Arginase Gene Polymorphism Increases Risk of Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Genotype Determination
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Visaria, J.; Iver, N.N.; Raval, A.; Kong, S.; Hobbs, T.; Bouchard, J.; Kern, D.M.; Willey, V. Incidence and prevalence of microvascular and macrovascular diseases and all-cause mortality in type 2 diabetes mellitus: A 10-year study in a US commercially insured and Medicare Advantage population. Clin. Ther. 2019, 41, 1522–1536. [Google Scholar] [CrossRef]
- Murea, M.; Ma, L.; Freedman, B. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev. Diabet. Stud. 2012, 9, 6–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkinson, C.P.; Grody, W.W.; Cederbaum, S.D. Comparative properties of arginase. Comp. Biochem. Physiol. Biochem. Mol. Biol. 1996, 114, 107–132. [Google Scholar] [CrossRef]
- Romero, M.I.; Platt, D.H.; Tawfik, H.E.; Labazi, M.; Remessy, A.B.; Bartoli, M.; Caldwell, R.; Caldwell, R.W. Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ. Res. 2008, 102, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Romero, M.I.; Iddings, J.A.; Platt, D.H.; Ali, M.I.; Cederbaum, S.D.; Stepp, D.N.; Caldwell, R.; Caldwell, R.W. Diabetes-induced vascular dysfunction involves arginase 1. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, H150–H166. [Google Scholar] [CrossRef] [Green Version]
- Bagi, Z.; Feher, A.; Dou, H.; Broska, Z. Selective upregulation of arginase 1 in coronary arteries of diabetic patients. Front. Immunol. 2013, 4, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Elms, S.C.; Togue, H.A.; Rajas, M.; Xu, Z.; Caldwell, R.W.; Caldwell, R.B. The role of arginase 1 in diabetes-induced retinal vascular dysfunction in mouse and rat models of diabetes. Diabetologia 2013, 56, 654–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Fang, F.; Jin, W.B.; Wang, X.; Zheng, D.W. Assessment of serum arginase 1, as a type 2 diabetes mellitus diagnosis biomarker in patients. Exp. Ther. Med. 2014, 8, 585–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cederbaum, S.D.; Yu, H.A.; Grody, W.W.; Kern, R.M.; Yoo, P.; Iyer, R.K. Arginase I and II: Do their functions overlap ? Mol. Genet. Metab. 2004, 81 (Suppl. 1), 538–544. [Google Scholar] [CrossRef] [PubMed]
- Sparkes, R.S.; Dizikes, G.J.; Klisak, I.; Grody, W.W.; Mohandas, T.; Heinzmann, C.; Zollman, S.; Lusis, A.J.; Cederbaum, S.D. The gene for human liver arginase (ARG1) is assigned to chromosome band 6q23. Am. J. Hum. Genet. 1986, 39, 186–193. [Google Scholar]
- Takiguchi, M.; Mori, M. Human liver type arginase gene: Structure and expression of the gene and analysis of the promoter region. Nucleic Acids Res. 1988, 16, 8789–8802. [Google Scholar] [CrossRef] [Green Version]
- Dumont, J.; Zureik, M.; Cottel, D.; Montaye, M.; Ducimetiere, P.; Amouyel, P.; Brousseau, T. Association of arginase 1 gene polymorphisms with the risk of myocardial infarction and common carotid intima media thickness. J. Mol. Genet. 2007, 44, 526–531. [Google Scholar] [CrossRef] [Green Version]
- Sediri, Y.; Kellel, A.; Ben Ali, S.; Omar, S.; Mourali, M.; Allal-Elasmi, M.; Taïeb, S.H.; Sanhaji, H.; Feki, M.; Mechmeche, R.; et al. Association of rs2781666 G/T polymorphism of arginase 1 gene with myocardial infarction in Tunisian male population. Clin. Biochem. 2010, 43, 106–109. [Google Scholar] [CrossRef]
