Impact of Co-Existing Placental Pathologies in Pregnancies Complicated by Placental Abruption and Acute Neonatal Outcomes
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
4. Discussion
4.1. Strengths & Limitations
4.2. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ananth, C.V. Ischemic Placental Disease: A Unifying Concept for Preeclampsia, Intrauterine Growth Restriction, and Placental Abruption. Semin. Perinatol. 2014, 38, 131–132. [Google Scholar] [CrossRef] [PubMed]
- Elsasser, D.A.; Ananth, C.V.; Prasad, V.; Vintzileos, A.M. Diagnosis of Placental Abruption: Relationship between Clinical and Histopathological Findings. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 148, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Ananth, C.V.; Keyes, K.M.; Hamilton, A.; Gissler, M.; Wu, C.; Liu, S.; Luque-Fernandez, M.A.; Skjærven, R.; Williams, M.A.; Tikkanen, M.; et al. An International Contrast of Rates of Placental Abruption: An Age-Period-Cohort Analysis. PLoS ONE 2015, 10, e0125246. [Google Scholar] [CrossRef]
- Tikkanen, M. Placental Abruption: Epidemiology, Risk Factors and Consequences. Acta Obstet. Gynecol. Scand. 2011, 90, 140–149. [Google Scholar] [CrossRef]
- Ananth, C.V.; Berkowitz, G.S.; Savitz, D.A.; Lapinski, R.H. Placental Abruption and Adverse Perinatal Outcomes. J. Am. Med. Assoc. 1999, 282, 1646–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ananth, C.; Haylea, P.; Ananth, S.; Zhang, Y.; Kostis, W.; Schuster, M. Maternal Cardiovascular and Cerebrovascular Health after Placental Abruption: A Systematic Review and Meta-Analysis. Am. J. Epidemiol. 2021, 143, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Dandapat, A.; Pande, B.; Dora, S.; Mohapatra, K.; Nayak, L. A Retrospective Study on Adherent Placenta—Its Management, Maternal and Perinatal Outcome. J. Evol. Med. Dent. Sci. 2017, 6, 2278–4802. [Google Scholar]
- Sengodan, S.S.; Dhanapal, M. Abruptio Placenta: A Retrospective Study on Maternal and Perinatal Outcome. Int. J. Reprod. Contracept. Obstet. Gynecol. 2017, 6, 4389. [Google Scholar] [CrossRef] [Green Version]
- Soomro, P.; Pirzada, S.; Maheshwari, M.; Bhatti, N. Frequency, Predictors and Outcomes of Placental Abruption in Rural Sindh. Pak. J. Med. Res. 2021, 60, 57–61. [Google Scholar]
- Satti, I.; Hassan, F.; Salim, N.A.; Mansor, A.; Ali, H. Immediate Maternal and Fetal Outcome of Placental Abruption/ Omdurman/ SUDAN (Multicentric Study). Multi-Knowl. Electron. Compr. J. Educ. Sci. Publ. 2021, 41, 1–9. [Google Scholar]
- Qiu, Y.; Wu, L.; Xiao, Y.; Zhang, X. Clinical Analysis and Classification of Placental Abruption. J. Matern. Neonatal Med. 2021, 34, 2952–2956. [Google Scholar] [CrossRef]
- Kramer, M.; Usher, R.; Pollack, R.; Boyd, M.; Usher, S. Etiologic Determinants of Abruptio Placenta. Obstet. Gynecol. 1997, 89, 221–226. [Google Scholar] [CrossRef]
- Onishi, K.; Tsuda, H.; Fuma, K.; Kuribayashi, M.; Tezuka, A.; Ando, T.; Mizuno, K. The Impact of the Abruption Severity and the Onset-to-Delivery Time on the Maternal and Neonatal Outcomes of Placental Abruption. J. Matern. Neonatal Med. 2020, 33, 3775–3783. [Google Scholar] [CrossRef] [PubMed]
- Iitani, Y.; Tsuda, H.; Ito, Y.; Moriyama, Y.; Nakano, T.; Imai, K.; Kotani, T.; Kikkawa, F. Simulation Training Is Useful for Shortening the Decision-To-Delivery Interval in Cases of Emergent Cesarean Section. Obstet. Gynecol. Surv. 2019, 74, 3–5. [Google Scholar] [CrossRef]
