Monocyte Chemotactic Proteins (MCP) in Colorectal Adenomas Are Differently Expressed at the Transcriptional and Protein Levels: Implications for Colorectal Cancer Prevention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Immunohistochemistry (IHC)
2.1.1. Patients
2.1.2. Sample Handling
2.1.3. IHC Procedure
2.1.4. IHC Scoring
- Score 0, a negative result: either no reaction occurred in the glandular epithelial cells, or it only occurred in the stromal area of the lesion or control tissue fragment;
- Score 1, a weak positive result (+): such cases exhibited a weak cytoplasmic reaction (a low-intensity one), or the reaction did not encompass the entire lesion or control tissue fragment;
- Score 2, a positive result (++): a strong cytoplasmic reaction encompassing the entire lesion or the entire control tissue epithelium.
2.2. Transcriptional Analysis (Reverse-Transcribed Quantitative Polymerase Chain Reaction (RTqPCR))
2.2.1. Patients
2.2.2. Sample Handling
2.2.3. RNA Isolation, cDNA Synthesis, and Quantitative PCR (qPCR)
2.3. Data Analysis
3. Results
3.1. Expression of MCP Chemokines at the Protein Level
3.1.1. MCP Proteins in Colorectal Adenomas
3.1.2. MCP Association with the Anatomical Site and Pathological Findings
3.2. Expression of MCP Chemokines at the Transcriptional Level
3.2.1. MCP Transcripts in Colorectal Adenomas
3.2.2. Effect of the Polyp Size on the Expression of MCP Chemokines (mRNA)
3.2.3. Effect of the Polyp Type on the Expression of MCP Chemokines (mRNA)
3.2.4. Effect of the Dysplasia Grade on the Expression of MCP Chemokines (mRNA)
3.2.5. Effect of the Number of Polyps on the Expression of MCP Chemokines (mRNA)
3.2.6. Association of Cumulative Risk of Adenoma-to-Adenocarcinoma Transformation with the Expression of MCP Chemokines (mRNA)
3.2.7. Effect of the Anatomical Subsite on the Expression of MCP Chemokines (mRNA)
3.2.8. Multivariate Analysis
3.2.9. Interrelationship between the Expression of MCP Chemokines
3.3. Interrelationship between the Expression of MCP Chemokines at the Protein and Transcriptional Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katona, B.W.; Weiss, J.M. Chemoprevention of Colorectal Cancer. Gastroenterology 2020, 158, 368–388. [Google Scholar] [CrossRef]
- Stidham, R.W.; Higgins, P.D.R. Colorectal Cancer in Inflammatory Bowel Disease. Clin. Colon. Rectal. Surg. 2018, 31, 168–178. [Google Scholar] [CrossRef]
- Yamane, L.; Scapulatempo-Neto, C.; Reis, R.M.; Guimarães, D.P. Serrated pathway in colorectal carcinogenesis. World J. Gastroenterol. 2014, 20, 2634–2640. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vacante, M.; Ciuni, R.; Basile, F.; Biondi, A. Gut Microbiota and Colorectal Cancer Development: A Closer Look to the Adenoma-Carcinoma Sequence. Biomedicines 2020, 8, 489. [Google Scholar] [CrossRef]
- McLean, M.H.; Murray, G.I.; Stewart, K.N.; Norrie, G.; Mayer, C.; Hold, G.L.; Thomson, J.; Fyfe, N.; Hope, M.; Mowat, N.A.; et al. The Inflammatory Microenvironment in Colorectal Neoplasia. PLoS ONE 2011, 6, e15366. [Google Scholar]
