Implication of miR-126 and miR-139-5p in Plasmacytoid Dendritic Cell Dysregulation in Systemic Sclerosis
Abstract
:1. Introduction
2. Material and Methods
2.1. Patients
2.2. Blood Collection, Plasmacytoid Dendritic Cell Isolation, and RNA Extraction
2.3. MiRNA Profiling
2.4. MiRNA, pDC Culture, and Gene Expression Analysis
2.5. RNA Sequencing
2.6. Proteomics (SILAC)
2.7. Statistical Analysis
3. Results
3.1. Experimental Design
3.2. The Profile of miRNAs Is Altered in pDCs from Patients with Early and Definite SSc
3.3. MiR-126 and miR-139-5p Are Induced by TLR9-Mediated pDC Activation and Correlate with IFN-Responsive Genes
3.4. MiR-126 and miR-139-5p Target Genes Are Enriched in Pathways Related to SSc Pathogenesis
3.5. Proteomics Analysis Identified USP24 as Direct Target of miR-139-5p
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katsumoto, T.R.; Whitfield, M.L.; Connolly, M.K. The pathogenesis of systemic sclerosis. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 509–537. [Google Scholar] [CrossRef] [PubMed]
- Allanore, Y.; Simms, R.; Distler, O.; Trojanowska, M.; Pope, J.; Denton, C.P.; Varga, J. Systemic sclerosis. Nat. Rev. Dis. Prim. 2015, 1, 15002. [Google Scholar] [CrossRef] [PubMed]
- Lafyatis, R.; York, M. Innate immunity and inflammation in systemic sclerosis. Curr. Opin. Rheumatol. 2009, 21, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Brkic, Z.; van Bon, L.; Cossu, M.; van Helden-Meeuwsen, C.G.; Vonk, M.C.; Knaapen, H.; van den Berg, W.; Dalm, V.A.; Van Daele, P.L.; Severino, A.; et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene ex-pression and high collagen synthesis. Ann. Rheum Dis. 2016, 75, 1567–1573. [Google Scholar] [CrossRef]
- van Bon, L.; Affandi, A.J.; Broen, J.; Christmann, R.B.; Marijnissen, R.J.; Stawski, L.; Farina, G.A.; Stifano, G.; Mathes, A.L.; Cossu, M.; et al. Proteome-wide analysis and CXCL4 as a biomarker in systemic sclerosis. N. Engl. J. Med. 2014, 370, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Kioon, M.D.A.; Tripodo, C.; Fernandez, D.; Kirou, K.A.; Spiera, R.F.; Crow, M.K.; Gordon, J.K.; Barrat, F.J. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci. Transl. Med. 2018, 10, eaam8458. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Peck, A.; Santer, D.; Patole, P.; Schwartz, S.M.; Molitor, J.A.; Arnett, F.C.; Elkon, K.B. Induction of interferon-α by scleroderma sera containing autoantibodies to topoisomerase I: Association of higher interferon-α activity with lung fibrosis. Arthritis Rheum. 2008, 58, 2163–2173. [Google Scholar] [CrossRef]
- Eloranta, M.-L.; Franck-Larsson, K.; Lövgren, T.; Kalamajski, S.; Rönnblom, A.; Rubin, K.; Alm, G.V.; Rönnblom, L. Type I interferon system activation and association with disease manifestations in systemic sclerosis. Ann. Rheum. Dis. 2010, 69, 1396–1402. [Google Scholar] [CrossRef]
- Rossato, M.; Affandi, A.J.; Thordardottir, S.; Wichers, C.G.K.; Cossu, M.; Broen, J.C.A.; Moret, F.M.; Bossini-Castillo, L.; Chouri, E.; Van Bon, L.; et al. Association of MicroRNA-618 Expression with Altered Frequency and Activation of Plasmacytoid Dendritic Cells in Patients With Systemic Sclerosis. Arthritis Rheumatol. 2017, 69, 1891–1902. [Google Scholar] [CrossRef]
