Coagulopathies in Intensive Care Medicine: Balancing Act between Thrombosis and Bleeding
Abstract
:1. Introduction
2. VTE and Bleeding Risk Assessment Tools
3. Management of Coagulopathies
3.1. Laboratory and Point-of-Care Assessment of Coagulation Disorders
3.2. Disseminated Intravascular Coagulation
3.3. Massive Hemorrhage and Trauma-Induced Coagulopathy
3.4. Liver Disease
3.5. Renal Disease
3.6. COVID-19
3.7. Mechanical Circulatory Support Devices
3.8. Acute Burn-Induced Coagulopathy
3.9. Role of Plasma in the Treatment of Coagulopathy
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Levi, M.; Opal, S.M. Coagulation abnormalities in critically ill patients. Crit. Care 2006, 10, 222. [Google Scholar] [CrossRef] [Green Version]
- Eck, R.J.; Hulshof, L.; Wiersema, R.; Thio, C.H.L.; Hiemstra, B.; van den Oever, N.C.G.; Gans, R.O.B.; van der Horst, I.C.C.; Meijer, K.; Keus, F. Incidence, prognostic factors, and outcomes of venous thromboembolism in critically ill patients: Data from two prospective cohort studies. Crit. Care 2021, 25, 1–9. [Google Scholar] [CrossRef]
- Lamontagne, F.; McIntyre, L.; Dodek, P.; Heels-Ansdell, D.; Meade, M.; Pemberton, J.; Skrobik, Y.; Seppelt, I.; Vlahakis, N.E.; Muscedere, J.; et al. Nonleg Venous Thrombosis in Critically Ill Adults: A nested prospective cohort study. JAMA Intern. Med. 2014, 174, 689–696. [Google Scholar] [CrossRef]
- Barbar, S.; Noventa, F.; Rossetto, V.; Ferrari, A.; Brandolin, B.; Perlati, M.; De Bon, E.; Tormene, D.; Pagnan, A.; Prandoni, P. A risk assessment model for the identification of hospitalized medical patients at risk for venous thromboembolism: The Padua Prediction Score. J. Thromb. Haemost. 2010, 8, 2450–2457. [Google Scholar] [CrossRef] [PubMed]
- Vardi, M.; Ghanem-Zoubi, N.O.; Zidan, R.; Yurin, V.; Bitterman, H. Venous thromboembolism and the utility of the Padua Prediction Score in patients with sepsis admitted to internal medicine departments. J. Thromb. Haemost. 2013, 11, 467–473. [Google Scholar] [CrossRef]
- Viarasilpa, T.; Panyavachiraporn, N.; Marashi, S.M.; Van Harn, M.; Kowalski, R.G.; Mayer, S.A. Prediction of Symptomatic Venous Thromboembolism in Critically Ill Patients: The ICU-Venous Thromboembolism Score. Crit. Care Med. 2020, 48, e470–e479. [Google Scholar] [CrossRef]
- Prognostic Factors Associated with Development of Venous Thromboembolism in Critically Ill Patients—A Systematic Review and Meta-Analysis. Available online: https://journals.lww.com/ccmjournal/Abstract/9000/Prognostic_Factors_Associated_With_Development_of.95047.aspx (accessed on 10 October 2021). [CrossRef]
- Boonyawat, K.; Crowther, M. Venous Thromboembolism Prophylaxis in Critically Ill Patients. Semin. Thromb. Hemost. 2015, 41, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Brunkhorst, F.M.; Weigand, M.A.; Pletz, M.; Gastmeier, P.; Lemmen, S.W.; Meier-Hellmann, A.; Ragaller, M.; Weyland, A.; Marx, G.; Bucher, M.; et al. [S3 Guideline Sepsis-prevention, diagnosis, therapy, and aftercare: Long version]. Med. Klin. Intensivmed. Notfmed. 2020, 115, 37–109. [Google Scholar] [CrossRef]
- Afshari, A.; Ageno, W.; Ahmed, A.; Duranteau, J.; Faraoni, D.; Kozek-Langenecker, S.; Llau, J.; Nizard, J.; Solca, M.; Stensballe, J.; et al. European Guidelines on perioperative venous thromboembolism prophylaxis: Executive summary. Eur. J. Anaesthesiol. 2018, 35, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Streiff, M.B. Thrombosis in the setting of cancer. Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 196–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farge, D.; Frere, C.; Connors, J.M.; Ay, C.; Khorana, A.A.; Munoz, A.; Brenner, B.; Kakkar, A.; Rafii, H.; Solymoss, S.; et al. 2019 international clinical practice guidelines for the treatment and prophylaxis of venous thromboembolism in patients with cancer. Lancet Oncol. 2019, 20, e566–e581. [Google Scholar] [CrossRef] [Green Version]
- Fernando, S.M.; Tran, A.; Cheng, W.; Sadeghirad, B.; Arabi, Y.M.; Cook, D.J.; Moller, M.H.; Mehta, S.; Fowler, R.A.; Burns, K.E.A.; et al. Venous Thromboembolism Prophylaxis in Critically Ill Adults: A Systematic Review and Network Meta-analysis. Chest 2021. [Google Scholar] [CrossRef] [PubMed]
- Schünemann, H.J.; Cushman, M.; Burnett, A.E.; Kahn, S.R.; Beyer-Westendorf, J.; Spencer, F.A.; Rezende, S.M.; Zakai, N.A.; Bauer, K.A.; Dentali, F.; et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: Prophylaxis for hospitalized and nonhospitalized medical patients. Blood Adv. 2018, 2, 3198–3225. [Google Scholar] [CrossRef] [PubMed]
- Arabi, Y.M.; Al-Hameed, F.; Burns, K.E.; Mehta, S.; Alsolamy, S.; Alshahrani, M.S.; Mandourah, Y.; Almekhlafi, G.; Almaani, M.; al Bshabshe, A.; et al. Adjunctive Intermittent Pneumatic Compression for Venous Thromboprophylaxis. N. Engl. J. Med. 2019, 380, 1305–1315. [Google Scholar] [CrossRef]
