Precision Treatment in ACS–Role of Assessing Fibrinolysis
Abstract
:1. Background
2. Assessment of Fibrinolysis
2.1. Assessment of Individual Enzymes and Proteins That Mediate Fibrinolysis
2.2. Global Assessment of Lysis
2.2.1. Turbidimetric Clot Lysis Assay
2.2.2. Thromboelastography and Thromboelastometry
2.2.3. Global Thrombosis Test
3. Impaired Endogenous Fibrinolysis and Cardiovascular Risk
4. ACS Risk Stratification Based on Fibrinolysis Assessment
5. Pharmacological Modulation of Endogenous Fibrinolysis
6. The Effect of Anticoagulation on Cardiovascular Risk
7. Precision Treatment in ACS Based on Fibrinolytic Status
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gorog, D.A.; Geisler, T. Platelet Inhibition in Acute Coronary Syndrome and Percutaneous Coronary Intervention: Insights from the Past and Present. Thromb. Haemost. 2020, 120, 565–578. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2017, 39, 119–177. [Google Scholar]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: The Task Force for the management of acute coronary syndromes in patients presenting without persistent ST-segment eleva-tion of the European Society of Cardiology (ESC). Eur. Heart J. 2020, ehaa575. [Google Scholar] [CrossRef]
- French, J.K.; Burgess, S.; Chew, D.P. Re-infarction after primary percutaneous coronary intervention. Curr. Opin. Cardiol. 2015, 30, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Spinthakis, N.; Farag, M.; Rocca, B.; Gorog, D.A. More, More, More: Reducing Thrombosis in Acute Coronary Syndromes Beyond Dual Antiplatelet Therapy—Current Data and Future Directions. J. Am. Heart Assoc. 2018, 7, e007754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angiolillo, D.J.; Fernandez-Ortiz, A.; Bernardo, E.; Alfonso, F.; Macaya, C.; Bass, T.A.; Costa, M.A. Variability in individual responsiveness to clopidogrel: Clinical implications, management, and future perspectives. J. Am. Coll. Cardiol. 2007, 49, 1505–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonello, L.; Tantry, U.S.; Marcucci, R.; Blindt, R.; Angiolillo, D.J.; Becker, R.; Bhatt, D.L.; Cattaneo, M.; Collet, J.P.; Cuisset, T.; et al. Consensus and Future Directions on the Definition of High On-Treatment Platelet Reactivity to Adenosine Diphosphate. J. Am. Coll. Cardiol. 2010, 56, 919–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collet, J.-P.; Cuisset, T.; Rangé, G.; Cayla, G.; Elhadad, S.; Pouillot, C.; Henry, P.; Motreff, P.; Carrié, D.; Boueri, Z.; et al. Bedside Monitoring to Adjust Antiplatelet Therapy for Coronary Stenting. N. Engl. J. Med. 2012, 367, 2100–2109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurbel, P.A.; Erlinge, D.; Ohman, E.M.; Neely, B.; Neely, M.; Goodman, S.G.; Huber, K.; Chan, M.Y.; Cornel, J.H.; Brown, E.; et al. TRILOGY ACS Platelet Function Substudy Investigators, f. t., Platelet Function During Ex-tended Prasugrel and Clopidogrel Therapy for Patients with ACS Treated Without Revascularization: The TRILOGY ACS Platelet Function Substudy. JAMA 2012, 308, 1785–1794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farag, M.; Spinthakis, N.; Gue, Y.X.; Srinivasan, M.; Sullivan, K.; Wellsted, D.; Gorog, D.A. Impaired en-dogenous fibrinolysis in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary in-tervention is a predictor of recurrent cardiovascular events: The RISK PPCI study. Eur. Heart J. 2018, 40, 295–305. [Google Scholar] [CrossRef]