- Soltanifar, S.; Russell, R. The National Institute for Health and Clinical Excellence (NICE) Guidelines for Caesarean Section, 2011 Update: Implications for the Anaesthetist. Int. J. Obstet. Anesth. 2012, 21, 264–272. [Google Scholar] [CrossRef]
- Khong, T.Y.; Mooney, E.E.; Ariel, I.; Balmus, N.C.M.; Boyd, T.K.; Brundler, M.A.; Derricott, H.; Evans, M.J.; Faye-Petersen, O.M.; Gillan, J.E.; et al. Sampling and Definitions of Placental Lesions Amsterdam Placental Workshop Group Consensus Statement. Arch. Pathol. Lab. Med. 2016, 140, 698–713. [Google Scholar] [CrossRef] [Green Version]
- Wright, E.; Audette, M.C.; Ye, X.Y.; Keating, S.; Hoffman, B.; Lye, S.J.; Shah, P.S.; Kingdom, J.C. Maternal Vascular Malperfusion and Adverse Perinatal Outcomes in Low-Risk Nulliparous Women. Obstet. Gynecol. 2017, 130, 1112–1120. [Google Scholar] [CrossRef] [PubMed]
- Awuah, S.P.; Okai, I.; Ntim, E.A.; Bedu-Addo, K. Prevalence, Placenta Development, and Perinatal Outcomes of Women with Hypertensive Disorders of Pregnancy at Komfo Anokye Teaching Hospital. PLoS ONE 2020, 15, e0233817. [Google Scholar] [CrossRef]
- Scifres, C.M.; Parks, W.T.; Feghali, M.; Caritis, S.N.; Catov, J.M. Placental Maternal Vascular Malperfusion and Adverse Pregnancy Outcomes in Gestational Diabetes Mellitus. Placenta 2017, 49, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Heider, A. Fetal Vascular Malperfusion. Arch. Pathol. Lab. Med. 2017, 141, 1484–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustamante Helfrich, B.; Chilukuri, N.; He, H.; Cerda, S.R.; Hong, X.; Wang, G.; Pearson, C.; Burd, I.; Wang, X. Maternal Vascular Malperfusion of the Placental Bed Associated with Hypertensive Disorders in the Boston Birth Cohort. Placenta 2017, 52, 106–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendrix, M.L.E.; Bons, J.A.P.; Alers, N.O.; Severens-Rijvers, C.A.H.; Spaanderman, M.E.A.; Al-Nasiry, S. Maternal Vascular Malformation in the Placenta Is an Indicator for Fetal Growth Restriction Irrespective of Neonatal Birthweight. Placenta 2019, 87, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Redline, R.W.; Boyd, T.; Campbell, V.; Hyde, S.; Kaplan, C.; Khong, T.Y.; Prashner, H.R.; Waters, B.L. Maternal Vascular Underperfusion: Nosology and Reproducibility of Placental Reaction Patterns. Pediatr. Dev. Pathol. 2004, 7, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Visser, L.; van Buggenum, H.; van der Voorn, J.P.; Heestermans, L.A.P.H.; Hollander, K.W.P.; Wouters, M.G.A.J.; de Groot, C.J.M.; de Boer, M.A. Maternal Vascular Malperfusion in Spontaneous Preterm Birth Placentas Related to Clinical Outcome of Subsequent Pregnancy. J. Matern. Neonatal Med. 2021, 34, 2759–2764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, F.; Rodriquez, L.; Rayne, S.C.; Kraus, F.T. Maternal Placental Vasculopathy and Infection: Two Distinct Subgroups among Patients with Preterm Labor and Preterm Ruptured Membranes. Am. J. Obstet. Gynecol. 1993, 168, 585–591. [Google Scholar] [CrossRef]
- Holzman, C.; Kelly, R.; Senagore, P.; Wang, J.; Tian, Y.; Rahbar, M.H.; Chung, H. Placental Vascular Pathology Findings and Pathways to Preterm Delivery. Am. J. Epidemiol. 2009, 170, 148–158. [Google Scholar] [CrossRef]
- Kim, Y.M.; Chaiworapongsa, T.; Gomez, R.; Bujold, E.; Yoon, B.H.; Rotmensch, S.; Thaler, H.T.; Romero, R. Failure of Physiologic Transformation of the Spiral Arteries in the Placental Bed in Preterm Premature Rupture of Membranes. Am. J. Obstet. Gynecol. 2002, 187, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Christians, J.K.; Huicochea Munoz, M.F. Pregnancy Complications Recur Independently of Maternal Vascular Malperfusion Lesions. PLoS ONE 2020, 15, e0228664. [Google Scholar] [CrossRef] [PubMed]