- Shah, S.F.A.; Khan, M.J.; Iqbal, T.; Akram, S.; Waheed, F.; Satti, H.S.; Rafiq, M.A.; Hussain, S. Arginase-1 variants and the risk of familial coronary artery disease in subjects originating from Pakistan. Genet. Test Mol. Biomark. 2019, 23, 32–38. [Google Scholar] [CrossRef]
- Shah, S.F.A.; Iqbal, T.; Qamar, R.; Rafiq, M.A.; Hussain, S. ARG1 gene polymorphisms and their association in individuals with essential hypertension: A case-control study. DNA Cell Biol. 2018, 37, 609–616. [Google Scholar] [CrossRef]
- Shah, S.F.A.; Iqbal, T.; Naveed, L.; Akram, S.; Rafiq, M.A.; Hussain, S. ARG1 single nucleotide polymorphisms rs2781666 and rs2781665 confer risk of type 2 diabetes mellitus. EXCLI J. 2018, 17, 847–855. [Google Scholar]
- American Diabetes Association. Standards of medical care in diabetes—2014. Diabetes Care 2014, 37 (Suppl. 1), 14–80. [Google Scholar] [CrossRef] [Green Version]
- Arar, N.H.; Freedman, B.I.; Adler, S.G.; Iyengar, S.K.; Chew, E.Y.; Davis, M.D.; Satko, S.G.; Bowden, D.W.; Duggirala, R.; Elston, R.C.; et al. Heritability of the severity of diabetic retinopathy: The FIND-Eye study. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3839–3845. [Google Scholar] [CrossRef]
- Narayanan, S.P.; Rojas, M.; Suwanpradid, J.; Toque, H.A.; Caldwell, W.; Caldwell, R.B. Arginase in retinopathy. Prog. Retin. Eye Res. 2013, 36, 260–280. [Google Scholar] [CrossRef] [Green Version]
- Buga, G.M.; Singh, R.; Pervin, S.; Rogers, N.E.; Schmitz, D.A.; Jenkinson, C.P.; Cederbaum, S.D.; Ignarro, L.J. Arginase activity in endothelial cells: Inhibition by N6-hydroxy-L-arginine during high-output NO production. Am. J. Physiol. 1996, 271, H1988–H1998. [Google Scholar] [CrossRef]
- Morris, S., Jr.; Kepka-Lenhart, D.; Chen, L.C. Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells. Am. J. Physiol. 1998, 275, E740–E747. [Google Scholar] [CrossRef]
- Zhang, C.; Hein, T.W.; Wang, W.; Chang, C.I.; Kuo, L. Constitutive expression of arginase in microvascular endothelial cells counteracts nitric oxide-mediated vasodilatory function. FASEB J. 2001, 15, 1264–1266. [Google Scholar] [CrossRef]
- Patel, C.; Rojas, M.; Narayanan, S.P.; Zhang, W.; Xu, Z.; Lemtalsi, T.; Jittiporn, K.; Caldwell, R.W.; Caldwell, R.B. Arginase as a mediator of diabetic retinopathy. Front. Immunol. 2013, 4, 173. [Google Scholar] [CrossRef] [Green Version]
- Hein, T.W.; Zhang, C.; Wang, W.; Chang, C.I.; Tengchaisri, N.; Kuo, L. Ischemia-reperfusion selectively impairs nitric-oxide mediated dilation in coronary arterioles: Counteracting role of arginase. FASEB J. 2003, 17, 2328–2330. [Google Scholar] [CrossRef]
- Johnson, F.K.; Johnson, R.A.; Peyton, K.J.; Durante, W. Arginase inhibition restores arteriolar endothelial function in Dahl rats with salt-induced hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, R1057–R1062. [Google Scholar] [CrossRef]
- White, A.R.; Ryoo, S.; Li, D.; Champion, H.C.; Steppan, J.; Wang, D.; Nyhan, D.; Shoukas, A.A.; Hare, J.M.; Berkowitz, D.E. Knockdown of arginase 1 restores NO signaling in the vasculature of old rats. Hypertension 2006, 47, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Clement, A.C.; Bursell, S.E. Retinal blood flow in diabetes. Microcirculation 2007, 14, 49–61. [Google Scholar]
- Nagaoka, T.; Sato, E.; Takahashi, A.; Yokota, H.; Sogawa, K.; Yoshida, A. Impaired retinal circulation in patients with type 2 diabetes mellitus: Retinal laser Doppler velocimetry study. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6729–6734. [Google Scholar] [CrossRef]