- Aday, A.W.; Ridker, P.M. Targeting Residual Inflammatory Risk: A Shifting Paradigm for Atherosclerotic Disease. Front. Cardiovasc. Med. 2019, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Levi, M.; Van Der Poll, T.; Büller, H.R. Bidirectional Relation between Inflammation and Coagulation. Circulation 2004, 109, 2698–2704. [Google Scholar] [CrossRef] [Green Version]
- Libby, P.; Simon, D.I. Inflammation and Thrombosis. Circulation 2001, 103, 1718–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorog, D.A.; Lip, G.Y. Impaired Spontaneous/Endogenous Fibrinolytic Status as New Cardiovascular Risk Factor? J. Am. Coll. Cardiol. 2019, 74, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
- Gorog, D.A. Prognostic Value of Plasma Fibrinolysis Activation Markers in Cardiovascular Disease. J. Am. Coll. Cardiol. 2010, 55, 2701–2709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinnaeve, P.R.; Van de Werf, F. Endogenous fibrinolysis in STEMI: Important before and after primary PCI. Eur. Heart J. 2018, 40, 306–308. [Google Scholar] [CrossRef] [PubMed]
- Kinlay, S.; Schwartz, G.G.; Olsson, A.G.; Rifai, N.; Bao, W.; Libby, P.; Ganz, P. Endogenous tissue plasminogen activator and risk of recurrent cardiac events after an acute coronary syndrome in the MIRACL study. Atherosclerosis 2009, 206, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Tousoulis, D.; Antoniades, C.; Bosinakou, E.; Kotsopoulou, M.; Tsoufis, C.; Marinou, K.; Charakida, M.; Stefanadi, E.; Vavuranakis, M.; Latsios, G.; et al. Differences in inflammatory and thrombotic markers between unstable angina and acute myocardial infarction. Int. J. Cardiol. 2007, 115, 203–207. [Google Scholar] [CrossRef]
- Akkus, M.N.; Polat, G.; Yurtdas, M.; Akcay, B.; Ercetin, N.; Cicek, D.; Doven, O.; Sucu, N. Admission Levels of C-Reactive Protein and Plasminogen Activator Inhibitor-1 in Patients With Acute Myocardial Infarction With and Without Cardiogenic Shock or Heart Failure on Admission. Int. Heart J. 2009, 50, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Battes, L.C.; Akkerhuis, K.M.; Cheng, J.M.; Garcia-Garcia, H.M.; Oemrawsingh, R.M.; De Boer, S.P.; Regar, E.; Van Geuns, R.-J.; Serruys, P.W.; Boersma, E.; et al. Circulating acute phase proteins in relation to extent and composition of coronary atherosclerosis and cardiovascular outcome: Results from the ATHEROREMO-IVUS study. Int. J. Cardiol. 2014, 177, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Pineda, J.; Marín, F.; Marco, P.; Roldán, V.; Valencia, J.; Ruiz-Nodar, J.M.; Sogorb, F.; Lip, G.Y. Premature coronary artery disease in young (age < 45) subjects: Interactions of lipid profile, thrombophilic and haemostatic markers. Int. J. Cardiol. 2009, 136, 222–225. [Google Scholar]
- Sargento, L.; Saldanha, C.; Monteiro, J.; Perdigão, C.; e Silva, J.M. Long-term prognostic value of protein C ac-tivity, erythrocyte aggregation and membrane fluidity in transmural myocardial infarction. Thromb. Haemost. 2005, 94, 380–388. [Google Scholar] [PubMed]
- Roth, C.; Krychtiuk, K.A.; Gangl, C.; Schrutka, L.; Distelmaier, K.; Wojta, J.; Hengstenberg, C.; Berger, R.; Speidl, W.S. Lipoprotein(a) plasma levels are not associated with survival after acute coronary syndromes: An observational cohort study. PLoS ONE 2020, 15, e0227054. [Google Scholar] [CrossRef]
- Blombäck, B.; Okada, M. Fibrin gel structure and clotting time. Thromb. Res. 1982, 25, 51–70. [Google Scholar] [CrossRef]