- Lam, I.K.Y.; Chow, J.X.; Lau, C.S.; Chan, V.S.F. MicroRNA-mediated immune regulation in rheumatic diseases. Cancer Lett. 2018, 431, 201–212. [Google Scholar] [CrossRef]
- LeRoy, E.C.; Medsger, J. Criteria for the classification of early systemic sclerosis. J. Rheumatol. 2001, 28, 1573–1576. [Google Scholar] [PubMed]
- van den Hoogen, F.; Khanna, D.; Fransen, J.; Johnson, S.R.; Baron, M.; Tyndall, A.; Matucci-Cerinic, M.; Naden, R.P.; Medsger, T.A., Jr.; Carreira, P.E.; et al. 2013 Classification Criteria for Systemic Sclerosis: An American College of Rheumatology/European League Against Rheumatism Collaborative Initiative. Arthritis Rheum. 2013, 65, 2737–2747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carwile LeRoy, E.; Black, C.; Fleischmajer, R.; Jablonska, S.; Krieg, T.; Medsger, T.A., Jr.; Rowell, N.; Wollheim, F. Scleroderma (systemic sclerosis): Classi-fication, subsets and pathogenesis. J. Rheumatol. 1988, 15, 202–205. [Google Scholar]
- Chouri, E.; Servaas, N.H.; Bekker, C.P.J.; Affandi, A.J.; Cossu, M.; Hillen, M.R.; Angiolilli, C.; Mertens, J.S.; van den Hoogen, L.L.; Silva-Cardoso, S.; et al. Serum microRNA screening and functional stud-ies reveal miR-483-5p as a potential driver of fibrosis in systemic sclerosis. J. Autoimmun. 2018, 89, 162–170. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, R106. [Google Scholar] [CrossRef] [Green Version]
- Agudo, J.; Ruzo, A.; Tung, N.; Salmon, H.; Leboeuf, M.; Hashimoto, D.; Becker, C.; Garrett-Sinha, L.-A.; Baccarini, A.; Merad, M.; et al. The miR-126–VEGFR2 axis controls the innate re-sponse to pathogen-associated nucleic acids. Nat. Immunol. 2014, 15, 54–62. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Jing, Z.; Cheng, G. MicroRNAs: New regulators of Toll-like receptor signalling pathways. BioMed Res. Int. 2014, 2014, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Taganov, K.D.; Boldin, M.P.; Chang, K.-J.; Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 2006, 103, 12481–12486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connell, R.M.; Taganov, K.D.; Boldin, M.P.; Cheng, G.; Baltimore, D. MicroRNA-155 is induced during the macrophage inflam-matory response. Proc. Natl. Acad. Sci. USA 2007, 104, 1604–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, L.A.J.; Sheedy, F.J.; McCoy, C.E. MicroRNAs: The fine-tuners of Toll-like receptor signalling. Nat. Rev. Immunol. 2011, 11, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wang, Y.; Liang, Y.; Zhao, M.; Long, H.; Ding, S.; Yin, H.; Lu, Q. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum. 2010, 63, 1376–1386. [Google Scholar] [CrossRef]
- Baechler, E.C.; Batliwalla, F.M.; Karypis, G.; Gaffney, P.M.; Ortmann, W.A.; Espe, K.J.; Shark, K.B.; Grande, W.J.; Hughes, K.M.; Kapur, V.; et al. Interferon-inducible gene expression sig-nature in peripheral blood cells of patients with severe lupus. Proc. Natl. Acad. Sci. USA 2003, 100, 2610–2615. [Google Scholar] [CrossRef] [Green Version]
- Kirou, K.A.; Lee, C.; George, S.; Louca, K.; Peterson, M.G.E.; Crow, M.K. Activation of the interferon-α pathway identifies a sub-group of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 2005, 52, 1491–1503. [Google Scholar] [CrossRef]