- Arnold, D.M.; Donahoe, L.; Clarke, F.J.; Tkaczyk, A.J.; Heels-Ansdell, D.; Zytaruk, N.; Cook, R.; Webert, K.E.; McDonald, E.; Cook, D.J. Bleeding during critical illness: A prospective cohort study using a new measurement tool. Clin. Investig. Med. 2007, 30, 93–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauzier, F.; Arnold, D.M.; Rabbat, C.; Heels-Ansdell, D.; Zarychanski, R.; Dodek, P.; Ashley, B.J.; Albert, M.; Khwaja, K.; Ostermann, M.; et al. Risk factors and impact of major bleeding in critically ill patients receiving heparin thromboprophylaxis. Intensive Care Med. 2013, 39, 2135–2143. [Google Scholar] [CrossRef]
- Decousus, H.; Tapson, V.F.; Bergmann, J.-F.; Chong, B.H.; Froehlich, J.B.; Kakkar, A.K.; Merli, G.J.; Monreal, M.; Nakamura, M.; Pavanello, R.; et al. Factors at Admission Associated With Bleeding Risk in Medical Patients: Findings from the IMPROVE investigators. Chest 2011, 139, 69–79. [Google Scholar] [CrossRef]
- Gage, B.F.; Yan, Y.; Milligan, P.; Waterman, A.; Culverhouse, R.; Rich, M.W.; Radford, M. Clinical classification schemes for predicting hemorrhage: Results from the National Registry of Atrial Fibrillation (NRAF). Am. Heart J. 2006, 151, 713–719. [Google Scholar] [CrossRef]
- LiverTox. Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012. [Google Scholar]
- LaPelusa, A.; Dave, H.D. Physiology, Hemostasis; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Dhakal, P.; Rayamajhi, S.; Verma, V.; Gundabolu, K.; Bhatt, V. Reversal of Anticoagulation and Management of Bleeding in Patients on Anticoagulants. Clin. Appl. Thromb. 2017, 23, 410–415. [Google Scholar] [CrossRef]
- Waibel, B.H.; Rotondo, M.M.F. Damage control surgery: It’s evolution over the last 20 years. Rev. Colégio Bras. Cir. 2012, 39, 314–321. [Google Scholar] [CrossRef]
- Tripodi, A.; Primignani, M.; Chantarangkul, V.; Viscardi, Y.; Dell’Era, A.; Fabris, F.M.; Mannucci, P.M. The coagulopathy of cirrhosis assessed by thromboelastometry and its correlation with conventional coagulation parameters. Thromb. Res. 2009, 124, 132–136. [Google Scholar] [CrossRef]
- Kim, S.-M.; Yu, G.; Kim, J.-S.; Hong, S.I.; Chae, B.; Shin, Y.S.; Kim, Y.-J.; Jang, S.; Kim, W.Y. Role of thromboelastography in the evaluation of septic shock patients with normal prothrombin time and activated partial thromboplastin time. Sci. Rep. 2021, 11, 11833. [Google Scholar] [CrossRef]
- Shen, L.; Tabaie, S.; Ivascu, N. Viscoelastic testing inside and beyond the operating room. J. Thorac. Dis. 2017, 9, S299–S308. [Google Scholar] [CrossRef] [Green Version]
- Raimann, F.J.; Lindner, M.-L.; Martin, C.; Jennewein, L.; Lustenberger, T.; Piekarski, F.; Zacharowski, K.; Weber, C.F. Role of POC INR in the early stage of diagnosis of coagulopathy. Pract. Lab. Med. 2021, 26, e00238. [Google Scholar] [CrossRef] [PubMed]
- Härtig, F.; Birschmann, I.; Peter, A.; Hörber, S.; Ebner, M.; Sonnleitner, M.; Spencer, C.; Bombach, P.; Stefanou, M.-I.; Tünnerhoff, J.; et al. Point-of-care testing for emergency assessment of coagulation in patients treated with direct oral anticoagulants including edoxaban. Neurol. Res. Pract. 2021, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yee, J.; Kaide, C.G. Emergency Reversal of Anticoagulation. West. J. Emerg. Med. 2019, 20, 770–783. [Google Scholar] [CrossRef]
- Kozek-Langenecker, S.A.; Ahmed, A.B.; Afshari, A.; Albaladejo, P.; Aldecoa, C.; Barauskas, G.; De Robertis, E.; Faraoni, D.; Filipescu, D.; Fries, D.; et al. Management of severe perioperative bleeding: Guidelines from the European Society of Anaesthesiology: First update 2016. Eur. J. Anaesthesiol. 2017, 34, 332–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etchill, E.; Myers, S.P.; Raval, J.; Hassoune, A.; Sengupta, A.; Neal, M.D. Platelet Transfusion in Critical Care and Surgery: Evidence-Based Review of Contemporary Practice and Future Directions. Shock 2017, 47, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Thachil, J.; Warkentin, T.E. How do we approach thrombocytopenia in critically ill patients? Br. J. Haematol. 2017, 177, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Berry, C.; Tcherniantchouk, O.; Ley, E.J.; Salim, A.; Mirocha, J.; Martin-Stone, S.; Stolpner, D.; Margulies, D.R. Overdiagnosis of Heparin-Induced Thrombocytopenia in Surgical ICU Patients. J. Am. Coll. Surg. 2011, 213, 10–17. [Google Scholar] [CrossRef]
- Slichter, S.J. Evidence-Based Platelet Transfusion Guidelines. Hematol. Am. Soc. Hematol. Educ. Program 2007, 2007, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Hunt, B.J. Bleeding and Coagulopathies in Critical Care. N. Engl. J. Med. 2014, 370, 847–859. [Google Scholar] [CrossRef] [Green Version]