- Redline, R.W. Severe Fetal Placental Vascular Lesions in Term Infants with Neurologic Impairment. Am. J. Obstet. Gynecol. 2005, 192, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Redline, R.W.; Ravishankar, S. Fetal Vascular Malperfusion, an Update. Apmis 2018, 126, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Mark, S.P.; Croughan-Minihane, M.S.; Kilpatrick, S.J. Chorioamnionitis and Uterine Function. Obstet. Gynecol. 2000, 95, 909–912. [Google Scholar] [CrossRef]
- Satin, A.J.; Maberry, M.C.; Leveno, K.J.; Sherman, M.L.; Kline, D.M. Chorioamnionitis: A Harbinger of Dystocia. Obstet. Gynecol. 1992, 79, 913–915. [Google Scholar] [CrossRef]
- Tita, A.T.N.; Andrews, W.W. Diagnosis and Management of Clinical Chorioamnionitis. Clin. Perinatol. 2010, 37, 339–354. [Google Scholar] [CrossRef] [Green Version]
- Hauth, J.C.; Gilstrap, L.C.; Hankins, G.D.V.; Connor, K.D. Term Maternal and Neonatal Complications of Acute Chorioamnionitis. Obstet. Gynecol. 1985, 66, 59–62. [Google Scholar]
- Morales, W. The Effect of Chorioamnionitis on the Developmental Outcome of Preterm Infants at One Year. Obstet. Gynecol. 1987, 70, 183–185. [Google Scholar] [PubMed]
- Lau, J.; Magee, F.; Qiu, Z.; Houbé, J.; Von Dadelszen, P.; Lee, S.K. Chorioamnionitis with a Fetal Inflammatory Response Is Associated with Higher Neonatal Mortality, Morbidity, and Resource Use than Chorioamnionitis Displaying a Maternal Inflammatory Response Only. Am. J. Obstet. Gynecol. 2005, 193, 708–713. [Google Scholar] [CrossRef]
- Aziz, N.; Cheng, Y.W.; Caughey, A.B. Neonatal Outcomes in the Setting of Preterm Premature Rupture of Membranes Complicated by Chorioamnionitis. J. Matern. Neonatal Med. 2009, 22, 780–784. [Google Scholar] [CrossRef] [PubMed]
- Redline, R.W. Villitis of Unknown Etiology: Noninfectious Chronic Villitis in the Placenta. Hum. Pathol. 2007, 38, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.E.; Held, J.D.; Jandarov, R.A.; Kelleher, M.; Kinnear, B.; Sall, D.; O’Toole, J.K. Development and Establishment of Initial Validity Evidence for a Novel Tool for Assessing Trainee Admission Notes. J. Gen. Intern. Med. 2020, 35, 1078–1083. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap Consortium: Building an International Community of Software Platform Partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
- Greenland, S.; Pearl, J.; Robins, J.M. Causal Diagrams for Epidemiologic Research. Epidemiology 1999, 10, 37–48. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 15 March 2021).
- Steen, J.; Loeys, T.; Moerkerke, B.; Vansteelandt, S. Medflex: An R Package for Flexible Mediation Analysis Using Natural Effect Models. J. Stat. Softw. 2017, 76. [Google Scholar] [CrossRef] [Green Version]
- Textor, J.; van der Zander, B.; Gilthorpe, M.S.; Liśkiewicz, M.; Ellison, G.T. Robust Causal Inference Using Directed Acyclic Graphs: The R Package “Dagitty”. Int. J. Epidemiol. 2016, 45, 1887–1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downes, K.L.; Shenassa, E.D.; Grantz, K.L. Neonatal Outcomes Associated with Placental Abruption. Am. J. Epidemiol. 2017, 186, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Sheiner, E.; Shoham-Vardi, I.; Hallak, M.; Hadar, A.; Gortzak-Uzan, L.; Katz, M.; Mazor, M. Placental Abruption in Term Pregnancies: Clinical Significance and Obstetric Risk Factors. J. Matern. Neonatal Med. 2003, 13, 45–49. [Google Scholar] [CrossRef]
