TRPM5 rs886277 Polymorphism Predicts Hepatic Fibrosis Progression in Non-Cirrhotic HCV-Infected Patients
Abstract
:1. Introduction
2. Methods
2.1. Design and Study Population
2.2. DNA Genotyping
2.3. Hepatic Fibrosis
2.4. Liver Fibrosis Outcomes
2.5. HCV Assays
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Patients
3.2. Characteristics of TRPM5 rs886277 Polymorphism
3.3. TRPM5 rs886277 SNP and Liver Fibrosis Progression
4. Discussion
5. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Chronic hepatitis C | CHC |
Hepatitis C virus | HCV |
Direct-acting antivirals | DAAs |
Single nucleotide polymorphisms | SNPs |
Transient receptor potential cation channel subfamily M member 5 | TRPM5 |
Cirrhosis risk score | CRS |
Liver stiffness measurement | LSM |
Cirrhosis | F4; LSM1 ≥ 12.5 kPa |
Kilopascals | kPa |
Baseline LSM | LSM1 |
Final LSM | LSM2 |
Generalized linear models | GLM |
Arithmetic mean ratio | AMR |
Odds ratio | OR |
Statistical Package for the Social Sciences | SPSS |
Iberian population in Spain | IBS |
Natural killer | NK |
References
- The Polaris Observatory HCV Collaborators. Global prevalence and genotype distribution of hepatitis C virus infection in 2015: A modelling study. Lancet Gastroenterol. Hepatol. 2017, 2, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Stanaway, J.D.; Flaxman, A.D.; Naghavi, M.; Fitzmaurice, C.; Vos, T.; Abubakar, I.; Abu-Raddad, L.J.; Assadi, R.; Bhala, N.; Cowie, B.; et al. The global burden of viral hepatitis from 1990 to 2013: Findings from the Global Burden of Disease Study 2013. Lancet 2016, 388, 1081–1088. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Hepatitis Report 2017; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Lingala, S.; Ghany, M.G. Natural History of Hepatitis C. Gastroenterol. Clin. N. Am. 2015, 44, 717–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conti, F.; Buonfiglioli, F.; Scuteri, A.; Crespi, C.; Bolondi, L.; Caraceni, P.; Foschi, F.G.; Lenzi, M.; Mazzella, G.; Verucchi, G. Early occurrence and recurrence of hepatocellular carcinoma in HCV-related cirrhosis treated with direct-acting antivirals. J. Hepatol. 2016, 65, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Forner, A.R.; Bruix, J. Hepatocellularcarcinoma. Lancet 2018, 391, 1301r–1314r. [Google Scholar] [CrossRef]
- Aghemo, A.; Berenguer, M.; Dalgard, O.; Dusheiko, G.; Marra, F.; Puoti, M.; Wedemeyer, H. EASL recommendations on treatment of hepatitis C: Final update of the series. J. Hepatol. 2020, 73, 1170–1218. [Google Scholar]
- Castera, L. Noninvasive Assessment of Liver Fibrosis. Dig. Dis. 2015, 33, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Resino, S.; Sánchez-Conde, M.; Berenguer, J. Coinfection by human immunodeficiency virus and hepatitis C virus: Noninvasive assessment and staging of fibrosis. Curr. Opin. Infect. Dis. 2012, 25, 564–569. [Google Scholar] [CrossRef]
- Castera, L. Invasive and non-invasive methods for the assessment of fibrosis and disease progression in chronic liver disease. Best Prac. Res. Clin. Gastroenterol. 2011, 25, 291–303. [Google Scholar] [CrossRef]
- Patel, K.; Sebastiani, G. Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Rep. 2020, 2, 100067. [Google Scholar] [CrossRef] [Green Version]
- Rüeger, S.; Bochud, P.; Dufour, J.-F.; Müllhaupt, B.; Semela, D.; Heim, M.; Moradpour, D.; Cerny, A.; Malinverni, R.; Booth, D. Impact of common risk factors of fibrosis progression in chronic hepatitis C. Gut 2015, 64, 1605–1615. [Google Scholar] [CrossRef] [PubMed]