- Giustozzi, M.; Ehrlinder, H.; Bongiovanni, D.; Borovac, J.A.; Guerreiro, R.A.; Gąsecka, A.; Papakonstantinou, P.E.; Parker, W.A. Coagulopathy and sepsis: Pathophysiology, clinical manifestations and treatment. Blood Rev. 2021, 50, 100864. [Google Scholar] [CrossRef]
- Gando, S.; Levi, M.; Toh, C.-H. Disseminated intravascular coagulation. Nat. Rev. Dis. Prim. 2016, 2, 16037. [Google Scholar] [CrossRef] [PubMed]
- Hotchkiss, R.S.; Karl, I.E. The Pathophysiology and Treatment of Sepsis. N. Engl. J. Med. 2003, 348, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Iba, T.; Di Nisio, M.; Levy, J.H.; Kitamura, N.; Thachil, J. New criteria for sepsis-induced coagulopathy (SIC) following the revised sepsis definition: A retrospective analysis of a nationwide survey. BMJ Open 2017, 7, e017046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iba, T.; Levy, J.H.; Warkentin, T.E.; Thachil, J.; Van Der Poll, T.; Levi, M. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J. Thromb. Haemost. 2019, 17, 1989–1994. [Google Scholar] [CrossRef] [Green Version]
- Leiva, O.; Newcomb, R.; Connors, J.; Al-Samkari, H. Cancer and thrombosis: New insights to an old problem. J. Méd. Vasc. 2020, 45, 6S8–6S16. [Google Scholar] [CrossRef]
- Ikezoe, T. Advances in the diagnosis and treatment of disseminated intravascular coagulation in haematological malignancies. Int. J. Hematol. 2021, 113, 34–44. [Google Scholar] [CrossRef]
- Levi, M. Clinical characteristics of disseminated intravascular coagulation in patients with solid and hematological cancers. Thromb. Res. 2018, 164 (Suppl. S1), S77–S81. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Thachil, J.; Di Nisio, M.; Mathew, P.; Kurosawa, S.; Gando, S.; Kim, H.K.; Nielsen, J.D.; Dempfle, C.E.; Levi, M.; et al. Guidance for diagnosis and treatment of DIC from harmonization of the recommendations from three guidelines. J. Thromb. Haemost. 2013. [Google Scholar] [CrossRef]
- Levi, M.; Marcel, M.; Toh, C.H.; Thachil, J.; Watson, H.G. Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br. J. Haematol. 2009, 145, 24–33. [Google Scholar] [CrossRef]
- Wiedermann, C.J. Antithrombin concentrate use in disseminated intravascular coagulation of sepsis: Meta-analyses revisited. J. Thromb. Haemost. 2018, 16, 455–457. [Google Scholar] [CrossRef] [Green Version]
- Wada, H.; Asakura, H.; Okamoto, K.; Iba, T.; Uchiyama, T.; Kawasugi, K.; Koga, S.; Mayumi, T.; Koike, K.; Gando, S.; et al. Expert consensus for the treatment of disseminated intravascular coagulation in Japan. Thromb. Res. 2010, 125, 6–11. [Google Scholar] [CrossRef]
- Vincent, J.-L.; François, B.; Zabolotskikh, I.; Daga, M.K.; Lascarrou, J.-B.; Kirov, M.Y.; Pettilä, V.; Wittebole, X.; Meziani, F.; Mercier, E.; et al. Effect of a Recombinant Human Soluble Thrombomodulin on Mortality in Patients with Sepsis-Associated Coagulopathy: The SCARLET Randomized Clinical Trial. JAMA 2019, 321, 1993–2002. [Google Scholar] [CrossRef] [Green Version]
- Yamakawa, K.; Murao, S.; Aihara, M. Recombinant Human Soluble Thrombomodulin in Sepsis-Induced Coagulopathy: An Updated Systematic Review and Meta-Analysis. Thromb. Haemost. 2019, 119, 056–065. [Google Scholar] [CrossRef] [PubMed]
- Umemura, Y.; Yamakawa, K.; Ogura, H.; Yuhara, H.; Fujimi, S. Efficacy and safety of anticoagulant therapy in three specific populations with sepsis: A meta-analysis of randomized controlled trials. J. Thromb. Haemost. 2016, 14, 518–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levi, M.; Levy, M.; Williams, M.D.; Douglas, I.; Artigas, A.; Antonelli, M.; Wyncoll, D.; Janes, J.; Booth, F.V.; Wang, D.; et al. Prophylactic Heparin in Patients with Severe Sepsis Treated with Drotrecogin Alfa (Activated). Am. J. Respir. Crit. Care Med. 2007, 176, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-J.; Ou, S.-M.; Shih, C.-J.; Chao, P.-W.; Wang, L.-F.; Shih, Y.-N.; Li, S.-Y.; Kuo, S.-C.; Hsu, Y.-T.; Chen, Y.-T. Association of prior antiplatelet agents with mortality in sepsis patients: A nationwide population-based cohort study. Intensive Care Med. 2015, 41, 806–813. [Google Scholar] [CrossRef]
- Eisen, D.P.; Leder, K.; Woods, R.L.; Lockery, J.E.; McGuinness, S.L.; Wolfe, R.; Pilcher, D.; Moore, E.M.; Shastry, A.; Nelson, M.R.; et al. Effect of aspirin on deaths associated with sepsis in healthy older people (ANTISEPSIS): A randomised, double-blind, placebo-controlled primary prevention trial. Lancet Respir. Med. 2021, 9, 186–195. [Google Scholar] [CrossRef]