- Lewandowska, P.; Wierzbicki, J.; Zawadzki, M.; Agrawal, A.; Krzystek-Korpacka, M. Biphasic Expression of Atypical Chemokine Receptor (ACKR) 2 and ACKR4 in Colorectal Neoplasms in Association with Histopathological Findings. Biomolecules 2020, 11, 8. [Google Scholar] [CrossRef]
- Huang, W.Y.; Berndt, S.I.; Shiels, M.S.; Katki, H.A.; Chaturvedi, A.K.; Wentzensen, N.; Trabert, B.; Kemp, T.J.; Pinto, L.A.; Hildesheim, A.; et al. Circulating inflammation markers and colorectal adenoma risk. Carcinogenesis 2019, 40, 765–770. [Google Scholar] [CrossRef]
- Godos, J.; Biondi, A.; Galvano, F.; Basile, F.; Sciacca, S.; Giovannucci, E.L.; Grosso, G. Markers of systemic inflammation and colorectal adenoma risk: Meta-analysis of observational studies. World J. Gastroenterol. 2017, 23, 1909–1919. [Google Scholar] [CrossRef]
- Kim, S.; Song, S.; Kim, Y.S.; Yang, S.Y.; Lee, J.E. The association between predicted inflammatory status and colorectal adenoma. Sci. Rep. 2020, 10, 2433. [Google Scholar] [CrossRef] [Green Version]
- Saini, M.K.; Vaiphei, K.; Sanyal, S.N. Chemoprevention of DMH-induced rat colon carcinoma initiation by combination administration of piroxicam and C-phycocyanin. Mol. Cell. Biochem. 2012, 361, 217–228. [Google Scholar] [CrossRef]
- Saini, M.K.; Sanya, S.N. Targeting angiogenic pathway for chemoprevention of experimental colon cancer using C-phycocyanin as cyclooxygenase-2 inhibitor. Biochem. Cell Biol. 2014, 92, 206–218. [Google Scholar] [CrossRef]
- Meyskens, F.L., Jr.; McLaren, C.E.; Pelot, D.; Fujikawa-Brooks, S.; Carpenter, P.M.; Hawk, E.; Kelloff, G.; Lawson, M.J.; Kidao, J.; McCracken, J.; et al. Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: A randomized placebo-controlled, double-blind trial. Cancer Prev. Res. 2008, 1, 32–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, C.A.; Dekker, E.; Samadder, N.J.; Stoffel, E.; Cohen, A. Efficacy and safety of eflornithine (CPP-1X)/sulindac combination therapy versus each as monotherapy in patients with familial adenomatous polyposis (FAP): Design and rationale of a randomized, double-blind, Phase III trial. BMC Gastroenterol. 2016, 16, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maniewska, J.; Jeżewska, D. Non-Steroidal Anti-Inflammatory Drugs in Colorectal Cancer Chemoprevention. Cancers 2021, 13, 594. [Google Scholar] [CrossRef]
- Argyle, D.; Kitamura, T. Targeting Macrophage-Recruiting Chemokines as a Novel Therapeutic Strategy to Prevent the Progression of Solid Tumors. Front Immunol. 2018, 9, 2629. [Google Scholar] [CrossRef] [PubMed]
- Bikfalvi, A.; Billottet, C. The CC and CXC chemokines: Major regulators of tumor progression and the tumor microenvironment. Am. J. Physiol. Cell Physiol. 2020, 318, C542–C554. [Google Scholar] [CrossRef]
- Mollica Poeta, V.; Massara, M.; Capucetti, A.; Bonecchi, R. Chemokines and chemokine receptors: New targets for cancer immunotherapy. Front. Immunol. 2019, 10, 379. [Google Scholar] [CrossRef] [Green Version]
- Korbecki, J.; Kojder, K.; Simińska, D.; Bohatyrewicz, R.; Gutowska, I.; Chlubek, D.; Baranowska-Bosiacka, I. CC Chemokines in a tumor: A review of pro-cancer and anti-cancer properties of the ligands of receptors CCR1, CCR2, CCR3, and CCR4. Int. J. Mol. Sci. 2020, 21, 8412. [Google Scholar] [CrossRef]