- Heim, M.H.; Bochud, P.-Y.; George, J. Host–hepatitis C viral interactions: The role of genetics. J. Hepatol. 2016, 65, S22–S32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prawitt, D.; Monteilh-Zoller, M.K.; Brixel, L.; Spangenberg, C.; Zabel, B.; Fleig, A.; Penner, R. TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc. Natl. Acad. Sci. USA 2003, 100, 15166–15171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, D.; Liman, E.R. Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc. Natl. Acad. Sci. USA 2003, 100, 15160–15165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.C.; Chen, Z.H.; Xue, J.B.; Zhao, D.X.; Lu, C.; Li, Y.H.; Li, S.M.; Du, Y.W.; Liu, Q.; Wang, P.; et al. Infection by the parasitic helminth Trichinella spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. Proc. Natl. Acad. Sci. USA 2019, 116, 5564–5569. [Google Scholar] [CrossRef] [Green Version]
- Maina, I.W.; Workman, A.D.; Cohen, N.A. The role of bitter and sweet taste receptors in upper airway innate immunity: Recent advances and future directions. World J. Otorhinolaryngol. Head Neck Surg. 2018, 4, 200–208. [Google Scholar] [CrossRef]
- O’Leary, C.E.; Schneider, C.; Locksley, R.M. Tuft Cells-Systemically Dispersed Sensory Epithelia Integrating Immune and Neural Circuitry. Ann. Rev. Immunol. 2019, 37, 47–72. [Google Scholar] [CrossRef]
- Perniss, A.; Liu, S.; Boonen, B.; Keshavarz, M.; Ruppert, A.L.; Timm, T.; Pfeil, U.; Soultanova, A.; Kusumakshi, S.; Delventhal, L.; et al. Chemosensory Cell-Derived Acetylcholine Drives Tracheal Mucociliary Clearance in Response to Virulence-Associated Formyl Peptides. Immunity 2020, 52, 683–699. [Google Scholar] [CrossRef]
- Rane, C.K.; Jackson, S.R.; Pastore, C.F.; Zhao, G.; Weiner, A.I.; Patel, N.N.; Herbert, D.R.; Cohen, N.A.; Vaughan, A.E. Development of solitary chemosensory cells in the distal lung after severe influenza injury. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 316, L1141–L1149. [Google Scholar] [CrossRef]
- Saunders, C.J.; Christensen, M.; Finger, T.E.; Tizzano, M. Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proc. Natl. Acad. Sci. USA 2014, 111, 6075–6080. [Google Scholar] [CrossRef] [Green Version]
- Tizzano, M.; Gulbransen, B.D.; Vandenbeuch, A.; Clapp, T.R.; Herman, J.P.; Sibhatu, H.M.; Churchill, M.E.; Silver, W.L.; Kinnamon, S.C.; Finger, T.E. Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc. Natl. Acad. Sci. USA 2010, 107, 3210–3215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Rodriguez, A.; Berenguer, J.; Jimenez-Sousa, M.A.; Guzman-Fulgencio, M.; Micheloud, D.; Miralles, P.; Lopez, J.C.; Bellon, J.M.; Aldamiz-Echevarria, T.; Garcia-Broncano, P.; et al. Prediction of hepatic fibrosis in patients coinfected with HIV and hepatitis C virus based on genetic markers. J. Acquir. Immun. Defic. Syndr. 2013, 64, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Marcolongo, M.; Young, B.; Dal Pero, F.; Fattovich, G.; Peraro, L.; Guido, M.; Sebastiani, G.; Palu, G.; Alberti, A. A seven-gene signature (cirrhosis risk score) predicts liver fibrosis progression in patients with initially mild chronic hepatitis C. Hepatology 2009, 50, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Trepo, E.; Potthoff, A.; Pradat, P.; Bakshi, R.; Young, B.; Lagier, R.; Moreno, C.; Verset, L.; Cross, R.; Degre, D.; et al. Role of a cirrhosis risk score for the early prediction of fibrosis progression in hepatitis C patients with minimal liver disease. J. Hepatol. 2011, 55, 38–44. [Google Scholar] [CrossRef]
- Huang, H.; Shiffman, M.L.; Friedman, S.; Venkatesh, R.; Bzowej, N.; Abar, O.T.; Rowland, C.M.; Catanese, J.J.; Leong, D.U.; Sninsky, J.J.; et al. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology 2007, 46, 297–306. [Google Scholar] [CrossRef]