- Li, H.L.; Feng, Q.; Tsoi, M.F.; Fei, Y.; Cheung, B.M.Y. Risk of infections in patients treated with ticagrelor vs. clopidogrel: A systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Pharmacother. 2021, 7, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Goobie, S.M.; Shander, A. One Size Does Not Fit All in Treating Massive Hemorrhage. Anesth. Analg. 2020, 131, 480–482. [Google Scholar] [CrossRef] [PubMed]
- Adam, E.H.; Fischer, D. Plasma Transfusion Practice in Adult Surgical Patients: Systematic Review of the Literature. Transfus. Med. Hemother. 2020, 47, 347–360. [Google Scholar] [CrossRef]
- Johansson, P.I.; Stensballe, J.; Oliveri, R.; Wade, C.E.; Ostrowski, S.R.; Holcomb, J.B. How I treat patients with massive hemorrhage. Blood 2014, 124, 3052–3058. [Google Scholar] [CrossRef] [Green Version]
- Nienaber, U.; Innerhofer, P.; Westermann, I.; Schöchl, H.; Attal, R.; Breitkopf, R.; Maegele, M. The impact of fresh frozen plasma vs coagulation factor concentrates on morbidity and mortality in trauma-associated haemorrhage and massive transfusion. Injury 2011, 42, 697–701. [Google Scholar] [CrossRef]
- Gonzalez, E.; Moore, E.E.; Moore, H.B.; Chapman, M.P.; Chin, T.L.; Ghasabyan, A.; Wohlauer, M.V.; Barnett, C.C.; Bensard, D.D.; Biffl, W.L.; et al. Goal-directed Hemostatic Resuscitation of Trauma-induced Coagulopathy: A Pragmatic Randomized Clinical Trial Comparing a Viscoelastic Assay to Conventional Coagulation Assays. Ann. Surg. 2016, 263, 1051–1059. [Google Scholar] [CrossRef] [PubMed]
- Innerhofer, P.; Fries, D.; Mittermayr, M.; Innerhofer, N.; von Langen, D.; Hell, T.; Gruber, G.; Schmid, S.; Friesenecker, B.; Lorenz, I.H.; et al. Reversal of trauma-induced coagulopathy using first-line coagulation factor concentrates or fresh frozen plasma (RETIC): A single-centre, parallel-group, open-label, randomised trial. Lancet Haematol. 2017, 4, e258–e271. [Google Scholar] [CrossRef]
- Innerhofer, P.; Westermann, I.; Tauber, H.; Breitkopf, R.; Fries, D.; Kastenberger, T.; El Attal, R.; Strasak, A.; Mittermayr, M. The exclusive use of coagulation factor concentrates enables reversal of coagulopathy and decreases transfusion rates in patients with major blunt trauma. Injury 2013, 44, 209–216. [Google Scholar] [CrossRef] [PubMed]
- van den Brink, D.P.; Kleinveld, D.J.B.; Sloos, P.H.; Thomas, K.A.; Stensballe, J.; Johansson, P.I.; Pati, S.; Sperry, J.; Spinella, P.C.; Juffermans, N.P. Plasma as a resuscitation fluid for volume-depleted shock: Potential benefits and risks. Transfusion 2021, 61 (Suppl. 1), S301–S312. [Google Scholar] [CrossRef]
- Peng, Z.; Pati, S.; Potter, D.; Brown, R.; Holcomb, J.B.; Grill, R. Fresh frozen plasma lessens pulmonary endothelial inflamma-tion and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan 1. Shock 2013, 40, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wataha, K.; Menge, T.; Deng, X.; Shah, A.; Bode, A.; Holcomb, J.; Potter, D.; Kozar, R.; Spinella, P.; Pati, S. Spray-dried plasma and fresh frozen plasma modulate permeability and inflammation in vitro in vascular endothelial cells. Transfusion 2013, 53, 80S–90S. [Google Scholar] [CrossRef] [PubMed]
- Torres, L.N.; Sondeen, J.L.; Ji, L.; Dubick, M.A.; Filho, I.T. Evaluation of resuscitation fluids on endothelial glycocalyx, venular blood flow, and coagulation function after hemorrhagic shock in rats. J. Trauma Acute Care Surg. 2013, 75, 759–766. [Google Scholar] [CrossRef]
- Nohe, B.; Kiefer, R.T.; Ploppa, A.; Haeberle, H.A.; Schroeder, T.H.; Dieterich, H.J. The effects of fresh frozen plasma on neu-trophil-endothelial interactions. Anesth. Analg. 2003, 97, 216–221. [Google Scholar] [PubMed]
- Khan, S.; Davenport, R.; Raza, I.; Glasgow, S.; De’Ath, H.D.; Johansson, P.I.; Curry, N.; Stanworth, S.; Gaarder, C.; Brohi, K. Damage control resuscitation using blood component therapy in standard doses has a limited effect on coagulopathy during trauma hemorrhage. Intensive Care Med. 2015, 41, 239–247. [Google Scholar] [CrossRef]
- Levy, J.H.; Goodnough, L.T. How I use fibrinogen replacement therapy in acquired bleeding. Blood 2015, 125, 1387–1393. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.A.; Bader, S.O.; Görlinger, K. Novel approaches in management of perioperative coagulopathy. Curr. Opin. Anaesthesiol. 2014, 27, 72–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietrich, W.; Faraoni, D.; von Heymann, C.; Bolliger, D.; Ranucci, M.; Sander, M.; Rosseel, P. ESA guidelines on the man-agement of severe perioperative bleeding: Comments on behalf of the Subcommittee on Transfusion and Haemostasis of the European Association of Cardiothoracic Anaesthesiologists. Eur. J. Anaesthesiol. 2013, 30, 1–3. [Google Scholar] [CrossRef]
- Roberts, I.; Shakur-Still, H.; Coats, T.; Hunt, B.; Balogun, E.; Barnetson, L.; Cook, L.; Kawahara, T.; Perel, P.; Prieto-Merino, D.; et al. The CRASH-2 trial: A randomised controlled trial and economic evaluation of the effects of tranexamic acid on death, vascular occlusive events and transfusion requirement in bleeding trauma patients. Health Technol. Assess. 2013, 17, 1–79. [Google Scholar] [CrossRef]
