 73, 1757–1764. [Google Scholar] [CrossRef]
- Jenkins, M.K.; Schwartz, R.H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 1987, 165, 302–319. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.D.; Turley, D.M.; Podojil, J.R. Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nat. Rev. Immunol. 2007, 7, 665–677. [Google Scholar] [CrossRef]
- Turley, D.M.; Miller, S.D. Peripheral tolerance induction using ethylenecarbodiimide-fixed APCs uses both direct and indirect mechanisms of antigen presentation for prevention of experimental autoimmune encephalomyelitis. J. Immunol. 2007, 178, 2212–2220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenbark, A.A.; Barnes, D.; Finn, T.; Bourdette, D.N.; Whitham, R.; Robey, I.; Kaleeba, J.; Bebo, B.F., Jr.; Miller, S.D.; Offner, H.; et al. Differential susceptibility of human T(h)1 versus T(h) 2 cells to induction of anergy and apoptosis by ECDI/antigen-coupled antigen-presenting cells. Int. Immunol. 2000, 12, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Getts, D.R.; Turley, D.M.; Smith, C.E.; Harp, C.T.; McCarthy, D.; Feeney, E.M.; Getts, M.T.; Martin, A.J.; Luo, X.; Terry, R.L.; et al. Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10-producing splenic macrophages and maintained by T regulatory cells. J. Immunol. 2011, 187, 2405–2417. [Google Scholar] [CrossRef] [Green Version]
- Nagata, S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol. 2018, 36, 489–517. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.Y.; Liu, J.; Homma, Y.; Zhang, Y.; Brendolan, A.; Saggese, M.; Han, J.; Silverstein, R.; Selleri, L.; Ma, X.; et al. Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1. Immunity 2007, 27, 952–964. [Google Scholar] [CrossRef] [Green Version]
- Perruche, S.; Zhang, P.; Liu, Y.; Saas, P.; Bluestone, J.A.; Chen, W. CD3-specific antibody-induced immune tolerance involves transforming growth factor-beta from phagocytes digesting apoptotic T cells. Nat. Med. 2008, 14, 528–535. [Google Scholar] [CrossRef]
- Cioca, D.P.; Watanabe, N.; Isobe, M. Apoptosis of peripheral blood lymphocytes is induced by catecholamines. Jpn. Heart J. 2000, 41, 385–398. [Google Scholar]
- Chen, G.; Li, J.; Chen, L.; Lai, X.; Qiu, J. ECDI-fixed allogeneic splenocytes combined with alpha1-antitrypsin prolong survival of rat renal allografts. Int. Immunopharmacol. 2015, 26, 43–49. [Google Scholar] [CrossRef]
- Xingqiang, L.; Fen, N.; Zhongpeng, Y.; Tiantian, W.; Lei, Z.; Jiali, F.; Junjie, M.; Guanghui, L.; Lu, X.; Yuhe, G.; et al. Ethylene carbodiimide-fixed donor splenocytes combined with cordycepin induce long-term protection to mice cardiac allografts. Transpl. Immunol. 2019, 56, 101196. [Google Scholar] [CrossRef]
- Ding, J.; Liu, S.; Zhang, D.; Song, Y.; Ma, X.; Yi, C.; Song, B.; Xiao, B.; Su, Y.; Guo, S.; et al. Transfusion of ethylene carbodiimide-fixed donor splenocytes prolongs survival of vascularized skin allografts. J. Surg. Res. 2018, 221, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Kheradmand, T.; Wang, S.; Bryant, J.; Tasch, J.J.; Lerret, N.; Pothoven, K.L.; Houlihan, J.L.; Miller, S.D.; Zhang, Z.J.; Luo, X. Ethylenecarbodiimide-fixed donor splenocyte infusions differentially target direct and indirect pathways of allorecognition for induction of transplant tolerance. J. Immunol. 2012, 189, 804–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryant, J.; Lerret, N.M.; Wang, J.J.; Kang, H.K.; Tasch, J.; Zhang, Z.; Luo, X. Preemptive donor apoptotic cell infusions induce IFN-gamma-producing myeloid-derived suppressor cells for cardiac allograft protection. J. Immunol. 2014, 192, 6092–6101. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Pothoven, K.L.; McCarthy, D.; DeGutes, M.; Martin, A.; Getts, D.R.; Xia, G.; He, J.; Zhang, X.; Kaufman, D.B.; et al. ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proc. Natl. Acad. Sci. USA 2008, 105, 14527–14532. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.K.; Wang, S.; Dangi, A.; Zhang, X.; Singh, A.; Zhang, L.; Rosati, J.M.; Suarez-Pinzon, W.; Deng, X.; Chen, X.; et al. Differential Role of B Cells and IL-17 Versus IFN-gamma During Early and Late Rejection of Pig Islet Xenografts in Mice. Transplantation 2017, 101, 1801–1810. [Google Scholar] [CrossRef]