- Beebe, L.; Cowan, L.; Altshuler, G. The Epidemiology of Placental Features: Associations with Gestational Age and Neonatal Outcome. Obstet. Gynecol. 1996, 5, 771–778. [Google Scholar] [CrossRef]
- Ogunyemi, D.; Murillo, M.; Jackson, U.; Hunter, N.; Alperson, B. The Relationship between Placental Histopathology Findings and Perinatal Outcome in Preterm Infants. J. Matern. Neonatal Med. 2003, 13, 102–109. [Google Scholar] [CrossRef]
- Roescher, A.M.; Timmer, A.; Erwich, J.J.H.M.; Bos, A.F. Placental Pathology, Perinatal Death, Neonatal Outcome, and Neurological Development: A Systematic Review. PLoS ONE 2014, 9, e89419. [Google Scholar] [CrossRef] [Green Version]
- De Laat, M.W.M.; Franx, A.; Bots, M.L.; Visser, G.H.A.; Nikkels, P.G.J. Umbilical Coiling Index in Normal and Complicated Pregnancies. Obstet. Gynecol. 2006, 107, 1049–1055. [Google Scholar] [CrossRef]
- Wintermark, P.; Boyd, T.; Gregas, M.C.; Labrecque, M.; Hansen, A. Placental Pathology in Asphyxiated Newborns Meeting the Criteria for Therapeutic Hypothermia. Am. J. Obstet. Gynecol. 2010, 203, 579.e1–579.e9. [Google Scholar] [CrossRef]
- Richardson, B.S.; Wakim, E.; da Silva, O.; Walton, J. Preterm Histologic Chorioamnionitis: Impact on Cord Gas and PH Values and Neonatal Outcome. Am. J. Obstet. Gynecol. 2006, 195, 1357–1365. [Google Scholar] [CrossRef]
- Sato, M.; Nishimaki, S.; Yokota, S.; Seki, K.; Horiguchi, H.; An, H.; Ishida, F.; Fujita, S.; Ao, K.; Yatake, H. Severity of Chorioamnionitis and Neonatal Outcome. J. Obstet. Gynaecol. Res. 2011, 37, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Kramer, B.W.; Kallapur, S.; Newnham, J.; Jobe, A.H. Prenatal Inflammation and Lung Development. Semin. Fetal Neonatal Med. 2009, 14, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapolsky, R.; Rivier, C.; Yamamoto, G.; Plotsky, P.; Vale, W. Interleukin-1 Stimulates the Secretion of Hypothalamic Corticotropin- Releasing Factor. Science 1987, 238, 522–524. [Google Scholar] [CrossRef]
- Bernton, E.W.; Beach, J.E.; Holaday, J.W.; Smallridge, R.C.; Fein, H.G. Release of Multiple Hormones by a Direct Action of Lnterleukin-1 on Pituitary Cells. Obstet. Gynecol. Surv. 1988, 43, 420–422. [Google Scholar] [CrossRef]
- Lock, M.; Mcgillick, E.V.; Orgeig, S.; Mcmillen, I.C.; Morrison, J.L. Regulation of Fetal Lung Development in Response to Maternal Overnutrition. Clin. Exp. Pharmacol. Physiol. 2013, 40, 803–816. [Google Scholar] [CrossRef]
- Bry, K.; Lappalainen, U.; Hallman, M. Intraamniotic Interleukin-1 Accelerates Surfactant Protein Synthesis in Fetal Rabbits and Improves Lung Stability after Premature Birth. J. Clin. Investig. 1997, 99, 2992–2999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willet, K.E.; Jobe, A.H.; Ikegami, M.; Newnham, J.; Brennan, S.; Sly, P.D. Antenatal Endotoxin and Glucocorticoid Effects on Lung Morphometry in Preterm Lambs. Pediatr. Res. 2000, 48, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Paananen, R.; Husa, A.-K.; Vuolteenaho, R.; Herva, R.; Kaukola, T.; Hallman, M. Blood Cytokines during the Perinatal Period in Very Preterm Infants. J. Pediatr. 2009, 154, 39–43.e3. [Google Scholar] [CrossRef]
- Boisramé, T.; Sananès, N.; Fritz, G.; Boudier, E.; Aissi, G.; Favre, R.; Langer, B. Placental Abruption: Risk Factors, Management and Maternal-Fetal Prognosis. Cohort Study over 10 Years. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 179, 100–104. [Google Scholar] [CrossRef]