- Curto, T.M.; Lagier, R.J.; Lok, A.S.; Everhart, J.E.; Rowland, C.M.; Sninsky, J.J.; The, H.-C.T.g. Predicting cirrhosis and clinical outcomes in patients with advanced chronic hepatitis C with a panel of genetic markers (CRS7). Pharmacog. Genom. 2011, 21, 851. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chang, M.; Abar, O.; Garcia, V.; Rowland, C.; Catanese, J.; Ross, D.; Broder, S.; Shiffman, M.; Cheung, R.; et al. Multiple variants in toll-like receptor 4 gene modulate risk of liver fibrosis in Caucasians with chronic hepatitis C infection. J. Hepatol. 2009, 51, 750–757. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, A.; Darstein, F.; Hoppe-Lotichius, M.; Toenges, G.; Lautem, A.; Abel, F.; Schad, A.; Mittler, J.; Vollmar, J.; Grimm, D.; et al. Cirrhosis risk score of the donor organ predicts early fibrosis progression after liver transplantation. J. Gastrointestin. Liver Dis. 2019, 28, 53–61. [Google Scholar] [CrossRef]
- Jiménez-Sousa, M.Á.; Gómez-Moreno, A.Z.; Pineda-Tenor, D.; Sánchez-Ruano, J.J.; Artaza-Varasa, T.; Martin-Vicente, M.; Fernández-Rodríguez, A.; Martínez, I.; Resino, S. Impact of DARC rs12075 Variants on Liver Fibrosis Progression in Patients with Chronic Hepatitis C: A Retrospective Study. Biomolecules 2019, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Calvaruso, V.; Craxì, A. 2011 E uropean A ssociation of the S tudy of the L iver hepatitis C virus clinical practice guidelines. Liver International. 2012, 32, 2–8. [Google Scholar] [CrossRef]
- EASL. Clinical Practice Guidelines: Management of hepatitis C virus infection. J. Hepatol. 2014, 60, 392–420. [Google Scholar] [CrossRef] [PubMed]
- Spanish National Genotyping Center. Available online: http://www.cegen.org (accessed on 20 December 2020).
- Gabriel, S.; Ziaugra, L.; Tabbaa, D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr. Protoc. Hum. Genet. 2009, 60, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Sousa, M.Á.; Gómez-Moreno, A.Z.; Pineda-Tenor, D.; Medrano, L.M.; Sánchez-Ruano, J.J.; Fernández-Rodríguez, A.; Artaza-Varasa, T.; Saura-Montalbán, J.; Vazquez-Moron, S.; Ryan, P. The IL7RA rs6897932 polymorphism is associated with progression of liver fibrosis in patients with chronic hepatitis C: Repeated measurements design. PLoS ONE 2018, 13, e0197115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castera, L.; Forns, X.; Alberti, A. Non-invasive evaluation of liver fibrosis using transient elastography. J. Hepatol. 2008, 48, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Sousa, M.Á.; Gómez-Moreno, A.Z.; Pineda-Tenor, D.; Brochado-Kith, O.; Sánchez-Ruano, J.J.; Artaza-Varasa, T.; Gómez-Sanz, A.; Fernández-Rodríguez, A.; Resino, S. The myeloid-epithelial-reproductive tyrosine kinase (MERTK) rs4374383 polymorphism predicts progression of liver fibrosis in hepatitis C virus-infected patients: A longitudinal study. J. Clin. Med. 2018, 7, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Sousa, M.Á.; Gómez-Moreno, A.Z.; Pineda-Tenor, D.; Sánchez-Ruano, J.J.; Fernández-Rodríguez, A.; Artaza-Varasa, T.; Gómez-Sanz, A.; Martín-Vicente, M.; Vázquez-Morón, S.; Resino, S. PNPLA3 rs738409 polymorphism is associated with liver fibrosis progression in patients with chronic hepatitis C: A repeated measures study. J. Clin. Virol. 2018, 103, 71–74. [Google Scholar] [CrossRef]
- Pineda-Tenor, D.; Gomez-Moreno, A.Z.; Sanchez-Ruano, J.J.; Artaza-Varasa, T.; Virseda-Berdices, A.; Fernandez-Rodriguez, A.; Mendoza, P.M.; Jimenez-Sousa, M.A.; Resino, S. MTHFR rs1801133 Polymorphism Is Associated with Liver Fibrosis Progression in Chronic Hepatitis C: A Retrospective Study. Front. Med. 2020, 7, 582666. [Google Scholar] [CrossRef]
- 1000 Genomes Project. Available online: http://www.1000genomes.org/home (accessed on 20 December 2020).
- 1000 Genomes Project Phase 3. Available online: http://grch37.ensembl.org/index.html (accessed on 20 December 2020).