- Wang, S.; Tasch, J.; Kheradmand, T.; Ulaszek, J.; Ely, S.; Zhang, X.; Hering, B.J.; Miller, S.D.; Luo, X. Transient B-cell depletion combined with apoptotic donor splenocytes induces xeno-specific T- and B-cell tolerance to islet xenografts. Diabetes 2013, 62, 3143–3150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Wang, N.; Chen, L.; Fang, L. Tr1 Cells as a Key Regulator for Maintaining Immune Homeostasis in Transplantation. Front. Immunol. 2021, 12, 671579. [Google Scholar] [CrossRef]
- LeGuern, C. Regulation of T-cell functions by MHC class II self-presentation. Trends Immunol. 2003, 24, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Romieu-Mourez, R.; Francois, M.; Boivin, M.N.; Stagg, J.; Galipeau, J. Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-gamma, TGF-beta, and cell density. J. Immunol. 2007, 179, 1549–1558. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.M.; Salam, A.; Ryan, E.A.; Senior, P.; Paty, B.W.; Bigam, D.; McCready, T.; Halpin, A.; Imes, S.; Al Saif, F.; et al. Pretransplant HLA antibodies are associated with reduced graft survival after clinical islet transplantation. Am. J. Transpl. Off. J. Am. Soc. Transpl. Surg. 2007, 7, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Chaigne, B.; Geneugelijk, K.; Bedat, B.; Ahmed, M.A.; Honger, G.; De Seigneux, S.; Demuylder-Mischler, S.; Berney, T.; Spierings, E.; Ferrari-Lacraz, S.; et al. Immunogenicity of Anti-HLA Antibodies in Pancreas and Islet Transplantation. Cell Transplant. 2016, 25, 2041–2050. [Google Scholar] [CrossRef] [Green Version]
- Dangi, A.; Yu, S.; Lee, F.T.; Burnette, M.; Knechtle, S.; Kwun, J.; Luo, X. Donor apoptotic cell-based therapy for effective inhibition of donor-specific memory T and B cells to promote long-term allograft survival in allosensitized recipients. Am. J. Transpl. Off. J. Am. Soc. Transpl. Surg. 2020, 20, 2728–2739. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.M.; Yeh, H.; Zhao, G.; Wei, L.; O’Connor, M.; Stott, R.T.; Soohoo, J.; Dunussi, K.; Fiorina, P.; Deng, S.; et al. B-cell depletion improves islet allograft survival with anti-CD45RB. Cell Transplant. 2014, 23, 51–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kneteman, N.M.; Evans, M.G.; Cattral, M.S.; Warnock, G.L.; Rajotte, R.V. A comparison of canine renal and islet transplantation with cyclosporine: Assessment of islet immunogenicity. Transpl. Proc. 1989, 21, 3366–3367. [Google Scholar]
- Haga, J.; Sato, N.; Anazawa, T.; Kimura, T.; Kenjo, A.; Gotoh, M.; Marubashi, S. Comprehensive analysis of gene expression of isolated pancreatic islets during pretransplant culture. Fukushima J. Med. Sci. 2021, 67, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, M.; Maki, T.; Kiyoizumi, T.; Satomi, S.; Monaco, A.P. An improved method for isolation of mouse pancreatic islets. Transplantation 1985, 40, 437–438. [Google Scholar] [CrossRef]
- Avila, J.G.; Tsujimura, T.; Oberholzer, J.; Churchill, T.; Salehi, P.; Shapiro, A.M.J.; Lakey, J.R.T. Improvement of pancreatic islet isolation outcomes using glutamine perfusion during isolation procedure. Cell Transplant. 2003, 12, 877–881. [Google Scholar] [CrossRef] [Green Version]
- Hanley, S.; Liu, S.; Lipsett, M.; Castellarin, M.; Rosenberg, L.; Tchervenkov, J.; Paraskevas, S. Tumor necrosis factor-alpha production by human islets leads to postisolation cell death. Transplantation 2006, 82, 813–818. [Google Scholar] [CrossRef]
- Melzi, R.; Mercalli, A.; Sordi, V.; Cantarelli, E.; Nano, R.; Maffi, P.; Sitia, G.; Guidotti, L.G.; Secchi, A.; Bonifacio, E.; et al. Role of CCL2/MCP-1 in islet transplantation. Cell Transpl. 2010, 19, 1031–1046. [Google Scholar] [CrossRef]