- Sumaya, W.; Wallentin, L.; James, S.K.; Siegbahn, A.; Gabrysch, K.; Bertilsson, M.; Himmelmann, A.; Ajjan, R.A.; Storey, R.F. Fibrin clot properties independently predict adverse clinical outcome following acute coronary syndrome: A PLATO substudy. Eur. Heart J. 2018, 39, 1078–1085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumaya, W.; Wallentin, L.; James, S.K.; Siegbahn, A.; Gabrysch, K.; Himmelmann, A.; Ajjan, R.A.; Storey, R.F. Impaired Fibrinolysis Predicts Adverse Outcome in Acute Coronary Syndrome Patients with Diabetes: A PLATO Sub-Study. Thromb. Haemost. 2020, 120, 412–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, M.; Ahmed, A.B. A Review of Thromboelastography. Int. J. Perioper. Ultrasound Appl. Technol. 2012, 1, 25–29. [Google Scholar] [CrossRef]
- Gallimore, M.J.; Harris, S.L.; Tappenden, K.A.; Winter, M.; Jones, D.W. Urokinase induced fibrinolysis in thromboelastography: A model for studying fibrinolysis and coagulation in whole blood. J. Thromb. Haemost. 2005, 3, 2506–2513. [Google Scholar] [CrossRef] [PubMed]
- Panigada, M.; Zacchetti, L.; L’Acqua, C.; Cressoni, M.; Anzoletti, M.B.; Bader, R.; Protti, A.; Consonni, D.; D’Angelo, A.; Gattinoni, L. Assessment of Fibrinolysis in Sepsis Patients with Urokinase Modified Thromboelastography. PLoS ONE 2015, 10, e0136463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinz, C.; Miesbach, W.; Herrmann, E.; Sonntagbauer, M.; Raimann, F.J.; Zacharowski, K.; Weber, C.F.; Adam, E.H. Greater Fibrinolysis Resistance but No Greater Platelet Aggregation in Critically Ill COVID-19 Patients. Anesthesiology 2021, 134, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Okafor, O.N.; Gorog, D.A. Endogenous Fibrinolysis: An Important Mediator of Thrombus Formation and Cardio-vascular Risk. J. Am. Coll. Cardiol. 2015, 65, 1683–1699. [Google Scholar] [CrossRef] [Green Version]
- Morel-Kopp, M.-C.; Ward, C.; Pepperell, D. Clinical Application of Fibrinolytic Assays. Fibrinolysis Thrombolysis 2014, 125–162. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, J.; Inoue, N.; Otsui, K.; Ishii, H.; Gorog, D.A. Global Thrombosis Test (GTT) can detect major deter-minants of haemostasis including platelet reactivity, endogenous fibrinolytic and thrombin generating potential. Thromb. Res. 2014, 133, 919–926. [Google Scholar] [CrossRef]
- Undas, A. Fibrin clot properties and their modulation in thrombotic disorders. Thromb. Haemost. 2014, 112, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Saraf, S.; Christopoulos, C.; Salha, I.B.; Stott, D.J.; Gorog, D.A. Impaired Endogenous Thrombolysis in Acute Coronary Syndrome Patients Predicts Cardiovascular Death and Nonfatal Myocardial Infarction. J. Am. Coll. Cardiol. 2010, 55, 2107–2115. [Google Scholar] [CrossRef]
- Spinthakis, N.; Gue, Y.; Farag, M.; Ren, G.; Srinivasan, M.; Baydoun, A.; Gorog, D.A. Impaired endogenous fibrinolysis at high shear using a point-of-care test in STEMI is associated with alterations in clot architecture. J. Thromb. Thrombolysis 2019, 47, 392–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Six, A.J.; Backus, B.E.; Kelder, J.C. Chest pain in the emergency room: Value of the HEART score. Neth. Heart J. 2008, 16, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Fox, K.A.; Dabbous, O.H.; Goldberg, R.J.; Pieper, K.S.; Eagle, K.A.; Van De Werf, F.; Avezum, Á.; Goodman, S.G.; Flather, M.D.; Anderson, F.A., Jr.; et al. Prediction of risk of death and myocardial infarction in the six months after presentation with acute coronary syndrome: Prospective multinational observational study (GRACE). BMJ 2006, 333, 1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, F.; van Klaveren, D.; James, S.; Heg, D.; Räber, L.; Feres, F.; Pilgrim, T.; Hong, M.-K.; Kim, H.-S.; Colombo, A.; et al. Derivation and validation of the predicting bleeding complications in patients undergoing stent implantation and subsequent dual antiplatelet therapy (PRECISE-DAPT) score: A pooled analysis of individual-patient datasets from clinical trials. Lancet 2017, 389, 1025–1034. [Google Scholar] [CrossRef]
