Multistate Modeling of COVID-19 Patients Using a Large Multicentric Prospective Cohort of Critically Ill Patients
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design and Data Source
2.2. Study Population
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Available online: https://covid19.who.int/ (accessed on 30 November 2020).
- Petrilli, C.M.; Jones, S.A.; Yang, J.; Rajagopalan, H.; O’Donnell, L.; Chernyak, Y.; Tobin, K.A.; Cerfolio, R.J.; Francois, F.; Horwitz, L.I. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ 2020, m1966. [Google Scholar] [CrossRef] [PubMed]
- Cummings, M.J.; Baldwin, M.R.; Abrams, D.; Jacobson, S.D.; Meyer, B.J.; Balough, E.M.; Aaron, J.G.; Claassen, J.; Rabbani, L.E.; Hastie, J.; et al. Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: A prospective cohort study. Lancet 2020, 395, 1763–1770. [Google Scholar] [CrossRef]
- Tleyjeh, I.M.; Kashour, Z.; Damlaj, M.; Riaz, M.; Tlayjeh, H.; Altannir, M.; Altannir, Y.; Al-Tannir, M.; Tleyjeh, R.; Hassett, L.; et al. Efficacy and safety of tocilizumab in COVID-19 patients: A living systematic review and meta-analysis. Clin. Microbiol. Infect. 2020, S1198743X2030690X. [Google Scholar] [CrossRef]
- Zahar, J.-R.; Timsit, J.-F.; Garrouste-Orgeas, M.; Français, A.; Vesim, A.; Descorps-Declere, A.; Dubois, Y.; Souweine, B.; Haouache, H.; Goldgran-Toledano, D.; et al. Outcomes in severe sepsis and patients with septic shock: Pathogen species and infection sites are not associated with mortality. Crit. Care Med. 2011, 39, 1886–1895. [Google Scholar] [CrossRef]
- Andersen, P.K.; Keiding, N. Multi-state models for event history analysis. Stat. Methods Med. Res. 2002, 11, 91–115. [Google Scholar] [CrossRef]
- Putter, H.; Fiocco, M.; Geskus, R.B. Tutorial in biostatistics: Competing risks and multi-state models. Stat. Med. 2007, 26, 2389–2430. [Google Scholar] [CrossRef]
- Beyersmann, J.; Allignol, A.; Schumacher, M. Competing Risks and Multistate Models with R; Use R! Springer: New York, NY, USA, 2012; ISBN 978-1-4614-2034-7. [Google Scholar]
- Raffalovich, L.E.; Deane, G.D.; Armstrong, D.; Tsao, H.-S. Model selection procedures in social research: Monte-Carlo simulation results. J. Appl. Stat. 2008, 35, 1093–1114. [Google Scholar] [CrossRef]
- Gran, J.M.; Lie, S.A.; Øyeflaten, I.; Borgan, Ø.; Aalen, O.O. Causal inference in multi-state models–sickness absence and work for 1145 participants after work rehabilitation. BMC Public Health 2015, 15, 1082. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.; Lewsey, J.D.; Briggs, A.H.; Mackay, D.F. Cost-effectiveness Analysis in R Using a Multi-state Modeling Survival Analysis Framework: A Tutorial. Med. Decis. Making 2017, 37, 340–352. [Google Scholar] [CrossRef] [Green Version]