Variables | Healthy Controls | T2DM Patients | DR+ | DR− | p Value * |
---|---|---|---|---|---|
N | 400 | 740 | 263 | 477 | |
Gender (male/female) | 205/195 | 392/348 | 139/124 | 253/224 | |
Age (years) | 57.5 ± 8.1 | 60.2 ± 9.4 | 59.8 ± 10.3 | 60.6 ± 8.5 | 0.257 |
Age at diabetes diagnosis (years) | NA | 43.2 ± 7.6 | 42.6 ± 7.2 | 43.8 ± 8.0 | 0.043 |
Diabetes duration (years) | NA | 15.0 ± 9.3 | 16.6 ± 9.1 | 13.4 ± 9.7 | <0.001 |
Hypertension (%) | 0 | 584 (79) | 207 (78.7) | 377 (79) | 0.923 |
Diabetic retinopathy (%) | 0 | 263 (35.5) | 263 (100) | 0 | |
Total cholesterol (mmol/L) | 4.0 ± 0.78 | 4.82 ± 1.2 | 4.94 ± 1.4 | 4.71 ± 0.9 | 0.006 |
HDL cholesterol (mmol/L) | ND | 1.21 ± 0.31 | 1.19 ± 0.32 | 1.23 ± 0.29 | 0.084 |
Triglyceride (mmol/L) | ND | 2.1 ± 0.86 | 2.3 ± 0.86 | 1.9 ± 0.66 | <0.001 |
HbA1c (%) | ND | 8.2 ± 2.5 | 8.4 ± 2.5 | 8.0 ± 2.5 | 0.849 |
Fasting glucose (mmol/L) | 4.61 ± 1.23 | 8.04 ± 3.2 | 8.31 ± 3.44 | 7.85 ± 3.04 | 0.067 |
BMI (kg/m2) | 27.1 ± 4.2 | 29.8 ± 8.8 | 30.6 ± 8.3 | 29.1. ± 9.4 | 0.030 |
Genotypes | MAF | OR (95% CI) b | |||||
---|---|---|---|---|---|---|---|
N | GG | GT | TT | T Allele | TT Genotype a | ||
T2DM | 740 | 388 (52.5) | 294 (39.5) | 58 (8) | 0.28 | 1.40 (1.14–1.72) p = 0.001 | 2.16 (1.23–3.80) p = 0.007 |
T2DM DR+ | 263 | 109 (41.5) | 126 (48) | 28 (10.5) | 0.35 | 1.68 (1.33–2.12) p < 0.0001 | 2.39 (1.36–4.18) p = 0.002 |
T2DM DR− | 477 | 279 (58.5) | 168 (35.5) | 30 (6) | 0.24 | Ref. for T2DM DR+ | |
Controls | 400 | 246 (61.5) | 137 (34.2) | 17 (4.3) | 0.21 | Ref. for T2DM |
ARG1 rs2781666 | T2DM DR+ | T2DM DR− | OR (95% CI) c | p Value |
---|---|---|---|---|
G/T Genotypes | (n = 263) | (n = 477) | ||
Codominant model | ||||
GG | 109 | 279 | ref | - |
GT | 126 | 168 | 1.91 (1.39–2.64) a | 0.0001 |
TT | 28 | 30 | 2.38 (1.36–4.18) a | 0.0023 |
Dominant model | ||||
GG | 109 | 279 | ref | - |
GT + TT | 154 | 198 | 1.99 (1.46–2.70) a | <0.0001 |
Recessive model | ||||
GG + GT | 235 | 447 | ref | - |
TT | 28 | 30 | 1.77 (1.03–3.04) b | 0.0368 |
Variable | Odds Ratio | 95% CI | p Value |
---|---|---|---|
Age at study | 1.19 | 0.71–1.38 | 0.080 |
Gender | 1.26 | 0.83–1.73 | 0.092 |
T2DM duration | 1.31 | 0.74–1.96 | 0.114 |
Age of onset | 1.22 | 0.55–2.36 | 0.652 |
Hypertension | 2.09 | 0.69–4.14 | 0.093 |
BMI | 1.12 | 0.88–1.25 | 0.325 |
HbA1c | 1.14 | 0.93–1.51 | 0.084 |
Total cholesterol | 0.96 | 0.58–1.32 | 0.754 |
HDL-cholesterol | 1.22 | 0.83–2.19 | 0.912 |
Triglycerides | 1.08 | 0.69–1.53 | 0.721 |
T allele * | 1.48 | 1.23–2.02 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buraczynska, M.; Zakrocka, I. Arginase Gene Polymorphism Increases Risk of Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients. J. Clin. Med. 2021, 10, 5407. https://doi.org/10.3390/jcm10225407
Buraczynska M, Zakrocka I. Arginase Gene Polymorphism Increases Risk of Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients. Journal of Clinical Medicine. 2021; 10(22):5407. https://doi.org/10.3390/jcm10225407
Chicago/Turabian StyleBuraczynska, Monika, and Izabela Zakrocka. 2021. "Arginase Gene Polymorphism Increases Risk of Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients" Journal of Clinical Medicine 10, no. 22: 5407. https://doi.org/10.3390/jcm10225407
APA StyleBuraczynska, M., & Zakrocka, I. (2021). Arginase Gene Polymorphism Increases Risk of Diabetic Retinopathy in Type 2 Diabetes Mellitus Patients. Journal of Clinical Medicine, 10(22), 5407. https://doi.org/10.3390/jcm10225407