- Korbecki, J.; Grochans, S.; Gutowska, I.; Barczak, K.; Baranowska-Bosiacka, I. CC chemokines in a tumor: A review of pro-cancer and anti-cancer properties of receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 ligands. Int. J. Mol. Sci. 2020, 21, 7619. [Google Scholar] [CrossRef]
- Bailey, C.; Negus, R.; Morris, A.; Ziprin, P.; Goldin, R.; Allavena, P.; Peck, D.; Darzi, A. Chemokine expression is associated with the accumulation of tumour associated macrophages (TAMs) and progression in human colorectal cancer. Clin. Exp. Metastasis 2007, 24, 121–130. [Google Scholar] [CrossRef]
- Yoshidome, H.; Kohno, H.; Shida, T.; Kimura, F.; Shimizu, H.; Ohtsuka, M.; Nakatani, Y.; Miyazaki, M. Significance of monocyte chemoattractant protein-1 in angiogenesis and survival in colorectal liver metastases. Int. J. Oncol. 2009, 34, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Chu, S.; Wang, H.; Yu, M. A putative molecular network associated with colon cancer metastasis constructed from microarray data. World J. Surg Oncol. 2017, 15, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, M.J.; Hoos, A.; Bauer, J.; Boettcher, S.; Knust, M.; Weber, A.; Simonavicius, N.; Schneider, C.; Lang, M.; Sturzl, M.; et al. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell 2012, 22, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Fioretti, F.; Fradelizi, D.; Stoppacciaro, A.; Ramponi, S.; Ruco, L.; Minty, A.; Sozzani, S.; Garlanda, C.; Vecchi, A.; Mantovani, A. Reduced tumorigenicity and augmented leukocyte infiltration after monocyte chemotactic protein-3 (MCP-3) gene transfer: Perivascular accumulation of dendritic cells in peritumoral tissue and neutrophil recruitment within the tumor. J. Immunol. 1998, 161, 342–346. [Google Scholar]
- Hu, J.Y.; Li, G.C.; Wang, W.M.; Zhu, J.G.; Li, Y.F.; Zhou, G.H.; Sun, Q.B. Transfection of colorectal cancer cells with chemokine MCP-3 (monocyte chemotactic protein-3) gene retards tumor growth and inhibits tumor metastasis. World J. Gastroenterol. 2002, 8, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Hong, Q.; Li, B.; Cai, X.; Lv, Z.; Cai, S.; Zhong, Y.; Wen, B. Transcriptomic Analyses of the Adenoma-Carcinoma Sequence Identify Hallmarks Associated with the Onset of Colorectal Cancer. Front. Oncol. 2021, 11, 704531. [Google Scholar] [CrossRef] [PubMed]
- Krzystek-Korpacka, M.; Diakowska, D.; Bania, J.; Gamian, A. Expression stability of common housekeeping genes is differently affected by bowel inflammation and cancer: Implications for finding suitable normalizers for inflammatory bowel disease studies. Inflamm. Bowel. Dis. 2014, 20, 1147–1156. [Google Scholar] [CrossRef] [PubMed]
- Hellemans, J.; Vandesompele, J. qPCR data analysis—Unlocking the secret to successful results. In PCR Troubleshooting and Optimization: The Essential Guide, 1st ed.; Kennedy, S., Oswald, N., Eds.; Caister Academic Press: Norfolk, UK, 2011; pp. 139–150. [Google Scholar]