- De Wreede, L.C.; Fiocco, M.; Putter, H. mstate: An R Package for the Analysis of Competing Risks and Multi-State Models. J. Stat. Softw. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Hazard, D.; Kaier, K.; Von Cube, M.; Grodd, M.; Bugiera, L.; Lambert, J.; Wolkewitz, M. Joint analysis of duration of ventilation, length of intensive care, and mortality of COVID-19 patients: A multistate approach. BMC Med. Res. Methodol. 2020, 20, 206. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Elhusseiny, K.M.; Yeh, Y.-C.; Sun, W.-Z. COVID-19 ICU and Mechanical Ventilation Patient Characteristics and Outcomes—A Systematic Review and Meta-analysis. In Review. medRxiv 2020. [Google Scholar] [CrossRef]
- Abate, S.M.; Ahmed Ali, S.; Mantfardo, B.; Basu, B. Rate of Intensive Care Unit admission and outcomes among patients with coronavirus: A systematic review and Meta-analysis. PLoS ONE 2020, 15, e0235653. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Hayek, S.S.; Wang, W.; Chan, L.; Mathews, K.S.; Melamed, M.L.; Brenner, S.K.; Leonberg-Yoo, A.; Schenck, E.J.; Radbel, J.; et al. Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US. JAMA Intern. Med. 2020, 180, 1436. [Google Scholar] [CrossRef] [PubMed]
- The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with Covid-19—Preliminary Report. N. Engl. J. Med. 2020, NEJMoa2021436. [Google Scholar] [CrossRef]
- Tomazini, B.M.; Maia, I.S.; Cavalcanti, A.B.; Berwanger, O.; Rosa, R.G.; Veiga, V.C.; Avezum, A.; Lopes, R.D.; Bueno, F.R.; Silva, M.V.A.O.; et al. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients with Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA 2020, 324, 1307. [Google Scholar] [CrossRef] [PubMed]
- The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA 2020, 324, 1330. [Google Scholar] [CrossRef]
- Jeronimo, C.M.P.; Farias, M.E.L.; Val, F.F.A.; Sampaio, V.S.; Alexandre, M.A.A.; Melo, G.C.; Safe, I.P.; Borba, M.G.S.; Netto, R.L.A.; Maciel, A.B.S.; et al. Methylprednisolone as Adjunctive Therapy for Patients Hospitalized with Coronavirus Disease 2019 (COVID-19; Metcovid): A Randomized, Double-blind, Phase IIb, Placebo-controlled Trial. Clin. Infect. Dis. 2020, ciaa1177. [Google Scholar] [CrossRef]
- Bartoletti, M.; Marconi, L.; Scudeller, L.; Pancaldi, L.; Tedeschi, S.; Giannella, M.; Rinaldi, M.; Bussini, L.; Valentini, I.; Ferravante, A.F.; et al. Efficacy of corticosteroid treatment for hospitalized patients with severe COVID-19: A multicentre study. Clin. Microbiol. Infect. 2020, S1198743X20305632. [Google Scholar] [CrossRef]
- The REMAP-CAP Investigators; Gordon, A.C. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19—Preliminary Report. Intensive Care and Critical Care Medicine. medRxiv 2021. [Google Scholar] [CrossRef]
- Zhao, J.; Cui, W.; Tian, B. Efficacy of tocilizumab treatment in severely ill COVID-19 patients. Crit. Care 2020, 24, 524. [Google Scholar] [CrossRef] [PubMed]
- Malgie, J.; Schoones, J.W.; Pijls, B.G. Decreased Mortality in Coronavirus Disease 2019 Patients Treated with Tocilizumab: A Rapid Systematic Review and Meta-analysis of Observational Studies. Clin. Infect. Dis. 2020, ciaa1445. [Google Scholar] [CrossRef] [PubMed]