- Furukawa, S.; Doi, K.; Furuta, K.; Sameshima, H. The Effect of Placental Abruption on the Outcome of Extremely Premature Infants. J. Matern. Neonatal Med. 2015, 28, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Andreani, M.; Locatelli, A.; Assi, F.; Consonni, S.; Malguzzi, S.; Paterlini, G.; Ghidini, A. Predictors of Umbilical Artery Acidosis in Preterm Delivery. Am. J. Obstet. Gynecol. 2007, 197, 303.e1–303.e5. [Google Scholar] [CrossRef] [PubMed]
- Downes, K.L.; Grantz, K.L.; Shenassa, E.D. Maternal, Labor, Delivery, and Perinatal Outcomes Associated with Placental Abruption: A Systematic Review. Am. J. Perinatol. 2017, 34, 935–957. [Google Scholar] [CrossRef] [PubMed]
- Lie, K.K.; Grøholt, E.K.; Eskild, A. Association of Cerebral Palsy with Apgar Score in Low and Normal Birthweight Infants: Population Based Cohort Study. BMJ 2010, 341, 817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moster, D.; Lie, R.T.; Irgens, L.M.; Bjerkedal, T.; Markestad, T. The Association of Apgar Score with Subsequent Death and Cerebral Palsy: A Population-Based Study in Term Infants. J. Pediatr. 2001, 138, 798–803. [Google Scholar] [CrossRef]
- Thorngren-Jerneck, K.; Herbst, A. Perinatal Factors Associated with Cerebral Palsy in Children Born in Sweden. Obstet. Gynecol. 2006, 108, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- Grether, J.K.; Nelson, K.B.; Emery, E.S.; Cummins, S.K. Prenatal and Perinatal Factors and Cerebral Palsy in Very Low Birth Weight Infants. J. Pediatr. 1996, 128, 407–414. [Google Scholar] [CrossRef]
- Hegyi, T.; Carbone, T.; Anwar, M.; Ostfeld, B.; Hiatt, M.; Koons, A.; Pinto-Martin, J.; Paneth, N. The Apgar Score and Its Components in the Preterm Infant. Pediatrics 1998, 101, 77–81. [Google Scholar] [CrossRef]
- Pinheiro, J.M.B. The Apgar Cycle: A New View of a Familiar Scoring System. Arch. Dis. Child. Fetal Neonatal Ed. 2009, 94, 70–72. [Google Scholar] [CrossRef] [PubMed]
- Yoon, C.Y.; Shim, Y.J.; Kim, E.H.; Lee, J.H.; Won, N.H.; Kim, J.H.; Park, I.S.; Yoon, D.K.; Min, B.H. Renal Cell Carcinoma Does Not Express Argininosuccinate Synthetase and Is Highly Sensitive to Arginine Deprivation via Arginine Deiminase. Int. J. Cancer 2007, 120, 897–905. [Google Scholar] [CrossRef]
- Dommergues, M.A.; Patkai, J.; Renauld, J.C.; Evrard, P.; Gressens, P. Proinflammatory Cytokines and Interleukin-9 Exacerbate Excitotoxic Lesions of the Newborn Murine Neopallium. Ann. Neurol. 2000, 47, 54–63. [Google Scholar] [CrossRef]
- Yoon, B.; Kim, C.; Park, J.; Gomez, R. Experimentally-Induced Intrauterine Infection Causes Fetal Brain White Matter Lesions in Rabbits. Am. J. Obstet. Gynecol. 2000, 176, S40. [Google Scholar] [CrossRef]
- Wu, Y.W.; Colford, J.M. Chorioamnionitis as a Risk Factor for Cerebral Palsy A Meta-Analysis. J. Am. Med. Assoc. 2000, 284, 1417–1424. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.H.; Romero, R.; Park, J.S.; Kim, C.J.; Kim, S.H.; Choi, J.H.; Han, T.R. Fetal Exposure to an Intra-Amniotic Inflammation and the Development of Cerebral Palsy at the Age of Three Years. Am. J. Obstet. Gynecol. 2000, 182, 675–681. [Google Scholar] [CrossRef] [PubMed]
Maternal Demographics | Placentas with Placental Abruption Only (n = 160, 59.9%) | Placentas with Additional Pathologies (n = 107, 40.1%) | p Value |
---|---|---|---|
