Angioedema Caused by Drugs That Prevent the Degradation of Vasoactive Peptides: A Pharmacovigilance Database Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Definitions of Suspected Drugs and Adverse Events
2.3. Signal Detection
3. Results
3.1. ACE Inhibitor-Induced Angioedema
3.2. DPP-4 Inhibitor-Induced Angioedema
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernstein, J.A.; Cremonesi, P.; Hoffmann, T.K.; Hollingsworth, J. Angioedema in the emergency department: A practical guide to differential diagnosis and management. Int. J. Emerg. Med. 2007, 10, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieu, M.C.; Bangiyev, J.N.; Thottam, P.J.; Levy, P.D. Predictors of Airway Intervention in Angiotensin-Converting Enzyme Inhibitor-Induced Angioedema. Otolaryngol. Head Neck Surg. 2015, 153, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Stone, C., Jr.; Brown, N.J. Angiotensin-converting Enzyme Inhibitor and Other Drug-associated Angioedema. Immunol. Allergy Clin. N. Am. 2017, 37, 483–495. [Google Scholar] [CrossRef]
- Sachs, B.; Meier, T.; Nöthen, M.M.; Stieber, C.; Stingl, J. Drug-induced angioedema: Focus on bradykinin. Hautarzt 2018, 69, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.J.; Byiers, S.; Carr, D.; Maldonado, M.; Warner, B.A. Dipeptidyl peptidase-IV inhibitor use associated with increased risk of ACE inhibitor-associated angioedema. Hypertension 2009, 54, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Willemen, M.J.; Mantel-Teeuwisse, A.K.; Straus, S.M.; Meyboom, R.H.; Egberts, T.C.; Leufkens, H.G. Use of dipeptidyl peptidase-4 inhibitors and the reporting of infections: A disproportionality analysis in the World Health Organization VigiBase. Diabetes Care 2011, 34, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Scalese, M.J.; Hansen, R.A. Dipeptidyl Peptidase-4 Inhibitor-Associated Risk of Bleeding: An Evaluation of Reported Adverse Events. Ann. Pharmacother. 2017, 51, 563–569. [Google Scholar] [CrossRef]
- Noguchi, Y.; Katsuno, H.; Ueno, A.; Otsubo, M.; Yoshida, A.; Kanematsu, Y.; Sugita, I.; Esaki, H.; Tachi, T.; Tsuchiya, T.; et al. Signals of gastroesophageal reflux disease caused by incretin-based drugs: A disproportionality analysis using the Japanese adverse drug event report database. J. Pharm. Health Care Sci. 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, Y.; Toda, Y.; Esaki, H.; Matsuyama, T.; Tachi, T.; Tsuchiya, T.; Teramachi, H. Association between dipeptidyl peptidase-4 inhibitors and autoimmune disorders: Data mining of the spontaneous reporting system in Japan. Pharmazie 2019, 74, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, Y.; Esaki, H.; Murayama, A.; Sugioka, M.; Koyama, A.; Tachi, T.; Teramachi, H. Association between dipeptidyl peptidase-4 inhibitor and aspiration pneumonia: Disproportionality analysis using the spontaneous reporting system in Japan. Eur. J. Clin. Pharmacol. 2020, 76, 299–304. [Google Scholar] [CrossRef]
- Noguchi, Y.; Takaoka, M.; Hayashi, T.; Tachi, T.; Teramachi, H. Antiepileptic combination therapy with Stevens-Johnson syndrome and toxic epidermal necrolysis: Analysis of a Japanese pharmacovigilance database. Epilepsia 2020, 61, 1979–1989. [Google Scholar] [CrossRef]