- Lechman, E.R.; Gentner, B.; Ng, S.W.K.; Schoof, E.M.; van Galen, P.; Kennedy, J.A.; Nucera, S.; Ciceri, F.; Kaufmann, K.B.; Takayama, N.; et al. miR-126 Regulates Distinct Self-Renewal Outcomes in Normal and Malignant Hematopoietic Stem Cells. Cancer Cell. 2016, 29, 602–606. [Google Scholar] [CrossRef]
- Liang, M.; Lv, J.; Chu, H.; Wang, J.; Chen, X.; Zhu, X.; Xue, Y.; Guan, M.; Zou, H. Vertical inhibition of PI3K/Akt/mTOR signaling demonstrates in vitro and in vivo anti-fibrotic activity. J. Dermatol. Sci. 2014, 76, 104–111. [Google Scholar] [CrossRef]
- Distler, O.; Distler, J.H.W.; Scheid, A.; Acker, T.; Hirth, A.; Rethage, J.; Michel, B.A.; Gay, R.E.; Müller-Ladner, U.; Cerinic, M.M.; et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ. Res. 2004, 95, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.-D.; Jiang, L.-H.; Sun, D.-W.; Lin-Hong, J.; Tang, J.-H. MiR-139-5p: Promising biomarker for cancer. Tumor Biol. 2015, 36, 1355–1365. [Google Scholar] [CrossRef]
- Li, J.; Su, L.; Gong, Y.; Ding, M.; Hong, S.; Yu, S.; Xiao, H.-P. Downregulation of miR-139-5p contributes to the antiapoptotic effect of li-raglutide on the diabetic rat pancreas and INS-1 cells by targeting IRS1. PLoS ONE 2017, 12, e0173576. [Google Scholar]
- Chen, H.; Xu, H.; Meng, Y.-G.; Zhang, Y.; Chen, J.-Y.; Wei, X.-N. miR-139-5p regulates proliferation, apoptosis, and cell cycle of uterine leiomyoma cells by targeting TPD52. OncoTargets Ther. 2016, 9, 6151–6160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pajic, M.; Froio, D.; Daly, S.; Doculara, L.; Millar, E.; Graham, P.H.; Drury, A.; Steinmann, A.; De Bock, C.E.; Boulghourjian, A.; et al. miR-139-5p Modulates Radiotherapy Resistance in Breast Cancer by Repressing Multiple Gene Networks of DNA Repair and ROS Defense. Cancer Res. 2018, 78, 501–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vona, R.; Giovannetti, A.; Gambardella, L.; Malorni, W.; Pietraforte, D.; Straface, E. Oxidative stress in the pathogenesis of sys-temic scleroderma: An overview. J. Cell Mol. Med. 2018, 22, 3308–3314. [Google Scholar] [CrossRef] [PubMed]
- Bibeau-Poirier, A.; Servant, M.J. Roles of ubiquitination in pattern-recognition receptors and type I interferon receptor sig-naling. Cytokine 2008, 43, 359–367. [Google Scholar] [CrossRef]
- Cui, J.; Song, Y.; Li, Y.; Zhu, Q.; Tan, P.; Qin, Y.; Wang, H.Y.; Wang, R.-F. USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like re-ceptors. Cell Res. 2013, 24, 400. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Zhao, Z.; Yang, Z.; Meng, Q.; Tan, P.; Xie, W.; Qin, Y.; Wang, R.-F.; Cui, J. USP38 Inhibits Type I Interferon Signaling by Editing TBK1 Ubiquitina-tion through NLRP4 Signalosome. Mol. Cell. 2016, 64, 267–281. [Google Scholar] [CrossRef] [Green Version]
- Kayagaki, N.; Phung, Q.; Chan, S.; Chaudhari, R.; Quan, C.; O’Rourke, K.M.; Eby, M.; Pietras, E.; Cheng, G.; Bazan, J.F.; et al. DUBA: A Deubiquitinase That Regulates Type I Interferon Production. Science (80-) 2007, 318, 1628–1632. [Google Scholar] [CrossRef]
- Bhoj, V.G.; Chen, Z.J. Ubiquitylation in innate and adaptive immunity. Nat. Cell Biol. 2009, 458, 430–437. [Google Scholar] [CrossRef]