- Sakaguchi, T.; Okumura, R.; Ono, C.; Okuzaki, D.; Kawai, T.; Okochi, Y.; Tanimura, N.; Murakami, M.; Kayama, H.; Umemoto, E.; et al. TRPM5 Negatively Regulates Calcium-Dependent Responses in Lipopolysaccharide-Stimulated B Lymphocytes. Cell Rep. 2020, 31, 107755. [Google Scholar] [CrossRef]
- Hofmann, T.; Chubanov, V.; Gudermann, T.; Montell, C. TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr. Biol. 2003, 13, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Colsoul, B.; Schraenen, A.; Lemaire, K.; Quintens, R.; Van Lommel, L.; Segal, A.; Owsianik, G.; Talavera, K.; Voets, T.; Margolskee, R.F.; et al. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5-/- mice. Proc. Natl. Acad. Sci. USA 2010, 107, 5208–5213. [Google Scholar] [CrossRef] [Green Version]
- Philippaert, K.; Pironet, A.; Mesuere, M.; Sones, W.; Vermeiren, L.; Kerselaers, S.; Pinto, S.; Segal, A.; Antoine, N.; Gysemans, C.; et al. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nat. Commun. 2017, 8, 14733. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S. Molecular Regulations and Functions of the Transient Receptor Potential Channels of the Islets of Langerhans and Insulinoma Cells. Cells 2020, 9, 685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketterer, C.; Mussig, K.; Heni, M.; Dudziak, K.; Randrianarisoa, E.; Wagner, R.; Machicao, F.; Stefan, N.; Holst, J.J.; Fritsche, A.; et al. Genetic variation within the TRPM5 locus associates with prediabetic phenotypes in subjects at increased risk for type 2 diabetes. Metabolism 2011, 60, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- Tabur, S.; Oztuzcu, S.; Duzen, I.V.; Eraydin, A.; Eroglu, S.; Ozkaya, M.; Demiryurek, A.T. Role of the transient receptor potential (TRP) channel gene expressions and TRP melastatin (TRPM) channel gene polymorphisms in obesity-related metabolic syndrome. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 1388–1397. [Google Scholar] [PubMed]
- Moon, A.M.; Singal, A.G.; Tapper, E.B. Contemporary Epidemiology of Chronic Liver Disease and Cirrhosis. Clin. Gastroenterol. Hepatol. 2020, 18, 2650–2666. [Google Scholar] [CrossRef] [PubMed]
- Oliva-Vilarnau, N.; Hankeova, S.; Vorrink, S.U.; Mkrtchian, S.; Andersson, E.R.; Lauschke, V.M. Calcium Signaling in Liver Injury and Regeneration. Front. Med. 2018, 5, 192. [Google Scholar] [CrossRef]
- Guo, L.; Du, Y.; Qu, S.; Wang, J. rVarBase: An updated database for regulatory features of human variants. Nucleic Acids Res. 2016, 44, D888–D893. [Google Scholar] [CrossRef] [Green Version]
- Mikulak, J.; Bruni, E.; Oriolo, F.; Di Vito, C.; Mavilio, D. Hepatic Natural Killer Cells: Organ-Specific Sentinels of Liver Immune Homeostasis and Physiopathology. Front. Immunol. 2019, 10, 946. [Google Scholar] [CrossRef] [Green Version]
- Genotype-Tissue Expression (GTEx) Portal. Available online: https://gtexportal.org (accessed on 20 December 2020).
- Carmona, I.; Cordero, P.; Ampuero, J.; Rojas, A.; Romero-Gomez, M. Role of assessing liver fibrosis in management of chronic hepatitis C virus infection. Clin. Microbiol. Infect. 2016, 22, 839–845. [Google Scholar] [CrossRef] [Green Version]
TRPM5 rs886277 Polymorphism | ||||
---|---|---|---|---|
Characteristic | TT | CT | CC | p-Value |
No. | 85 | 95 | 28 | |
Male | 41 (48.2%) | 51 (53.7%) | 20 (71.4%) | 0.102 |