- Krzystek-Korpacka, M.; Zawadzki, M.; Kapturkiewicz, B.; Lewandowska, P.; Bednarz-Misa, I.; Gorska, S.; Witkiewicz, W.; Gamian, A. Subsite heterogeneity in the profiles of circulating cytokines in colorectal cancer. Cytokine 2018, 110, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.; Bartolomé, R.A.; Mendes, M.; Barderas, R.; Fernandez-Aceñero, M.J.; Peláez-García, A.; Peña, C.; Lopez-Lucendo, M.; Villar-Vázquez, R.; de Herreros, A.G.; et al. Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin. Cancer Res. 2013, 19, 6006–6019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, M.; Sasazuki, S.; Camargo, M.C.; Shimazu, T.; Charvat, H.; Yamaji, T.; Sawada, N.; Kemp, T.J.; Pfeiffer, R.M.; Hildesheim, A. Circulating Inflammatory Markers and Colorectal Cancer Risk: A Prospective Case-cohort Study in Japan. Int. J. Cancer 2018, 143, 2767–2776. [Google Scholar] [CrossRef] [Green Version]
- Krzystek-Korpacka, M.; Diakowska, D.; Kapturkiewicz, B.; Bębenek, M.; Gamian, A. Profiles of circulating inflammatory cytokines in colorectal cancer (CRC), high cancer risk conditions, and health are distinct. Possible implications for CRC screening and surveillance. Cancer Lett. 2013, 337, 107–114. [Google Scholar] [CrossRef]
- Fleming, M.; Ravula, S.; Tatishchev, S.F.; Wang, H.L. Colorectal carcinoma: Pathologic aspects. J. Gastrointest. Oncol. 2012, 3, 153–173. [Google Scholar] [PubMed]
- Cho, Y.B.; Lee, W.Y.; Choi, S.J.; Kim, J.; Hong, H.K.; Kim, S.H.; Choi, Y.L.; Kim, H.C.; Yun, S.H.; Chun, H.K.; et al. CC chemokine ligand 7 expression in liver metastasis of colorectal cancer. Oncol. Reports 2012, 28, 689–694. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Kim, S.Y.; Song, S.J.; Hong, H.K.; Lee, Y.; Oh, B.Y.; Lee, W.Y.; Cho, Y.B. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget 2016, 7, 36842–36853. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cai, Y.; Liu, L.; Wu, Y.; Xiong, X. Crucial biological functions of CCL7 in cancer. Peer J. 2018, 6, e4928. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, C.; Liang, T.; Yu, C.; Qin, Z.; Zhou, X.; Xue, J.; Zeng, H.; Lu, Z.; Xu, G.; et al. Establishment of immune prognostic signature and analysis of prospective molecular mechanisms in childhood osteosarcoma patients. Medicine 2020, 99, e23251. [Google Scholar] [CrossRef] [PubMed]
- Vilgelm, A.E.; Richmond, A. Chemokines Modulate Immune Surveillance in Tumorigenesis, Metastasis, and Response to Immunotherapy. Front. Immunol. 2019, 10, 333. [Google Scholar] [CrossRef] [Green Version]
- Hiwatashi, K.; Tamiya, T.; Hasegawa, E.; Fukaya, T.; Hashimoto, M.; Kakoi, K.; Kashiwagi, I.; Kimura, A.; Inoue, N.; Morita, R.; et al. Suppression of SOCS3 in macrophages prevents cancer metastasis by modifying macrophage phase and MCP2/CCL8 induction. Cancer Lett. 2011, 308, 172–180. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Dang, W.Q.; Cao, M.F.; Xiao, J.F.; Lv, S.Q.; Jiang, W.J.; Yao, X.H.; Lu, H.M.; Miao, J.Y.; et al. CCL8 secreted by tumor-associated macrophages promotes invasion and stemness of glioblastoma cells via ERK1/2 signaling. Lab. Investig. 2020, 100, 619–629. [Google Scholar] [CrossRef]