- Spinthakis, N.; Farag, M.; Gue, Y.X.; Srinivasan, M.; Wellsted, D.M.; Gorog, D.A. Effect of P2Y12 inhibitors on thrombus stability and endogenous fibrinolysis. Thromb. Res. 2019, 173, 102–108. [Google Scholar] [CrossRef]
- Farag, M.; Niespialowska-Steuden, M.; Okafor, O.; Artman, B.; Srinivasan, M.; Khan, A.; Sullivan, K.; Wellsted, D.; Gorog, D.A. Relative effects of different non-vitamin K antagonist oral anticoagulants on global thrombotic status in atrial fibrillation. Platelets 2016, 27, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spinthakis, N.; Gue, Y.; Farag, M.; Srinivasan, M.; Wellsted, D.; Arachchillage, D.R.J.; Lip, G.Y.H.; Gorog, D.A. Apixaban enhances endogenous fibrinolysis in patients with atrial fibrillation. EP Eur. 2019, 21, 1297–1306. [Google Scholar] [CrossRef] [PubMed]
- Bayes-Genis, A.; Mateo, J.; Santaló, M.; Oliver, A.; Guindo, J.; Badimon, L.; Martínez-Rubio, A.; Fontcuberta, J.; Schwartz, R.S.; De Luna, A.B. D-Dimer is an early diagnostic marker of coronary ischemia in patients with chest pain. Am. Heart J. 2000, 140, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Gil, M.; Zarȩbiński, M.; Adamus, J. Plasma fibrinogen and troponin I in acute coronary syndrome and stable angina. Int. J. Cardiol. 2002, 83, 43–46. [Google Scholar] [CrossRef]
- Hurlen, M.; Abdelnoor, M.; Smith, P.; Erikssen, J.; Arnesen, H. Warfarin, Aspirin, or Both after Myocardial In-farction. N. Engl. J. Med. 2002, 347, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Mega, J.L.; Braunwald, E.; Wiviott, S.D.; Bassand, J.-P.; Bhatt, D.L.; Bode, C.; Burton, P.; Cohen, M.; Cook-Bruns, N.; Fox, K.A.; et al. Rivaroxaban in Patients with a Recent Acute Coronary Syndrome. N. Engl. J. Med. 2012, 366, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eikelboom, J.W.; Connolly, S.J.; Bosch, J.; Dagenais, G.R.; Hart, R.G.; Shestakovska, O.; Diaz, R.; Alings, M.; Lonn, E.M.; Anand, S.S.; et al. Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Gue, Y.X.; Kanji, R.; Wellsted, D.M.; Srinivasan, M.; Wyatt, S.; Gorog, D.A. Rationale and design of “Can Very Low Dose Rivaroxaban (VLDR) in addition to dual antiplatelet therapy improve thrombotic status in acute coronary syndrome (VaLiDate-R)” study: A randomised trial modulating endogenous fibrinolysis in patients with acute coronary syndrome. J. Thromb. Thrombolysis 2020, 49, 192–198. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gue, Y.X.; Jeong, Y.-H.; Farag, M.; Spinthakis, N.; Gorog, D.A. Precision Treatment in ACS–Role of Assessing Fibrinolysis. J. Clin. Med. 2021, 10, 929. https://doi.org/10.3390/jcm10050929
Gue YX, Jeong Y-H, Farag M, Spinthakis N, Gorog DA. Precision Treatment in ACS–Role of Assessing Fibrinolysis. Journal of Clinical Medicine. 2021; 10(5):929. https://doi.org/10.3390/jcm10050929
Chicago/Turabian StyleGue, Ying X., Young-Hoon Jeong, Mohamed Farag, Nikolaos Spinthakis, and Diana A. Gorog. 2021. "Precision Treatment in ACS–Role of Assessing Fibrinolysis" Journal of Clinical Medicine 10, no. 5: 929. https://doi.org/10.3390/jcm10050929
APA StyleGue, Y. X., Jeong, Y. -H., Farag, M., Spinthakis, N., & Gorog, D. A. (2021). Precision Treatment in ACS–Role of Assessing Fibrinolysis. Journal of Clinical Medicine, 10(5), 929. https://doi.org/10.3390/jcm10050929