- Putman, M.; Chock, Y.P.E.; Tam, H.; Kim, A.H.J.; Sattui, S.E.; Berenbaum, F.; Danila, M.I.; Korsten, P.; Sanchez-Alvarez, C.; Sparks, J.A.; et al. Antirheumatic Disease Therapies for the Treatment of COVID-19: A Systematic Review and Meta-Analysis. Arthritis Rheumatol. 2020, art.41469. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, B.; Qu, Y.; Chen, Y.; Xiong, J.; Feng, Y.; Men, D.; Huang, Q.; Liu, Y.; Yang, B.; et al. Detectable Serum Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load (RNAemia) is Closely Correlated with Drastically Elevated Interleukin 6 Level in Critically Ill Patients with Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 71, 1937–1942. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.; He, Z.-B.; Zhang, S.; Zhang, J.-G.; Zhang, X.; Yan, W.-H. Early Risk Factors for the Duration of Severe Acute Respiratory Syndrome Coronavirus 2 Viral Positivity in Patients with Coronavirus Disease 2019. Clin. Infect. Dis. 2020, 71, 2061–2065. [Google Scholar] [CrossRef]
- Herold, T.; Jurinovic, V.; Arnreich, C.; Lipworth, B.J.; Hellmuth, J.C.; Von Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Elevated Levels of IL-6 and CRP Predict the Need for Mechanical Ventilation in COVID-19. J. Allergy Clin. Immunol. 2020, 146, 128–136. [Google Scholar] [CrossRef]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.-H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An Inflammatory Cytokine Signature Predicts COVID-19 Severity and Survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef]
- Ramiro, S.; Mostard, R.L.M.; Magro-Checa, C.; Van Dongen, C.M.P.; Dormans, T.; Buijs, J.; Gronenschild, M.; De Kruif, M.D.; Van Haren, E.H.J.; Van Kraaij, T.; et al. Historically controlled comparison of glucocorticoids with or without tocilizumab versus supportive care only in patients with COVID-19-associated cytokine storm syndrome: Results of the CHIC study. Ann. Rheum. Dis. 2020, 79, 1143–1151. [Google Scholar] [CrossRef]
- Rubio-Rivas, M.; Ronda, M.; Padulles, A.; Mitjavila, F.; Riera-Mestre, A.; García-Forero, C.; Iriarte, A.; Mora, J.M.; Padulles, N.; Gonzalez, M.; et al. Beneficial effect of corticosteroids in preventing mortality in patients receiving tocilizumab to treat severe COVID-19 illness. Int. J. Infect. Dis. 2020, 101, 290–297. [Google Scholar] [CrossRef]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial Cell Infection and Endotheliitis in COVID-19. Lancet 2020, 395, 1417–1418. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- McGonagle, D.; O’Donnell, J.S.; Sharif, K.; Emery, P.; Bridgewood, C. Immune Mechanisms of Pulmonary Intravascular Coagulopathy in COVID-19 Pneumonia. Lancet Rheumatol. 2020, 2, e437–e445. [Google Scholar] [CrossRef]
- CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis); Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; et al. High Risk of Thrombosis in Patients with Severe SARS-CoV-2 Infection: A Multicenter Prospective Cohort Study. Intensive Care Med. 2020, 46, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Kruip, M.J.H.A.; Van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.; Kant, K.M.; Kaptein, F.H.J.; Van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Confirmation of the High Cumulative Incidence of Thrombotic Complications in Critically Ill ICU Patients with COVID-19: An Updated Analysis. Thromb. Res. 2020, 191, 148–150. [Google Scholar] [CrossRef] [PubMed]
Variable | N = 382 |
---|---|
Gender, male | 297 (77.75%) |
Age (year), median [Q1; Q3] | 60.5 [52;70] |
BMI > 30 kg/m2 | 136 (35.60%) |
SAPS II, median [Q1; Q3] | 33 [25;44] |
Charlson score > 0 | 234 (61.26%) |
Number of days in hospital before ICU, median [Q1; Q3] | 2 [1;4] |
Number of days from first symptom to ICU, median [Q1; Q3] | 10 [7;12] |
SOFA median [Q1;Q3] | 5 [4;8] |
Minimum PaO2/FiO2 ratio day 1–2, median [Q1; Q3] | 105 [77;153.03] |
Respiratory system compliance median [Q1; Q3] (invasively ventilated patients) | 36.22 [26.61;49.03] |
Leucocytes (×109 per L), median [Q1; Q3] | 9000 [6600;12400] |
CRP (mg/L), median [Q1; Q3] | 158 [95.2;243] |
Lymphocytes (×109 per L) median [Q1; Q3] | 900 [600;1250] |
Temperature > 39 °C | 107 (28.01%) |
Treatments at Day 1 | |
Corticosteroids | 97 (25.39%) |
Low dose (≤10 mg DXM or equivalent) | 30 (7.85%) |
High dose (20 mg DXM or equivalent) | 67 (17.54%) |
Ritonavir/lopinavir | 130 (34.03%) |
Tocilizumab | 26 (6.81%) |
Anakinra | 24 (6.28%) |
Hydroxychloroquine | 39 (10.21%) |
Heparin (therapeutic) | 102 (26.70%) |
State at ICU Admission | |
Non-invasive (Optiflow, CPAP) | 243 (63.61%) |
Invasive (barometric, volumetric) | 116 (30.37%) |
ECMO | 23 (6.02%) |
Mortality Rate | |
Overall day-60 mortality | 125 (32.72%) |
Variable | Transition Univariable Selection | Final Multivariable Model | ||
---|---|---|---|---|
Transition | Hazard Ratio (95% CI) | p-Value | ||
Sex | 16 | None | ||
Age > 50 | 16 | None | ||
Age > 60 | 6, 11, 12, 13, 14, 16, 17 | 13 | 0.14 (0.04, 0.48) | 0.002 |
14 | 1.55 (0.99, 2.41) | 0.054 | ||
16 | 9.84 (4.41, 21.97) | <0.001 | ||
Age > 70 | 9 | 9 | 7.5 (2.47, 22.76) | <0.001 |
BMI > 25 | 6, 7, 9 | 6 | 1.8 (1.22, 2.66) | 0.003 |
BMI > 30 | 6, 13 | 6 | 0.67 (0.48, 0.93) | 0.016 |
SAPS II > 25 | 1, 6, 7, 10, 11, 12, 13, 16 | 1 | 0.66 (0.51, 0.85) | 0.001 |
6 | 0.58 (0.41, 0.82) | 0.002 | ||
7 | 1.66 (1.11, 2.47) | 0.014 | ||
13 | 5.86 (1.24, 27.64) | 0.026 | ||
16 | 0.23 (0.08, 0.61) | 0.003 | ||
SAPS II > 33 | 7, 13 | 13 | 0.4 (0.16, 1.03) | 0.058 |
SAPS II > 44 | 1, 9, 14 | 14 | 1.6 (1.06, 2.41) | 0.025 |
Charlson > 0 | 1, 6, 10, 14 | 1 | 0.75 (0.59, 0.95) | 0.017 |
6 | 0.64 (0.49, 0.84) | 0.001 | ||
14 | 2.23 (1.34, 3.70) | 0.002 | ||
Charlson > 2 | 9, 10 | None | ||
Number of days in hospital before ICU > 2 | 6, 7, 11, 12, 14, 16, 17 | None | ||