- Mou, T.; Xie, F.; Zhong, P.; Hua, H.; Lai, L.; Yang, Q.; Wang, J. MiR-345-5p functions as a tumor suppressor in pancreatic cancer by directly targeting CCL8. Biomed. Pharmacother. 2019, 111, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Cassetta, L.; Fragkogianni, S.; Sims, A.H.; Swierczak, A.; Forrester, L.M.; Zhang, H.; Soong, D.Y.H.; Cotechini, T.; Anur, P.; Lin, E.Y.; et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell. 2019, 35, 588–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, S.M.; Tan, Y.C.; Beretta, O.; Jiang, D.; Yeap, W.H.; Tai, J.J.; Wong, W.C.; Yang, H.; Schwarz, H.; Lim, K.H.; et al. Macrophages in human colorectal cancer are pro-inflammatory and prime T cells towards an anti-tumour type-1 inflammatory response. Eur. J. Immunol. 2012, 42, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Farmaki, E.; Chatzistamou, I.; Kaza, V.; Kiaris, H. A CCL8 gradient drives breast cancer cell dissemination. Oncogene 2016, 35, 6309–6318. [Google Scholar] [CrossRef]
- Lacey, T.; Lacey, H. Linking Hsp90′s role as an evolutionary capacitator to the development of cancer. Cancer Treat. Res. Commun. 2021, 28, 100400. [Google Scholar] [CrossRef]
- Jaeger, A.M.; Whitesell, L. HSP90: Enabler of Cancer Adaptation. Annu. Rev. Cancer Biol. 2019, 3, 275–297. [Google Scholar] [CrossRef]
- Sjöberg, E.; Meyrath, M.; Chevigné, A.; Östman, A.; Augsten, M.; Szpakowska, M. The diverse and complex roles of atypical chemokine receptors in cancer: From molecular biology to clinical relevance and therapy. Adv. Cancer Res. 2020, 145, 99–138. [Google Scholar] [CrossRef]
- Smit, W.L.; Spaan, C.N.; Johannes de Boer, R.; Ramesh, P.; Martins Garcia, T.; Meijer, B.J.; Vermeulen, J.L.M.; Lezzerini, M.; MacInnes, A.W.; Koster, J.; et al. Driver mutations of the adenoma-carcinoma sequence govern the intestinal epithelial global translational capacity. Proc. Natl. Acad. Sci. USA 2020, 117, 25560–25570. [Google Scholar] [CrossRef]
Parameter | IHC Cohort | RTqPCR Cohort |
---|---|---|
n | 62 | 173 |
Sex distribution (F/M), n | 27/35 | 78/95 |
Age (years), mean (95%CI) | 62.9 (60.2–65.7) | 65.3 (63.6–67.0) |
Polyp histology, n | ||
hyperplastic polyps | 4 | 11 |
tubular adenoma | 23 | 37 |
tubulo-villous adenoma | 29 | 107 |
villous adenoma | 6 | 13 |
adenocarcinoma in the polyp | (1) | 5 |
Grade of dysplasia, n | ||
low | 55 | 128 |
high | 3 | 29 |
Polyp size, n | ||
<10 mm | 19 | 39 |
10–19 mm | 24 | 75 |
≥20 mm | 19 | 58 |
Polyp location, n | ||
right colon | 12 | 90 |
left colon | 35 | 38 |
rectum | 15 | 45 |
Number of polyps, n | ||
single | 60 | 129 |
multiple (≥2) | 2 | 36 |
carpet-like lesions | 0 | 7 |
Pathology | CCL2 Immunoreactivity Score 0/1/2, n | CCL7 Immunoreactivity Score 0/1/2, n | CCL8 Immunoreactivity Score 0/1/2, n |
---|---|---|---|
Histology: | p = 0.956 1 | p = 0.212 1 | p = 0.600 1 |
hyperplastic | 0/4/0 | 0/0/4 | 0/3/1 |
tubular | 8/10/5 | 0/7/16 | 4/8/11 |
tubulo-villous | 10/15/4 | 0/5/24 | 7/14/8 |
villous | 2/3/1 | 0/0/6 | 2/2/2 |
Dysplasia: | p = 0.033 | p = 0.368 | p = 0.547 |
low grade | 20/27/8 | 0/12/43 | 13/22/20 |
high grade | 0/1/2 | 0/0/3 | 0/2/1 |
Size: | p = 0.429 | p = 0.260 | p = 0.267 |
<10 mm | 8/7/4 | 0/6/13 | 6/5/8 |
10–19 mm | 8/12/4 | 0/3/21 | 5/13/6 |
≥20 mm | 4/13/2 | 0/3/16 | 2/9/8 |
Anatomical site: | p = 0.769 | p = 0.837 | p = 0.842 |
right colon | 3/7/2 | 0/3/9 | 3/4/5 |
left colon | 11/17/7 | 0/6/29 | 6/16/13 |