- Tripodi, A.; Mannucci, P.M. The Coagulopathy of Chronic Liver Disease. N. Engl. J. Med. 2011, 365, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Stravitz, R.T.; Lisman, T. Rebalanced Hemostasis in Patients with Acute Liver Failure. Semin. Thromb. Hemost. 2015, 41, 468–473. [Google Scholar] [CrossRef]
- Rifaie, N.; Saner, F.H. Critical care management in patients with acute liver failure. Best Pract. Res. Clin. Anaesthesiol. 2020, 34, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Stravitz, R.T.; Lisman, T.; Luketic, V.A.; Sterling, R.K.; Puri, P.; Fuchs, M.; Ibrahim, A.; Lee, W.M.; Sanyal, A.J. Minimal effects of acute liver injury/acute liver failure on hemostasis as assessed by thromboelastography. J. Hepatol. 2012, 56, 129–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabbani, A.-R.; Tergast, T.L.; Manns, M.P.; Maasoumy, B. Treatment strategies for acute-on-chronic liver failure. Med. Klin. Intensivmed. Notfallmed. 2021, 116, 3–16. [Google Scholar] [CrossRef]
- Olson, J.C. Thromboelastography-Guided Blood Product Use Before Invasive Procedures in Cirrhosis With Severe Coagulopathy: A Randomized Controlled Trial. Clin. Liver Dis. 2019, 13, 102–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, A.; Niu, B.; Woreta, T.; Chen, P.-H. Clinical Considerations of Coagulopathy in Acute Liver Failure. J. Clin. Transl. Hepatol. 2020, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Angeli, P.; Bernardi, M.; Villanueva, C.; Francoz, C.; Mookerjee, R.; Trebicka, J.; Krag, A.; Laleman, W.; Gines, P. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J. Hepatol. 2018, 69, 406–460. [Google Scholar] [CrossRef] [Green Version]
- Singanayagam, A.; Bernal, W. Update on acute liver failure. Curr. Opin. Crit. Care 2015, 21, 134–141. [Google Scholar] [CrossRef]
- Rocha, L.L.; Neto, A.S.; Pessoa, C.M.S.; Almeida, M.D.; Juffermans, N.P.; Crochemore, T.; Rodrigues, R.R.; Filho, R.R.; de Freitas Chaves, R.C.; Cavalheiro, A.M.; et al. Comparison of three transfusion protocols prior to central venous catheterization in patients with cirrhosis: A randomized controlled trial. J. Thromb. Haemost. 2019, 18, 560–570. [Google Scholar] [CrossRef]
- Van De Weerdt, E.K.; Biemond, B.J.; Baake, B.; Vermin, B.; Binnekade, J.M.; Van Lienden, K.P.; Vlaar, A.P. Central venous catheter placement in coagulopathic patients: Risk factors and incidence of bleeding complications. Transfusion 2017, 57, 2512–2525. [Google Scholar] [CrossRef] [Green Version]
- Kujovich, J.L. Hemostatic Defects in End Stage Liver Disease. Crit. Care Clin. 2005, 21, 563–587. [Google Scholar] [CrossRef]
- Bundesärztekammer. Richtlinie zur Gewinnung von Blut und Blutbestandteilen und zur Anwendung von Blutprodukten (Richtlinie Hämotherapie); German Medical Association: Berlin, Germany, 2020. [Google Scholar]
- Garcia-Tsao, G.; Sanyal, A.J.; Grace, N.D.; Carey, W.D.; the Practice Guidelines Committee of the American Association for the Study of Liver Diseases; the Practice Parameters Committee of the American College of Gastroenterology. Prevention and Management of Gastroesophageal Varices and Variceal Hemorrhage in Cirrhosis. Am. J. Gastroenterol. 2007, 102, 2086–2102. [Google Scholar] [CrossRef] [PubMed]
- Northup, P.G.; Caldwell, S.H. Coagulation in Liver Disease: A Guide for the Clinician. Clin. Gastroenterol. Hepatol. 2013, 11, 1064–1074. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Hum, J.; Jou, J.; Scanlan, R.M.; Shatzel, J. Transfusion strategies in patients with cirrhosis. Eur. J. Haematol. 2020, 104, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Drolz, A.; Horvatits, T.; Roedl, K.; Rutter, K.; Staufer, K.; Kneidinger, N.; Holzinger, U.; Zauner, C.; Schellongowski, P.; Heinz, G.; et al. Coagulation parameters and major bleeding in critically ill patients with cirrhosis. Hepatology 2016, 64, 556–568. [Google Scholar] [CrossRef] [Green Version]
- Palascak, J.E.; Martinez, J. Dysfibrinogenemia Associated with Liver Disease. J. Clin. Investig. 1977, 60, 89–95. [Google Scholar] [CrossRef]
- Desborough, M.J.R.; Kahan, B.C.; Stanworth, S.J.; Jairath, V. Fibrinogen as an independent predictor of mortality in decompensated cirrhosis and bleeding. Hepatology 2017, 65, 1079–1080. [Google Scholar] [CrossRef] [Green Version]
- British Committee for Standards in Haematology; Stainsby, D.; MacLennan, S.; Thomas, D.; Isaac, J.; Hamilton, P.J. Guidelines on the management of massive blood loss. Br. J. Haematol. 2006, 135, 634–641. [Google Scholar] [CrossRef]