Age (years) | 47.5 (41.3; 59.3) | 46.6 (41; 56.1) | 46.7 (43.4; 58.3) | 0.958 |
Time of HCV infection (years) | 7.7 (3.5; 12.9) | 9.5 (3.3; 13.8) | 6.2 (1.4; 11.6) | 0.284 |
High alcohol intake | 12 (14.1%) | 11 (11.6%) | 5 (17.9%) | 0.675 |
Prior injection drug use | 12 (14.1%) | 7 (7.4%) | 2 (7.1%) | 0.278 |
HCV genotype (n = 204) | ||||
1 | 66 (77.6%) | 83 (90.2%) | 25 (92.6%) | 0.032 |
3 | 7 (8.2%) | 6 (6.5%) | 1 (3.7%) | 0.709 |
4 | 11 (12.9%) | 3 (3.3%) | 1 (3.7%) | 0.035 |
5 | 1 (1.2%) | - | - | - |
Prior failed IFN therapy | 18 (21.2%) | 24 (25.3%) | 5 (17.9%) | 0.656 |
Baseline LSM (kPa) | 6.3 (5.2; 7.8) | 5.9 (4.9; 7) | 6.7 (5.4; 9) | 0.328 |
F0–F1 (<7.1 kPa) | 58 (68.2%) | 73 (76.8%) | 18 (64.3%) | 0.287 |
F2 (7.1–9.4 kPa) | 17 (20%) | 15 (15.8%) | 6 (21.4%) | 0.725 |
F3 (9.5–12.4 kPa) | 10 (11.8%) | 7 (7.4%) | 4 (14.3%) | 0.255 |
HCV Cohort | IBS Group | p-value | ||
---|---|---|---|---|
No. | 208 | 107 | ||
Alleles | C | 151 (36.3%) | 80 (37.4%) | 0.367 |
T | 265 (63.7%) | 134 (62.6%) | ||
Genotype | CC | 28 (13.4%) | 17 (15.9%) | 0.816 |
CT | 95 (45.7%) | 46 (43.0%) | ||
TT | 85 (40.9%) | 44 (41.1%) | ||
HWE (p-value) | 0.858 | 0.398 |
Unadjusted | Adjusted | |||
---|---|---|---|---|
Outcome | AMR (95% CI) | p(a) | aAMR (95% CI) | p(b) |
LSM2/LSM1 | ||||
Additive (CC vs. CT vs. TT) | 1.15 (1.05; 1.25) | 0.002 | 1.08 (0.99; 1.17) | 0.061 |
Recessive (CC vs. TT/CT) | 1.44 (1.20; 1.72) | <0.001 | 1.31 (1.12; 1.55) | 0.001 |
Progression to F4 | OR (95% CI) | p(a) | aOR (95% CI) | p(b) |
Additive (CC vs. CT vs. TT) | 1.91 (1.06; 3.45) | 0.032 | 2.64 (1.21; 5.75) | 0.014 |
Recessive (CC vs. TT/CT) | 2.82 (1.06; 7.51) | 0.038 | 4.33 (1.18; 15.91) | 0.027 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resino, S.; Fernández-Rodríguez, A.; Pineda-Tenor, D.; Gómez-Moreno, A.Z.; Sánchez-Ruano, J.J.; Artaza-Varasa, T.; Muñoz-Gómez, M.J.; Virseda-Berdices, A.; Martín-Vicente, M.; Martínez, I.; et al. TRPM5 rs886277 Polymorphism Predicts Hepatic Fibrosis Progression in Non-Cirrhotic HCV-Infected Patients. J. Clin. Med. 2021, 10, 483. https://doi.org/10.3390/jcm10030483
Resino S, Fernández-Rodríguez A, Pineda-Tenor D, Gómez-Moreno AZ, Sánchez-Ruano JJ, Artaza-Varasa T, Muñoz-Gómez MJ, Virseda-Berdices A, Martín-Vicente M, Martínez I, et al. TRPM5 rs886277 Polymorphism Predicts Hepatic Fibrosis Progression in Non-Cirrhotic HCV-Infected Patients. Journal of Clinical Medicine. 2021; 10(3):483. https://doi.org/10.3390/jcm10030483
Chicago/Turabian StyleResino, Salvador, Amanda Fernández-Rodríguez, Daniel Pineda-Tenor, Ana Zaida Gómez-Moreno, Juan José Sánchez-Ruano, Tomas Artaza-Varasa, María José Muñoz-Gómez, Ana Virseda-Berdices, María Martín-Vicente, Isidoro Martínez, and et al. 2021. "TRPM5 rs886277 Polymorphism Predicts Hepatic Fibrosis Progression in Non-Cirrhotic HCV-Infected Patients" Journal of Clinical Medicine 10, no. 3: 483. https://doi.org/10.3390/jcm10030483
APA StyleResino, S., Fernández-Rodríguez, A., Pineda-Tenor, D., Gómez-Moreno, A. Z., Sánchez-Ruano, J. J., Artaza-Varasa, T., Muñoz-Gómez, M. J., Virseda-Berdices, A., Martín-Vicente, M., Martínez, I., & Jiménez-Sousa, M. A. (2021). TRPM5 rs886277 Polymorphism Predicts Hepatic Fibrosis Progression in Non-Cirrhotic HCV-Infected Patients. Journal of Clinical Medicine, 10(3), 483. https://doi.org/10.3390/jcm10030483