rectum | 6/8/1 | 0/3/12 | 4/7/4 |
Patients from IHC Cohort, n = 62 | Patients from Whole RTqPCR Cohort, n = 173 | |||
---|---|---|---|---|
PPIA/RPLP0 | GAPDH | PPIA/RPLP0 | GAPDH | |
CCL2 | ↓1.2, p = 0.209 | ↓1.2, p = 0.245 | ↓1.4, p = 0.037 | ↓1.5, p = 0.066 |
CCL7 | ↓1.5, p = 0.012 | ↓1.5, p = 0.032 | ↓1.7, p = 0.0001 | ↓1.9, p = 0.005 |
CCL8 | ↓2.0, p < 0.001 | ↓2.0, p = 0.002 | ↓2.3, p < 0.0001 | ↓2.5, p = 0.0001 |
Gene | FC (P/N) | Polyp (p) | Normal (n) |
---|---|---|---|
CCL2 | −0.32, p = 0.0001 | −0.46, p < 0.0001 | ns |
CCL7 | −0.36, p < 0.0001 | −0.32, p = 0.0001 | 0.18, p = 0.032 |
CCL8 | −0.25, p = 0.003 | −0.30, p < 0.001 | ns |
Dependent Variable | Explanatory Variables | Regression Coefficient (β), p | rp | VIF | R2; ANOVA |
---|---|---|---|---|---|
CCL2 (log) | (constant) | 1.88 | R2 = 0.22; F = 9.63, p < 0.0001 | ||
dysplasia grade | −0.41, p = 0.003 | −0.25 | 1.10 | ||
number of polyps | −0.16, p = 0.017 | −0.20 | 1.02 | ||
growth pattern | −0.27, p = 0.004 | −0.24 | 1.10 | ||
patient’s age | −0.01, p = 0.011 | −0.21 | 1.02 | ||
CCL7 (log) | (constant) | 0.36 | R2 = 0.08; F = 12.0, p < 0.001 | ||
growth pattern | −0.29, p < 0.001 | −0.29 | 1 | ||
CCL8 (log) | (constant) | 0.65 | R2 = 0.10; F = 7.97, p < 0.001 | ||
dysplasia grade | −0.33, p = 0.027 | −0.19 | 1.10 | ||
growth pattern | −0.25, p = 0.013 | −0.21 | 1.10 |
Gene | FC (P/N) | Polyp (p) | Normal (n) | |||
---|---|---|---|---|---|---|
CCL7 | CCL8 | CCL7 | CCL8 | CCL7 | CCL8 | |
CCL2 | 0.48 1 | 0.63 1 | 0.52 1 | 0.54 1 | 0.31 1 | 0.55 1 |
CCL7 | 0.63 1 | 0.66 1 | 0.48 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wierzbicki, J.; Lipiński, A.; Bednarz-Misa, I.; Lewandowski, Ł.; Neubauer, K.; Lewandowska, P.; Krzystek-Korpacka, M. Monocyte Chemotactic Proteins (MCP) in Colorectal Adenomas Are Differently Expressed at the Transcriptional and Protein Levels: Implications for Colorectal Cancer Prevention. J. Clin. Med. 2021, 10, 5559. https://doi.org/10.3390/jcm10235559
Wierzbicki J, Lipiński A, Bednarz-Misa I, Lewandowski Ł, Neubauer K, Lewandowska P, Krzystek-Korpacka M. Monocyte Chemotactic Proteins (MCP) in Colorectal Adenomas Are Differently Expressed at the Transcriptional and Protein Levels: Implications for Colorectal Cancer Prevention. Journal of Clinical Medicine. 2021; 10(23):5559. https://doi.org/10.3390/jcm10235559
Chicago/Turabian StyleWierzbicki, Jarosław, Artur Lipiński, Iwona Bednarz-Misa, Łukasz Lewandowski, Katarzyna Neubauer, Paulina Lewandowska, and Małgorzata Krzystek-Korpacka. 2021. "Monocyte Chemotactic Proteins (MCP) in Colorectal Adenomas Are Differently Expressed at the Transcriptional and Protein Levels: Implications for Colorectal Cancer Prevention" Journal of Clinical Medicine 10, no. 23: 5559. https://doi.org/10.3390/jcm10235559
APA StyleWierzbicki, J., Lipiński, A., Bednarz-Misa, I., Lewandowski, Ł., Neubauer, K., Lewandowska, P., & Krzystek-Korpacka, M. (2021). Monocyte Chemotactic Proteins (MCP) in Colorectal Adenomas Are Differently Expressed at the Transcriptional and Protein Levels: Implications for Colorectal Cancer Prevention. Journal of Clinical Medicine, 10(23), 5559. https://doi.org/10.3390/jcm10235559