Maternal age (mean, SD) | 31.1 (6.1) | 30.4 (5.3) | 0.20 |
Parity (mean, SD) | 0.5 (3.0) | 0.3 (0.6) | 0.68 |
Pre-pregnancy BMI value (mean, SD) | 25.1 (6.0) | 25.6 (6.5) | 0.94 |
Diabetes (n, %) | 24 (15.0) | 7 (6.5) | 0.05 |
Previous smoker (n, %) | 25 (16.6) | 11 (11.0) | 0.27 |
Previous history of abruption (n, %) | 10 (7.7) | 4 (4.7) | 0.42 |
Chronic hypertension, Gestational Hypertension or preeclampsia (n, %) | 13 (8.6) | 20 (20.6) | 0.01 |
Other medical conditions (Pregestational diabetes, gestational diabetes, thrombophilia) (n, %) | 111 (71.2)) | 67 (66.3) | 0.49 |
Neonatal Demographics | |||
Gestational age in weeks (mean, SD) | 35.7 (4.2) | 33.1 (5.6) | <0.001 |
Birthweight (g) (mean, SD) | 2638.1 (793.9) | 2015.7 (967.9) | <0.001 |
Sex (Female, %) | 68 (43.6) | 53 (51.5) | 0.25 |
Term | OR (95% CI) | p Value |
---|---|---|
Unadjusted logistic regression | ||
Placental lesions | 2.42 (1.34, 4.48) | 0.004 |
Adjusted logistic regression | ||
Placental lesions | 2.37 (1.28, 4.52) | 0.01 |
Maternal Smoking | 3.45 (1.33, 10.77) | 0.02 |
Maternal Hypertension/Preeclampsia | 1.58 (0.65, 4.29) | 0.33 |
Maternal Diabetes | 0.31 (0.13, 0.73) | 0.01 |
Mediation analysis; mediator = Prematurity a | ||
Natural Direct Effect | 1.32 (0.78, 2.19) | 0.29 |
Natural Indirect Effect | 1.79 (1.12, 2.75) | 0.01 |
Total Effect | 2.37 (1.17, 4.51) | 0.01 |
Mediation analysis; mediator = Birthweight | ||
Natural Direct Effect | 1.12 (0.62, 1.99) | 0.69 |
Natural Indirect Effect | 2.12 (1.40, 3.18) | <0.001 |
Total Effect | 2.38 (1.19, 4.63) | 0.01 |
Perinatal Outcome | Placental Lesions (n, %) | OR (95% CI) | p Value |
---|---|---|---|
SGA a (n = 42) | 16 (38.1) | 1.01 (0.50–2.00) | 0.97 |
Appropriate weight b (n = 188) | 71 (37.8) | ||
BD 10–15.9 or BD 16 (n = 42) | 14 (33.3) | 0.88 (0.42–1.77) | 0.72 |
Normal BD (n = 171) c | 62 (36.3) | ||
Cord pH 7 or 7.1–7.15 (n = 42) | 15 (35.7) | 1.02 (0.49–2.04) | 0.97 |
Normal cord pH (n = 164) d | 58 (35.4) | ||
Apgar 5 at 10-min (n = 11) | 8 (72.7) | 4.56 (1.28–21.26) | 0.03 |
Apgar > 5 at 10-min (n = 225) | 83 (36.9) | ||
Need for resuscitation (n = 5) e | 4 (80.0) | 6.57 (0.95–129.74) | 0.09 |
No need for resuscitation (n = 230) | 87 (37.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavedatnia, D.; Tran, J.; Oltean, I.; Bijelić, V.; Moretti, F.; Lawrence, S.; El Demellawy, D. Impact of Co-Existing Placental Pathologies in Pregnancies Complicated by Placental Abruption and Acute Neonatal Outcomes. J. Clin. Med. 2021, 10, 5693. https://doi.org/10.3390/jcm10235693
Mavedatnia D, Tran J, Oltean I, Bijelić V, Moretti F, Lawrence S, El Demellawy D. Impact of Co-Existing Placental Pathologies in Pregnancies Complicated by Placental Abruption and Acute Neonatal Outcomes. Journal of Clinical Medicine. 2021; 10(23):5693. https://doi.org/10.3390/jcm10235693
Chicago/Turabian StyleMavedatnia, Dorsa, Jason Tran, Irina Oltean, Vid Bijelić, Felipe Moretti, Sarah Lawrence, and Dina El Demellawy. 2021. "Impact of Co-Existing Placental Pathologies in Pregnancies Complicated by Placental Abruption and Acute Neonatal Outcomes" Journal of Clinical Medicine 10, no. 23: 5693. https://doi.org/10.3390/jcm10235693
APA StyleMavedatnia, D., Tran, J., Oltean, I., Bijelić, V., Moretti, F., Lawrence, S., & El Demellawy, D. (2021). Impact of Co-Existing Placental Pathologies in Pregnancies Complicated by Placental Abruption and Acute Neonatal Outcomes. Journal of Clinical Medicine, 10(23), 5693. https://doi.org/10.3390/jcm10235693