- Noguchi, Y.; Ueno, A.; Otsubo, M.; Katsuno, H.; Sugita, I.; Kanematsu, Y.; Yoshida, A.; Esaki, H.; Tachi, T.; Teramachi, H. A new search method using association rule mining for drug-drug interaction based on spontaneous report system. Front. Pharmacol. 2018, 9, 197. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, Y.; Tachi, T.; Teramachi, H. Review of Statistical Methodologies for Detecting Drug-Drug Interactions Using Spontaneous Reporting Systems. Front. Pharmacol. 2019, 10, 1319. [Google Scholar] [CrossRef]
- Noguchi, Y.; Tachi, T.; Teramachi, H. Detection algorithms and attentive points of safety signal using spontaneous reporting systems as a clinical data source. Brief Bioinform. 2021, 22, bbab347. [Google Scholar] [CrossRef]
- Fujita, T. Signal Detection of Adverse Drug Reactions. Jpn. J. Pharmacoepidemiol. 2009, 14, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Szarfman, A.; Machado, S.G.; O’Neill, R.T. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database. Drug Saf. 2002, 25, 381–392. [Google Scholar] [CrossRef]
- Takada, M.; Fujimoto, M.; Motomura, H.; Hosomi, K. Inverse association between sodium channel-blocking antiepileptic drug use and cancer: Data mining of spontaneous reporting and claims databases. Int. J. Med. Sci. 2016, 13, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, S.; Hosomi, K.; Yokoyama, S.; Takada, M. Inverse Association between Metformin and Amiodarone-Associated Extracardiac Adverse Events. Int. J. Med. Sci. 2020, 17, 302–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagashima, T.; Shirakawa, H.; Nakagawa, T.; Kaneko, S. Prevention of antipsychotic-induced hyperglycaemia by vitamin D: A data mining prediction followed by experimental exploration of the molecular mechanism. Sci. Rep. 2016, 6, 26375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrd, J.B.; Shreevatsa, A.; Putlur, P.; Foretia, D.; McAlexander, L.; Sinha, T.; Does, M.D.; Brown, N.J. Dipeptidyl peptidase IV deficiency increases susceptibility to angiotensin-converting enzyme inhibitor-induced peritracheal edema. J. Allergy Clin. Immunol. 2007, 120, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, J.; Murphey, L.J.; Hartert, T.V.; Jiao, S.R.; Simmons, W.H.; Brown, N.J. Dipeptidyl peptidase IV activity in patients with ACE-inhibitor-associated angioedema. Hypertension 2002, 39, 460–464. [Google Scholar] [CrossRef]
- Lepelley, M.; Khouri, C.; Lacroix, C.; Bouillet, L. Angiotensin-converting enzyme and dipeptidyl peptidase-4 inhibitor-induced angioedema: A disproportionality analysis of the WHO pharmacovigilance database. J. Allergy Clin. Immunol. Pract. 2020, 8, 2406–2408. [Google Scholar] [CrossRef] [PubMed]
- Hartnell, N.R.; Wilson, J.P. Replication of the Weber effect using postmarketing adverse event reports voluntarily submitted to the United States Food and Drug Administration. Pharmacotherapy 2004, 24, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Pariente, A.; Gregoire, F.; Fourrier-Reglat, A.; Haramburu, F.; Moore, N. Impact of safety alerts on measures of disproportionality in spontaneous reporting databases: The notoriety bias. Drug Saf. 2007, 30, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.W.; Hochberg, A.M.; Pearson, R.K.; Hauben, M. An experimental investigation of masking in the US FDA adverse event reporting system database. Drug Saf. 2010, 33, 1117–1133. [Google Scholar] [CrossRef]
Target AEs | Other AEs | Total | |
---|---|---|---|