- Levy, J.H.; Welsby, I.; Goodnough, L.T. Fibrinogen as a therapeutic target for bleeding: A review of critical levels and replacement therapy. Transfusion 2014, 54, 1389–1405. [Google Scholar] [CrossRef]
- Stravitz, R.T.; Bowling, R.; Bradford, R.L.; Key, N.S.; Glover, S.; Thacker, L.R.; Gabriel, D.A. Role of procoagulant microparticles in mediating complications and outcome of acute liver injury/acute liver failure. Hepatology 2013, 58, 304–313. [Google Scholar] [CrossRef] [Green Version]
- Shatzel, J.; Dulai, P.S.; Harbin, D.; Cheung, H.; Reid, T.N.; Kim, J.; James, S.L.; Khine, H.; Batman, S.; Whyman, J.; et al. Safety and efficacy of pharmacological thromboprophylaxis for hospitalized patients with cirrhosis: A single-center retrospective cohort study. J. Thromb. Haemost. 2015, 13, 1245–1253. [Google Scholar] [CrossRef]
- O’Leary, J.G.; Greenberg, C.S.; Patton, H.M.; Caldwell, S.H. AGA Clinical Practice Update: Coagulation in Cirrhosis. Gastroenterology 2019, 157, 34–43.e1. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Puri, K.; Liangpunsakul, S. Deep vein thrombosis and pulmonary embolism in cirrhotic patients: Systematic review. World J. Gastroenterol. 2014, 20, 5737–5745. [Google Scholar] [CrossRef] [PubMed]
- Ha, N.B.; Regal, R.E. Anticoagulation in Patients with Cirrhosis: Caught Between a Rock-Liver and a Hard Place. Ann. Pharmacother. 2016, 50, 402–409. [Google Scholar] [CrossRef]
- Weinberg, E.M.; Palecki, J.; Reddy, K.R. Direct-Acting Oral Anticoagulants (DOACs) in Cirrhosis and Cirrhosis-Associated Portal Vein Thrombosis. Semin. Liver Dis. 2019, 39, 195–208. [Google Scholar] [CrossRef] [Green Version]
- Bagshaw, S.M.; Laupland, K.B.; Boiteau, P.J.; Godinez-Luna, T. Is regional citrate superior to systemic heparin anticoagulation for continuous renal replacement therapy? A prospective observational study in an adult regional critical care system. J. Crit. Care 2005, 20, 155–161. [Google Scholar] [CrossRef]
- Monchi, M.; Berghmans, D.; LeDoux, D.; Canivet, J.-L.; Dubois, B.; Damas, P. Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltration: A prospective randomized study. Intensive Care Med. 2004, 30, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-Y.; Hsu, Y.-H.; Bai, C.-H.; Lin, Y.-F.; Wu, C.-H.; Tam, K.-W. Regional Citrate Versus Heparin Anticoagulation for Continuous Renal Replacement Therapy: A Meta-Analysis of Randomized Controlled Trials. Am. J. Kidney Dis. 2012, 59, 810–818. [Google Scholar] [CrossRef]
- Becker, R.C. COVID-19 update: COVID-19-associated coagulopathy. J. Thromb. Thrombolysis 2020, 50, 54–67. [Google Scholar] [CrossRef]
- Polimeni, A.; Leo, I.; Spaccarotella, C.; Mongiardo, A.; Sorrentino, S.; Sabatino, J.; De Rosa, S.; Indolfi, C. Differences in coagulopathy indices in patients with severe versus non-severe COVID-19: A meta-analysis of 35 studies and 6427 patients. Sci. Rep. 2021, 11, 10464. [Google Scholar] [CrossRef]
- Wahid, L.; Ortel, T.L. Anticoagulant Therapy in Patients Hospitalized with COVID-19. JAMA Intern. Med. 2021. [Google Scholar] [CrossRef]
- INSPIRATION Investigators; Sadeghipour, P.; Talasaz, A.H.; Rashidi, F.; Sharif-Kashani, B.; Beigmohammadi, M.T.; Farrokhpour, M.; Sezavar, S.H.; Payandemehr, P.; Dabbagh, A.; et al. Effect of Intermediate-Dose vs. Standard-Dose Prophylactic Anticoagulation on Thrombotic Events, Extracorporeal Membrane Oxygenation Treatment, or Mortality among Patients with COVID-19 Admitted to the Intensive Care Unit: The INSPIRATION Randomized Clinical Trial. JAMA 2021, 325, 1620. [Google Scholar] [CrossRef]
- REMAP-CAP Investigators; Investigators ACTIV-4a; ATTACC Investigators. Therapeutic Anticoagulation with Heparin in Critically Ill Patients with COVID-19. N. Engl. J. Med. 2021, 385, 777–789. [Google Scholar] [CrossRef] [PubMed]
- Granja, T.; Hohenstein, K.; Schüssel, P.; Fischer, C.; Prüfer, T.; Schibilsky, D.; Wendel, H.P.; Jaschonek, K.; Serna-Higuita, L.; Schlensak, C.; et al. Multi-Modal Characterization of the Coagulopathy Associated With Extracorporeal Membrane Oxygenation. Crit. Care Med. 2020, 48, e400–e408. [Google Scholar] [CrossRef]
- Straub, A. Blood Coagulation Disorders During ECMO and LVAD Therapy. Anästhesiol. Intensivmed. Notfallmed. Schmerzther. AINS 2019, 54, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Lavrentieva, A.; Kontakiotis, T.; Bitzani, M.; Papaioannou-Gaki, G.; Parlapani, A.; Thomareis, O.; Tsotsolis, N.; Giala, M.-A. Early coagulation disorders after severe burn injury: Impact on mortality. Intensive Care Med. 2008, 34, 700–706. [Google Scholar] [CrossRef]
- Sherren, P.; Hussey, J.; Martin, R.; Kundishora, T.; Parker, M.; Emerson, B. Acute burn induced coagulopathy. Burns 2013, 39, 1157–1161. [Google Scholar] [CrossRef]