- Moberg, L.; Johansson, H.; Lukinius, A.; Berne, C.; Foss, A.; Kallen, R.; Ostraat, O.; Salmela, K.; Tibell, A.; Tufveson, G.; et al. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet 2002, 360, 2039–2045. [Google Scholar] [CrossRef]
- Eriksson, O.; Eich, T.; Sundin, A.; Tibell, A.; Tufveson, G.; Andersson, H.; Felldin, M.; Foss, A.; Kyllonen, L.; Langstrom, B.; et al. Positron emission tomography in clinical islet transplantation. Am. J. Transpl. Off. J. Am. Soc. Transpl. Surg. 2009, 9, 2816–2824. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, B.; Ekdahl, K.N.; Korsgren, O. Control of instant blood-mediated inflammatory reaction to improve islets of Langerhans engraftment. Curr. Opin. Organ. Transpl. 2011, 16, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Merani, S.; Truong, W.W.; Hancock, W.; Anderson, C.C.; Shapiro, A.M. Chemokines and their receptors in islet allograft rejection and as targets for tolerance induction. Cell Transplant. 2006, 15, 295–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Citro, A.; Cantarelli, E.; Piemonti, L. Anti-inflammatory strategies to enhance islet engraftment and survival. Curr. Diabetes Rep. 2013, 13, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Gunji, T.; Saito, T.; Sato, Y.; Matsuyama, S.; Ise, K.; Kimura, T.; Anazawa, T.; Gotoh, M. Mitomycin-C treatment followed by culture produces long-term survival of islet xenografts in a rat-to mouse model. Cell Transpl. 2008, 17, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Sato, N.; Haga, J.; Anazawa, T.; Kenjo, A.; Kimura, T.; Wada, I.; Mori, T.; Marubashi, S.; Gotoh, M. Ex vivo pretreatment of islets with mitomycin c: Reduction in immunogenic potential of islets by suppressing secretion of multiple chemotactic factors. Cell Transpl. 2017, 26, 1392–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, M.A.; Lau, H.; Weber, C.; Reemtsma, K. Pancreatic islet transplantation. Induction of graft acceptance by ultraviolet irradiation of donor tissue. Ann. Surg. 1984, 200, 441–450. [Google Scholar] [CrossRef]
- Kanai, T.; Porter, J.; Gotoh, M.; Monaco, A.P.; Maki, T. Effect of gamma-irradiation on mouse pancreatic islet-allograft survival. Diabetes 1989, 38 (Suppl. 1), 154–156. [Google Scholar] [CrossRef]
- Fiorina, P.; Jurewicz, M.; Tanaka, K.; Behazin, N.; Augello, A.; Vergani, A.; von Andrian, U.H.; Smith, N.R.; Sayegh, M.H.; Abdi, R. Characterization of donor dendritic cells and enhancement of dendritic cell efflux with CC-chemokine ligand 21: A novel strategy to prolong islet allograft survival. Diabetes 2007, 56, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Herrera, O.B.; Golshayan, D.; Tibbott, R.; Salcido Ochoa, F.; James, M.J.; Marelli-Berg, F.M.; Lechler, R.I. A novel pathway of alloantigen presentation by dendritic cells. J. Immunol. 2004, 173, 4828–4837. [Google Scholar] [CrossRef] [PubMed]
- Sherman, L.A.; Chattopadhyay, S. The molecular basis of allorecognition. Annu Rev. Immunol. 1993, 11, 385–402. [Google Scholar] [CrossRef] [PubMed]
- Lechler, R.I.; Batchelor, J.R. Restoration of immunogenicity to passenger cell-depleted kidney allografts by the addition of donor strain dendritic cells. J. Exp. Med. 1982, 155, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Zhang, L.; Ling, F.; Wen, S.; Luo, Y.; Liu, H.; Liu, J.; Zheng, W.; Liang, M.; Sun, J.; et al. Effect of immune tolerance induced by immature dendritic cells and CTLA4-Ig on systemic lupus erythematosus: An in vivo study. Exp. Med. 2018, 15, 2499–2506. [Google Scholar] [CrossRef]
- Hasegawa, H.; Matsumoto, T. Mechanisms of tolerance induction by dendritic cells in vivo. Front. Immunol. 2018, 9, 350. [Google Scholar] [CrossRef]
Summary of Previous Studies on Tolerance Induction Using ECDI-Donor Splenocytes in Islet Transplantation Animal Experiments | |||||
---|---|---|---|---|---|
Year | Authors | Tx Model | Induction Treatments | Tx Outcome | Mechanisms |