Number of days from first symptoms to ICU> 10 | 7, 16, 17 | None | ||
SOFA > 4 | 7 | 7 | 2.39 (1.71, 3.35) | <0.001 |
SOFA > 5 | 1, 7, 17 | None | ||
SOFA > 8 | 1, 11, 14, 17 | 11 | 0.19 (0.04, 0.78) | 0.022 |
14 | 1.84 (1.21, 2.81) | 0.004 | ||
Leucocytes > 6000 (×109 per L) | 12, 14, 17 | None | ||
Leucocytes > 10,000 (×109 per L) | 10, 14, 17 | 14 | 0.57 (0.36, 0.89) | 0.014 |
CRP > 150 | 6, 12 | 12 | 0.53 (0.34, 0.81) | 0.004 |
Lymphocytes > 1000 (×109 per L) | 1, 6, 10, 12, 14 | 6 | 1.49 (1.13, 1.96) | 0.005 |
Temperature > 39 °C | 7 | 7 | 1.98 (1.41, 2.77) | <0.001 |
Corticosteroids | 6, 7, 11, 14 | 7 | 0.59 (0.39, 0.90) | 0.016 |
Ritonavir/lopinavir | 1, 12 | None | ||
Hydroxychloroquine | 1, 12, 17 | None | ||
Tocilizumab/anakinra | 1, 11, 12 | 12 | 1.8 (1.02, 3.17) | 0.043 |
Heparin (therapeutic) | 6 | 6 | 0.58 (0.42, 0.81) | 0.001 |
With Corticosteroids and Tocilizumab/Anakinra | Without Corticosteroids and Tocilizumab/Anakinra | With Corticosteroids and without Tocilizumab/Anakinra | Without Corticosteroids and with Tocilizumab/Anakinra | |||||
---|---|---|---|---|---|---|---|---|
State Occupation Probability (95% CI) | Mean Sojourn in Days (95% CI) | State Occupation Probability (95% CI) | Mean Sojourn in Days (95% CI) | State Occupation Probability (95% CI) | Mean Sojourn in Days (95% CI) | State Occupation Probability (95% CI) | Mean Sojourn in Days (95% CI) | |
Day 10 | ||||||||
Hospital discharge | 13.6 (11, 17.4) | 0.5 (0.1, 0.6) | 12.3 (10.2, 15.7) | 0.5 (0.4, 0.6) | 13.5 (10.9, 17.2) | 0.5 (0.4, 0.7) | 12.4 (10.3, 15.8) | 0.5 (0.4, 0.6) |
ICU discharge | 27 (21.8, 32.5) | 1.4 (0.6, 1.8) | 22.5 (19.2, 26.1) | 1.2 (1, 1.5) | 26.2 (21.4, 31.3) | 1.4 (1.1, 1.7) | 23.5 (19.8, 27.5) | 1.2 (1, 1.6) |
ICU non-invasive | 11 (6.6, 15.2) | 3.2 (2.7, 4.8) | 7.8 (5, 10.7) | 2.8 (2.4, 3.1) | 9.4 (5.8, 13.5) | 3.2 (2.7, 3.6) | 9.7 (6.1, 13.5) | 2.9 (2.5, 3.2) |
ICU invasive | 31.2 (22, 36.6) | 3.8 (3.2, 4.3) | 39.5 (31.6, 43.4) | 4.5 (3.9, 4.8) | 33.7 (25.3, 38.8) | 3.9 (3.3, 4.4) | 36.6 (27.8, 41.8) | 4.4 (3.8, 4.8) |
ECMO | 5.7 (4.1, 11.1) | 0.6 (0.5, 0.8) | 6 (4.2, 12.2) | 0.6 (0.5, 0.9) | 5.7 (4.2, 11.2) | 0.6 (0.5, 0.9) | 5.9 (4.2, 12.1) | 0.6 (0.5, 0.9) |
Death | 11.5 (9.1, 15.4) | 0.5 (0.1, 0.7) | 11.9 (9.6, 15.5) | 0.5 (0.4, 0.7) | 11.6 (9.2, 15.5) | 0.5 (0.4, 0.7) | 11.8 (9.6, 15.5) | 0.5 (0.4, 0.7) |
Day 28 | ||||||||
Hospital discharge | 52.2 (44.3, 60.5) | 7.3 (2.8, 8.6) | 45 (39.4, 51.1) | 6.4 (5.5, 7.6) | 48.9 (42.5, 55.5) | 7 (6, 8.3) | 48.8 (41.8, 57.3) | 6.8 (5.8, 8) |
ICU discharge | 13.5 (9.3, 18.4) | 4.8 (3.8, 5.8) | 11.6 (8.1, 15.8) | 4 (3.4, 4.8) | 11.8 (8.1, 16.2) | 4.4 (3.7, 5.4) | 13.5 (9.3, 18.4) | 4.4 (3.6, 5.4) |
ICU non-invasive | 1.7 (0.7, 2.8) | 4.2 (3.4, 7.1) | 1.3 (0.7, 2.1) | 3.5 (2.9, 4.1) | 1.3 (0.7, 2.2) | 3.9 (3.3, 4.7) | 1.7 (0.7, 2.7) | 3.9 (3.1, 4.6) |
ICU invasive | 6.5 (3.5, 10) | 6.5 (5, 9.6) | 11.3 (8, 14) | 8.4 (7, 9.4) | 9.6 (6.5, 12.2) | 7.3 (5.7, 8.3) | 7.8 (4.5, 12.3) | 7.6 (6.1, 8.9) |