- King, D.R.; Namias, N.; Andrews, D.M. Coagulation abnormalities following thermal injury. Blood Coagul. Fibrinolysis 2010, 21, 666–669. [Google Scholar] [CrossRef]
- Lu, R.P.; Ni, A.; Lin, F.-C.; Ortiz-Pujols, S.M.; Adams, S.D.; Monroe, D.M., 3rd; Whinna, H.C.; Cairns, B.A.; Key, N.S. Major burn injury is not associated with acute traumatic coagulopathy. J. Trauma Acute Care Surg. 2013, 74, 1474–1479. [Google Scholar] [CrossRef] [Green Version]
- Geng, K.; Liu, Y.; Yang, Y.; Ding, X.; Tian, X.; Liu, H.; Yan, H. Incidence and Prognostic Value of Acute Coagulopathy After Extensive Severe Burns. J. Burn. Care Res. 2020, 41, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.L.; Cairns, B.A.; Ramadan, F.; Dalston, J.S.; Fakhry, S.M.; Rutledge, R.; Meyer, A.A.; Peterson, H.D. Effect of inhalation injury, burn size, and age on mortality: A study of 1447 consecutive burn patients. J. Trauma 1994, 37, 655–659. [Google Scholar] [CrossRef]
- Glas, G.J.; Levi, M.; Schultz, M.J. Coagulopathy and its management in patients with severe burns. J. Thromb. Haemost. 2016, 14, 865–874. [Google Scholar] [CrossRef] [Green Version]
- Marsden, N.J.; Van Carlen, M.; Dean, S.; Azzopardi, E.A.; Hemington-Gorse, S.; Evans, P.A.; Whitaker, I.S. Measuring coagulation in burns: An evidence-based systematic review. Scars Burn. Heal. 2017, 3, 2059513117728201. [Google Scholar] [CrossRef]
- Mitra, B.; Wasiak, J.; Cameron, P.; O’Reilly, G.; Dobson, H.; Cleland, H. Early coagulopathy of major burns. Injury 2013, 44, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, T.L. Burn injury and blood transfusion. Curr. Opin. Anaesthesiol. 2019, 32, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, A.; Alsina, E.; Landín, L.; García-Miguel, J.F.; Casado, C.; Gilsanz, F. Transfusion requirements in burn patients undergoing primary wound excision: Effect of tranexamic acid. Minerva Anestesiol. 2017, 83, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Péju, E.; Llitjos, J.-F.; Charpentier, J.; François, A.; Marin, N.; Cariou, A.; Chiche, J.-D.; Mira, J.-P.; Lambert, J.; Jamme, M.; et al. Impact of Blood Product Transfusions on the Risk of ICU-Acquired Infections in Septic Shock. Crit. Care Med. 2021, 49, 912–922. [Google Scholar] [CrossRef]
- Vlaar, A.P.; Hofstra, J.J.; Determann, R.M.; Veelo, D.P.; Paulus, F.; Levi, M. Transfusion-related acute lung injury in cardiac surgery patients is characterized by pulmonary inflammation and coagulopathy: A prospective nested case–control study. Crit. Care Med. 2012, 40, 2813–2820. [Google Scholar] [CrossRef] [PubMed]
- Toy, P.; Gajic, O.; Bacchetti, P.; Looney, M.R.; Gropper, M.A.; Hubmayr, R.; Lowell, C.A.; Norris, P.J.; Murphy, E.L.; Weiskopf, R.B.; et al. Transfusion-related acute lung injury: Incidence and risk factors. Blood 2012, 119, 1757–1767. [Google Scholar] [CrossRef]
- Roubinian, N. TACO and TRALI: Biology, risk factors, and prevention strategies. Hematol. Am. Soc. Hematol. Educ. Program 2018, 2018, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Straat, M.; Müller, M.C.; Meijers, J.C.; Arbous, M.S.; de Man, A.M.S.; Beurskens, C.J.; Vroom, M.B.; Juffermans, N.P. Effect of transfusion of fresh frozen plasma on parameters of endothelial condition and inflammatory status in non-bleeding critically ill patients: A prospective substudy of a randomized trial. Crit. Care 2015, 19, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Stanworth, S.J.; Grant-Casey, J.; Lowe, D.; Laffan, M.; New, H.; Murphy, M.F.; Allard, S. The use of fresh-frozen plasma in England: High levels of inappropriate use in adults and children. Transfusion 2011, 51, 62–70. [Google Scholar] [CrossRef]
- Walsh, T.S.; Stanworth, S.J.; Prescott, R.J.; Lee, R.J.; Watson, D.M.; Wyncoll, D. Prevalence, management, and outcomes of critically ill patients with prothrombin time prolongation in United Kingdom intensive care units. Crit. Care Med. 2010, 38, 1939–1946. [Google Scholar] [CrossRef] [PubMed]
- Executive Committee of the German Medical Association on the Recommendation of the Scientific Advisory Board. Cross-Sectional Guidelines for Therapy with Blood Components and Plasma Derivatives: Chapter 5 Human Albumin—Revised. Transfus. Med. Hemother. 2016, 43, 223–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holland, L.L.; Foster, T.M.; Marlar, R.A.; Brooks, J.P. Fresh frozen plasma is ineffective for correcting minimally elevated international normalized ratios. Transfusion 2005, 45, 1234–1235. [Google Scholar] [CrossRef]
- Busund, R.; Kuklin, V.; Utrobin, U.; Nedashkovsky, E. Plasmapheresis in severe sepsis and septic shock: A prospective, randomised, controlled trial. Intensive Care Med. 2002, 28, 1434–1439. [Google Scholar] [CrossRef] [Green Version]