2008 | Luo et al. | mouse-to-mouse (allogeneicTx model) | ECDI-SPs | 64% graft survival (>100 days) | Depletion of alloantigen-specific T cells CD4+CD25+ Tregs are required for tolerance induction by infusion of ECDI-treated donor splenocytes. PD-1/PD-L1 signaling pathway is associated with donor-specific tolerance induction by ECDI-fixed SPs |
2013 | Wang et al. | rat-to-mouse (xenogeneic Tx model) | ECDI-SPs | MST 48 days (18days for non-treated) | Anti-donor antibody: rat ECDI-SPs induced anti-rat IgGs (High levels of anti-rat IgG were detectable by day 14) C4d deposition: observed 14 days and 28 days in rat islet xenograft from recipients treated with rat ECDI-SPs. B cell activation: upregulated expression of costimulatory molecules CD80, CD86, CD40, and OX40L B cell infiltration: observed in ECDI-SPs recipients 2 or 4 weeks after Tx. |
ECDI-SPs with B cell depletion | 100% graft survival (>100 days) | Anti-donor antibody: no production of anti-rat antibodies of all IgG subclasses at 14 days after ECDI-SPs C4d deposition: negative B cell activation: N.A B cell infiltration: minimal infiltration of B220 cells xeno-specific T-cell priming: suppressed memory T cell generation: suppressed rebound B cells: xeno-donor-specific B cell unresponsiveness | |||
2017 | Kang et al. | pig-to-mouse (xenogeneic Tx model) | no treatment | acute rejection (by day 7–26 post-transplantation) | B cell infiltration to grafts; prominent (cf. minimal infiltration of B cells to graft in alloislet Tx) High expression of IL-17 on CD4 and CD8T cell from rejected mice (cf. high levels of IFN-r on T cell from rejected mice in alloislet Tx.) |
ECDI-SPs only | no prolongation of graft survival | N.A | |||
ECDI-SPs with B cell depletion | prolongation of graft survival(40% graft >100 days) | N.A | |||
ECDI-SPs with B cell depletion and transient rapamycin | 1. prolongation of graft survival(65% graft >100 days) 2. late rejection between day 100 and 200 post-transplantation (B cell reconstitution) | initial phase(day 21–70 post transplantation) anti-pig IL-17 response: suppressed rejection phase B cell infiltration to graft: aggressive infiltration of B cells to graft anti-pig antibody production: minimal anti-pig INFr response; observed in indirect donor stimulation, but not direct donor stimulation | |||
2019 | A.Sigh | HNP-to-NHP (MHC lassⅡ matched) (allogeneic Tx model) | ECDI-SPs and transient ISs (anti-CD40, anti-IL-6R, anti-TNFaR, rapamycin) | long-term tolerance (100%) | antigen-specific regulatory networks: Tr1, Breg, B10, MDSC One DRB-matched ECDI-SPs; expanded alloantigen-specific regulation |
2020 | Dangi et al. | mouse(B6)-to-mouse(Balb/c) (allogeneic islet transplantation) | ECDI-SPs only | no prolongation of graft survival | |
ECDI-SPs and transient ISs (anti-CD40 and rapamycin) | MST 35 days | donor-specific graft-infiltrating T cells; inhibited expansion of donor-specific memory B cells; inhibited infiltrating B cells in late rejected islets with high expression of CD40 and CD86 | |||
ECDI-SPs and transient ISs (anti-CD40 and rapamycin)B cell depletion | islet survival of >180 days in ~80% of recipients |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, N.; Marubashi, S. Induction of Immune Tolerance in Islet Transplantation Using Apoptotic Donor Leukocytes. J. Clin. Med. 2021, 10, 5306. https://doi.org/10.3390/jcm10225306
Sato N, Marubashi S. Induction of Immune Tolerance in Islet Transplantation Using Apoptotic Donor Leukocytes. Journal of Clinical Medicine. 2021; 10(22):5306. https://doi.org/10.3390/jcm10225306
Chicago/Turabian StyleSato, Naoya, and Shigeru Marubashi. 2021. "Induction of Immune Tolerance in Islet Transplantation Using Apoptotic Donor Leukocytes" Journal of Clinical Medicine 10, no. 22: 5306. https://doi.org/10.3390/jcm10225306
APA StyleSato, N., & Marubashi, S. (2021). Induction of Immune Tolerance in Islet Transplantation Using Apoptotic Donor Leukocytes. Journal of Clinical Medicine, 10(22), 5306. https://doi.org/10.3390/jcm10225306