ECMO | 1.5 (0.4, 5.2) | 1.1 (0.8, 2.2) | 2 (0.6, 6.4) | 1.2 (0.8, 2.4) | 1.8 (0.6, 5.8) | 1.1 (0.8, 2.3) | 1.6 (0.5, 5.6) | 1.1 (0.8, 2.3) |
Death | 24.6 (19.4, 30.4) | 4 (1.9, 5.1) | 28.8 (23.4, 34.1) | 4.4 (3.6, 5.5) | 26.6 (21.7, 31.7) | 4.2 (3.4, 5.2) | 26.6 (21.1, 32.2) | 4.2 (3.4, 5.3) |
Day 60 | ||||||||
Hospital discharge | 68.4 (60.9, 75.1) | 27.5 (17.1, 31.2) | 60.9 (54.1, 67.3) | 24.1 (21.1, 27) | 64.2 (57.5, 69.9) | 25.8 (22.8, 28.7) | 65.7 (58.1, 73.4) | 26 (22.6, 29.9) |
ICU discharge | 3.2 (1.6, 5.5) | 6.7 (5.1, 9.8) | 3.4 (1.8, 5.8) | 5.9 (4.6, 7.6) | 3.2 (1.7, 5.6) | 6.3 (4.9, 8.1) | 3.4 (1.7, 5.8) | 6.4 (4.9, 8.3) |
ICU non-invasive | 0.3 (0.1, 0.6) | 4.6 (3.7, 8.3) | 0.3 (0.1, 0.6) | 3.9 (3.2, 4.6) | 0.3 (0.1, 0.6) | 4.3 (3.5, 5.1) | 0.3 (0.1, 0.6) | 4.2 (3.3, 5) |
ICU invasive | 0.6 (0.2, 1.4) | 7.4 (5.5, 13) | 1.7 (1.1, 2.6) | 10.1 (8.3, 11.4) | 1.5 (1, 2.2) | 8.7 (6.8, 10) | 0.7 (0.2, 1.7) | 8.6 (6.8, 10.6) |
ECMO | 0.2 (0, 1.7) | 1.3 (0.8, 3.2) | 0.3 (0, 2) | 1.5 (0.9, 3.6) | 0.3 (0, 1.8) | 1.4 (0.9, 3.3) | 0.2 (0, 1.8) | 1.4 (0.8, 3.3) |
Death | 27.3 (21.2, 33.8) | 12.5 (8.6, 15.4) | 33.4 (27.1, 39.3) | 14.6 (11.9, 17.4) | 30.6 (25, 36.1) | 13.5 (11.1, 16.2) | 29.7 (23.1, 36.2) | 13.4 (10.6, 16.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ursino, M.; Dupuis, C.; Buetti, N.; de Montmollin, E.; Bouadma, L.; Golgran-Toledano, D.; Ruckly, S.; Neuville, M.; Cohen, Y.; Mourvillier, B.; et al. Multistate Modeling of COVID-19 Patients Using a Large Multicentric Prospective Cohort of Critically Ill Patients. J. Clin. Med. 2021, 10, 544. https://doi.org/10.3390/jcm10030544
Ursino M, Dupuis C, Buetti N, de Montmollin E, Bouadma L, Golgran-Toledano D, Ruckly S, Neuville M, Cohen Y, Mourvillier B, et al. Multistate Modeling of COVID-19 Patients Using a Large Multicentric Prospective Cohort of Critically Ill Patients. Journal of Clinical Medicine. 2021; 10(3):544. https://doi.org/10.3390/jcm10030544
Chicago/Turabian StyleUrsino, Moreno, Claire Dupuis, Niccolò Buetti, Etienne de Montmollin, Lila Bouadma, Dany Golgran-Toledano, Stéphane Ruckly, Mathilde Neuville, Yves Cohen, Bruno Mourvillier, and et al. 2021. "Multistate Modeling of COVID-19 Patients Using a Large Multicentric Prospective Cohort of Critically Ill Patients" Journal of Clinical Medicine 10, no. 3: 544. https://doi.org/10.3390/jcm10030544
APA StyleUrsino, M., Dupuis, C., Buetti, N., de Montmollin, E., Bouadma, L., Golgran-Toledano, D., Ruckly, S., Neuville, M., Cohen, Y., Mourvillier, B., Souweine, B., Gainnier, M., Laurent, V., Terzi, N., Siami, S., Reignier, J., Alberti, C., Timsit, J. -F., & on behalf of the OUTCOMEREA Study Group. (2021). Multistate Modeling of COVID-19 Patients Using a Large Multicentric Prospective Cohort of Critically Ill Patients. Journal of Clinical Medicine, 10(3), 544. https://doi.org/10.3390/jcm10030544