Target drug | N11 | N10 | N1+ |
Other drugs | N01 | N00 | N0+ |
Total | N+1 | N+0 | N++ |
ACE Inhibitors | DPP-4 Inhibitors | |||||
---|---|---|---|---|---|---|
Age | N11 | N1+ | RR (%) | N11 | N1+ | RR (%) |
Total | 176 | 1578 | 11.2 | 101 | 6898 | 1.5 |
Female | 60 | 661 | 9.1 | 44 | 2739 | 1.6 |
Male | 116 | 917 | 12.6 | 57 | 4159 | 1.4 |
<40 | 5 | 173 | 2.9 | 1 | 83 | 1.2 |
40–49 | 3 | 60 | 5.0 | 7 | 269 | 2.6 |
50–59 | 19 | 163 | 11.7 | 21 | 645 | 3.3 |
60–69 | 48 | 333 | 14.4 | 22 | 1659 | 1.3 |
70–79 | 57 | 501 | 11.4 | 29 | 2342 | 1.2 |
80–89 | 43 | 299 | 14.4 | 18 | 1634 | 1.1 |
≥90 | 1 | 49 | 2.0 | 3 | 266 | 1.1 |
Drug | N11 | N1+ | IC (95% CI) |
---|---|---|---|
ACE inhibitors | 176 | 1578 | 2.42 * (2.19–2.65) |
Alacepril | 3 | 21 | 1.47 (−0.10–3.03) |
Benazepril | 1 | 13 | 0.64 (−1.54–2.82) |
Captopril | 2 | 63 | 0.39 (−1.32–2.09) |
Cilazapril | 1 | 12 | 0.66 (−1.53–2.85) |
Delapril | 0 | 10 | −0.29 (−3.30–2.72) |
Enalapril | 86 | 771 | 2.39 * (2.06–2.71) |
Imidapril | 48 | 291 | 2.83 * (2.38–3.27) |
Lisinopril | 17 | 133 | 2.28 * (1.55–3.00) |
Perindopril | 6 | 114 | 1.07 (−0.05–2.20) |
Quinapril | 1 | 30 | 0.30 (−1.81–2.40) |
Temocapril | 7 | 105 | 1.35 * (0.29–2.40) |
Trandolapril | 4 | 33 | 1.57 * (0.19–2.95) |
Drug | N11 | N1+ | IC (95% CI) |
---|---|---|---|
DPP-4 inhibitors | 101 | 6898 | −0.46 † (−0.75–−0.17) |
Alogliptin | 15 | 633 | 0.21 (−0.52–0.94) |
Anagliptin | 2 | 212 | −0.82 (−2.50–0.85) |
Linagliptin | 8 | 736 | −0.82 (−1.79–0.14) |
Omarigliptin | 0 | 131 | ― |
Saxagliptin | 1 | 224 | −1.47 (−3.52–0.58) |
Sitagliptin | 26 | 2131 | −0.71 † (−1.27–−0.15) |
Teneligliptin | 4 | 587 | −1.37 † (−2.66–−0.07) |
Trelagliptin | 4 | 166 | 0.19 (−1.12–1.50) |
Vildagliptin | 45 | 2183 | 0.02 (−0.41–0.46) |
Patient ID | Sex | Age | DPP-4 Inhibitors | ACE Inhibitors | Report Year |
---|---|---|---|---|---|
AB-11007250 | male | 60s | vildagliptin | perindopril | 2011 |
AB-11029595 | male | 70s | vildagliptin | enalapril | 2011 |
AB-11040470 | male | 60s | vildagliptin | enalapril | 2011 |
AB-12027781 | male | 70s | vildagliptin | enalapril | 2012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noguchi, Y.; Murayama, A.; Esaki, H.; Sugioka, M.; Koyama, A.; Tachi, T.; Teramachi, H. Angioedema Caused by Drugs That Prevent the Degradation of Vasoactive Peptides: A Pharmacovigilance Database Study. J. Clin. Med. 2021, 10, 5507. https://doi.org/10.3390/jcm10235507
Noguchi Y, Murayama A, Esaki H, Sugioka M, Koyama A, Tachi T, Teramachi H. Angioedema Caused by Drugs That Prevent the Degradation of Vasoactive Peptides: A Pharmacovigilance Database Study. Journal of Clinical Medicine. 2021; 10(23):5507. https://doi.org/10.3390/jcm10235507
Chicago/Turabian StyleNoguchi, Yoshihiro, Azusa Murayama, Hiroki Esaki, Mayuko Sugioka, Aisa Koyama, Tomoya Tachi, and Hitomi Teramachi. 2021. "Angioedema Caused by Drugs That Prevent the Degradation of Vasoactive Peptides: A Pharmacovigilance Database Study" Journal of Clinical Medicine 10, no. 23: 5507. https://doi.org/10.3390/jcm10235507
APA StyleNoguchi, Y., Murayama, A., Esaki, H., Sugioka, M., Koyama, A., Tachi, T., & Teramachi, H. (2021). Angioedema Caused by Drugs That Prevent the Degradation of Vasoactive Peptides: A Pharmacovigilance Database Study. Journal of Clinical Medicine, 10(23), 5507. https://doi.org/10.3390/jcm10235507