- Green, L.; Bolton-Maggs, P.; Beattie, C.; Cardigan, R.; Kallis, Y.; Stanworth, S.J.; Thachil, J.; Zahra, S. British Society of Haematology Guidelines on the spectrum of fresh frozen plasma and cryoprecipitate products: Their handling and use in various patient groups in the absence of major bleeding. Br. J. Haematol. 2018, 181, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.A.; Arnold, P.; Bingham, R.M.; Brohi, K.; Clark, R.; Collis, R.; Gill, R.; McSporran, W.; Moor, P.; Baikady, R.R.; et al. AAGBI guidelines: The use of blood components and their alternatives 2016. Anaesthesia 2016, 71, 829–842. [Google Scholar] [CrossRef]
- Raphael, J.; Mazer, C.D.; Subramani, S.; Schroeder, A.; Abdalla, M.; Ferreira, R.; Roman, P.E.; Patel, N.; Welsby, I.; Greilich, P.E.; et al. Society of Cardiovascular Anesthesiologists Clinical Practice Improvement Advisory for Management of Perioperative Bleeding and Hemostasis in Cardiac Surgery Patients. Anesthesia Analg. 2019, 129, 1209–1221. [Google Scholar] [CrossRef]
- Reiter, N.; Wesche, N.; Perner, A. The majority of patients in septic shock are transfused with fresh-frozen plasma. Dan. Med. J. 2013, 60, 60. [Google Scholar]
- Ostrowski, S.R.; Berg, R.; Windeløv, N.A.; Meyer, M.A.S.; Plovsing, R.R.; Moller, K.; Johansson, P.I. Coagulopathy, catecholamines, and biomarkers of endothelial damage in experimental human endotoxemia and in patients with severe sepsis: A prospective study. J. Crit. Care 2013, 28, 586–596. [Google Scholar] [CrossRef]
- Haywood-Watson, R.J.; Holcomb, J.B.; Gonzalez, E.A.; Peng, Z.; Pati, S.; Park, P.W.; Wang, W.; Zaske, A.M.; Menge, T.; Kozar, R.A. Modulation of Syndecan-1 Shedding after Hemorrhagic Shock and Resuscitation. PLoS ONE 2011, 6, e23530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashida, K.; Parks, W.C.; Park, P.W. Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by re-moving sequestered CXC chemokines. Blood 2009, 114, 3033–3043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pati, S.; Matijevic, N.; Doursout, M.-F.; Ko, T.; Cao, Y.; Deng, X.; Kozar, R.A.; Hartwell, E.; Conyers, J.; Holcomb, J.B. Protective Effects of Fresh Frozen Plasma on Vascular Endothelial Permeability, Coagulation, and Resuscitation After Hemorrhagic Shock Are Time Dependent and Diminish Between Days 0 and 5 After Thaw. J. Trauma 2011, 69, S55–S63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Criteria |
---|
Hepatic or renal disease |
Ethanol abuse |
Malignancy |
Older (age > 75) |
Reduced platelet count or function |
Rebleeding (Prior Bleed) |
Hypertension (uncontrolled) |
Anemia |
Genetic factors (CYP 2C9 single-nucleotide polymorphisms) |
Excessive fall risk |
Stroke |
Anticoagulant | Laboratory Test | Reversal Agent |
---|---|---|
Aspirin Clopidogrel, ticagrelor Prasugrel | multiple platelet function analyzer | Consider the use of desmopressin Platelet transfusion |
unfractionated Heparin | aPTT | Protamine |
Vitamin-K-Antagonists | PT/INR | Vitamin K Prothrombin complex concentrate (PCC) (FFP) |
Low molecular weight heparins (LMWH) | Anti-FXa | Protamine (partial) Aripazine |
Fondaparinux | Anti-FXa | recombinant activated factor VII (partially) Aripazine Activated PCC Andexanet alfa |
Factor Xa inhibitors (apixaban, rivaroxaban, edoxaban, betrixaban) | Anti-FXa | Andexanet alfa (irreversible) Aripazine PCC |
Dabigatran | Limited value except Thrombin Time, Ecarin Clotting Time, TEG, anti-FIIa | Idarucizumab (irreversible) Aripazine PCC |
Argatroban | Limited value except TEG Anti-FIIa PTT or ACT | No specific antidote |
Alteplase | D-dimer | Tranexamic acid (partial) |
SIC-Score | ||
---|---|---|
Item | Range | Score |
platelet count (−109/L) | <100 | 2 |
>100, ≤150 | 1 | |
prothrombin time (PT ratio) | >1.4 | 2 |
>1.2 ≤ 1.4 | 1 | |
SOFA score | ≥2 | 2 |
1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neuenfeldt, F.S.; Weigand, M.A.; Fischer, D. Coagulopathies in Intensive Care Medicine: Balancing Act between Thrombosis and Bleeding. J. Clin. Med. 2021, 10, 5369. https://doi.org/10.3390/jcm10225369
Neuenfeldt FS, Weigand MA, Fischer D. Coagulopathies in Intensive Care Medicine: Balancing Act between Thrombosis and Bleeding. Journal of Clinical Medicine. 2021; 10(22):5369. https://doi.org/10.3390/jcm10225369
Chicago/Turabian StyleNeuenfeldt, Friederike S., Markus A. Weigand, and Dania Fischer. 2021. "Coagulopathies in Intensive Care Medicine: Balancing Act between Thrombosis and Bleeding" Journal of Clinical Medicine 10, no. 22: 5369. https://doi.org/10.3390/jcm10225369
APA StyleNeuenfeldt, F. S., Weigand, M. A., & Fischer, D. (2021). Coagulopathies in Intensive Care Medicine: Balancing Act between Thrombosis and Bleeding. Journal of Clinical Medicine, 10(22), 5369. https://doi.org/10.3390/jcm10225369