- Chiang, C.-Y.; Engel, A.; Opaluch, A.M.; Ramos, I.; Maestre, A.M.; Secundino, I.; De Jesus, P.D.; Nguyen, Q.T.; Welch, G.; Bonamy, G.M.; et al. Cofactors required for TLR7- and TLR9-dependent innate immune responses. Cell Host Microbe 2012, 11, 306–318. [Google Scholar] [CrossRef] [Green Version]
Discovery Cohort I | Discovery Cohort II | Cohort III: Validation Cohort | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Group (n) | HC(9) | RP(8) | eaSSc(10) | ncSSc(9) | HC (8) | ncSSC(4) | dcSSc(5) | lcSSc(11) | HC(9) | eaSSc(5) | ncSSc(3) | dcSSc(7) | lcSSc(10) |
Age (yr.) | 32 (30–43) | 44 (33–67) | 53 (46–55) | 58 (49–62) | 54 (53–61) | 43 (35–52) | 63 (57–65) | 58 (53–67) | 53 (46–55) | 37 (27–48) | 51 (45–55) | 46 (35–55) | 63 (50–67) |
Female (n, %) | 8 (89%) | 8 (100%) | 7(78%) | 9 (100%) | 6 (75%) | 3 (75%) | 2 (40%) | 8 (73%) | 7(78%) | 4(80%) | 3(100%) | 4(57%) | 9(90%) |
ANA (n pos, %) | - | 3 (38%) | 9(90%) | 9 (100%) | - | 4 (100%) | 5 (100%) | 10 (91%) | - | 3(60%) | 2(67%) | 6(86%) | 9(90%) |
ACA (n pos %) | - | 0 | 6(60%) | 6 (67%) | - | 2 (50%) | 2 (40%) | 6 (55%) | - | 2(40%) | 1(33%) | 1(14%) | 9(90%) |
Scl70 (n pos, %) | - | 0 | 2(20%) | 1 (11%) | - | 2 (50%) | 2 (40%) | 2 (18%) | - | 0 | 1(33%) | 3(43%) | 3(30%) |
mRSS | - | 0 | 0 | 0 | - | 0 | 20 (10–30) | 7 (3–9) | - | 0 | 0 | 16 (8–20) | 9 (3–15) |
ILD | - | 0 | 0 | 0 | - | 1 | 4 | 2 | - | 0 | 1 (33%) | 1 (14%) | 4 (40%) |
Disease Duration | - | - | - | - | - | 3 (3–5) | 16 (8–26) | 4 (3–12) | - | - | 3 (2–4) | 3 (1–15) | 10 (3–23) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chouri, E.; Wang, M.; Hillen, M.R.; Angiolilli, C.; Silva-Cardoso, S.C.; Wichers, C.G.K.; van der Kroef, M.; Bekker, C.P.J.; Cossu, M.; van Bon, L.; et al. Implication of miR-126 and miR-139-5p in Plasmacytoid Dendritic Cell Dysregulation in Systemic Sclerosis. J. Clin. Med. 2021, 10, 491. https://doi.org/10.3390/jcm10030491
Chouri E, Wang M, Hillen MR, Angiolilli C, Silva-Cardoso SC, Wichers CGK, van der Kroef M, Bekker CPJ, Cossu M, van Bon L, et al. Implication of miR-126 and miR-139-5p in Plasmacytoid Dendritic Cell Dysregulation in Systemic Sclerosis. Journal of Clinical Medicine. 2021; 10(3):491. https://doi.org/10.3390/jcm10030491
Chicago/Turabian StyleChouri, Eleni, Maojie Wang, Maarten R. Hillen, Chiara Angiolilli, Sandra C. Silva-Cardoso, Catharina G. K. Wichers, Maarten van der Kroef, Cornelis P. J. Bekker, Marta Cossu, Lenny van Bon, and et al. 2021. "Implication of miR-126 and miR-139-5p in Plasmacytoid Dendritic Cell Dysregulation in Systemic Sclerosis" Journal of Clinical Medicine 10, no. 3: 491. https://doi.org/10.3390/jcm10030491
APA StyleChouri, E., Wang, M., Hillen, M. R., Angiolilli, C., Silva-Cardoso, S. C., Wichers, C. G. K., van der Kroef, M., Bekker, C. P. J., Cossu, M., van Bon, L., Affandi, A. J., Carvalheiro, T., Pandit, A., van Roon, J. A. G., Beretta, L., Burgering, B. M. T., Radstake, T. R. D. J., & Rossato, M. (2021). Implication of miR-126 and miR-139-5p in Plasmacytoid Dendritic Cell Dysregulation in Systemic Sclerosis. Journal of Clinical Medicine, 10(3), 491. https://doi.org/10.3390/jcm10030491