Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. AH Sample Preparation
2.3. LC-MS/MS Analysis
2.4. Protein Identification and Quantification
2.5. Visual Field Measurements
2.6. Statistical Analysis
3. Results
3.1. Aqueous Humor Proteins Associated with PSD
3.2. Aqueous Humor Proteins Associated with VFI
3.3. Aqueous Humor Proteins Associated with MD
3.4. Proteomic Changes Associated with GHT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [Green Version]
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Alencar, L.M.; Medeiros, F.A. The role of standard automated perimetry and newer functional methods for glaucoma diagnosis and follow-up. Indian J. Ophthalmol. 2011, 59, S53–S58. [Google Scholar] [CrossRef] [PubMed]
- Yaqub, M. Visual fields interpretation in glaucoma: A focus on static automated perimetry. Community Eye Health 2012, 25, 1–8. [Google Scholar] [PubMed]
- Grus, F.H.; Joachim, S.C.; Pfeiffer, N. Proteomics in ocular fluids. Proteom. Clin. Appl. 2007, 1, 876–888. [Google Scholar] [CrossRef]
- Izzotti, A.; Longobardi, M.; Cartiglia, C.; Sacca, S.C. Proteome alterations in primary open angle glaucoma aqueous humor. J. Proteome Res. 2010, 9, 4831–4838. [Google Scholar] [CrossRef]
- Braunger, B.M.; Fuchshofer, R.; Tamm, E.R. The aqueous humor outflow pathways in glaucoma: A unifying concept of disease mechanisms and causative treatment. Eur. J. Pharm. Biopharm. 2015, 95, 173–181. [Google Scholar] [CrossRef]
- Vranka, J.A.; Kelley, M.J.; Acott, T.S.; Keller, K.E. Extracellular matrix in the trabecular meshwork: Intraocular pressure regulation and dysregulation in glaucoma. Exp. Eye Res. 2015, 133, 112–125. [Google Scholar] [CrossRef] [Green Version]
- Alvarado, J.A.; Yeh, R.F.; Franse-Carman, L.; Marcellino, G.; Brownstein, M.J. Interactions between endothelia of the trabecular meshwork and of Schlemm’s canal: A new insight into the regulation of aqueous outflow in the eye. Trans. Am. Ophthalmol. Soc. 2005, 103, 148–162. [Google Scholar] [PubMed]
- Sharma, S.; Bollinger, K.E.; Kodeboyina, S.K.; Zhi, W.; Patton, J.; Bai, S.; Edwards, B.; Ulrich, L.; Bogorad, D.; Sharma, A. Proteomic Alterations in Aqueous Humor From Patients With Primary Open Angle Glaucoma. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2635–2643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, U.R.; Madden, B.J.; Charlesworth, M.C.; Fautsch, M.P. Proteome analysis of human aqueous humor. Investig. Ophthalmol. Vis. Sci. 2010, 51, 4921–4931. [Google Scholar] [CrossRef]
- Kliuchnikova, A.A.; Samokhina, N.I.; Ilina, I.Y.; Karpov, D.S.; Pyatnitskiy, M.A.; Kuznetsova, K.G.; Toropygin, I.Y.; Kochergin, S.A.; Alekseev, I.B.; Zgoda, V.G.; et al. Human aqueous humor proteome in cataract, glaucoma, and pseudoexfoliation syndrome. Proteomics 2016, 16, 1938–1946. [Google Scholar] [CrossRef]
- Funke, S.; Perumal, N.; Bell, K.; Pfeiffer, N.; Grus, F.H. The potential impact of recent insights into proteomic changes associated with glaucoma. Expert Rev. Proteom. 2017, 14, 311–334. [Google Scholar] [CrossRef]
- Kaeslin, M.A.; Killer, H.E.; Fuhrer, C.A.; Zeleny, N.; Huber, A.R.; Neutzner, A. Changes to the Aqueous Humor Proteome during Glaucoma. PLoS ONE 2016, 11, e0165314. [Google Scholar] [CrossRef] [Green Version]
- Zalocusky, K.A.; Nelson, M.R.; Huang, Y. An Alzheimer’s-disease-protective APOE mutation. Nat. Med. 2019, 25, 1648–1649. [Google Scholar] [CrossRef]
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef] [PubMed]
- Nikolac Perkovic, M.; Pivac, N. Genetic Markers of Alzheimer’s Disease. Adv. Exp. Med. Biol. 2019, 1192, 27–52. [Google Scholar] [CrossRef] [PubMed]
- Nowak, A.; Rozpedek, W.; Cuchra, M.; Wojtczak, R.; Siwak, M.; Szymanek, K.; Szaflik, M.; Szaflik, J.; Szaflik, J.; Majsterek, I. Association of the expression level of the neurodegeneration-related proteins with the risk of development and progression of primary open-angle glaucoma. Acta Ophthalmol. 2018, 96, e97–e98. [Google Scholar] [CrossRef] [PubMed]
- Yaylacioglu Tuncay, F.; Aktas, Z.; Ergun, M.A.; Ergun, S.G.; Hasanreisoglu, M.; Hasanreisoglu, B. Association of polymorphisms in APOE and LOXL1 with pseudoexfoliation syndrome and pseudoexfoliation glaucoma in a Turkish population. Ophthalmic Genet. 2017, 38, 95–97. [Google Scholar] [CrossRef]
- Carnes, M.U.; Allingham, R.R.; Ashley-Koch, A.; Hauser, M.A. Transcriptome analysis of adult and fetal trabecular meshwork, cornea, and ciliary body tissues by RNA sequencing. Exp. Eye Res. 2018, 167, 91–99. [Google Scholar] [CrossRef]
- Tezel, G.; Yang, X.; Luo, C.; Kain, A.D.; Powell, D.W.; Kuehn, M.H.; Kaplan, H.J. Oxidative stress and the regulation of complement activation in human glaucoma. Investig. Ophthalmol. Vis. Sci. 2010, 51, 5071–5082. [Google Scholar] [CrossRef]
- Gajda-Derylo, B.; Stahnke, T.; Struckmann, S.; Warsow, G.; Birke, K.; Birke, M.T.; Hohberger, B.; Rejdak, R.; Fuellen, G.; Junemann, A.G. Comparison of cytokine/chemokine levels in aqueous humor of primary open-angle glaucoma patients with positive or negative outcome following trabeculectomy. Biosci. Rep. 2019, 39. [Google Scholar] [CrossRef] [Green Version]
- Anshu, A.; Price, M.O.; Richardson, M.R.; Segu, Z.M.; Lai, X.; Yoder, M.C.; Price, F.W., Jr. Alterations in the aqueous humor proteome in patients with a glaucoma shunt device. Mol. Vis. 2011, 17, 1891–1900. [Google Scholar]
- Mirzaei, M.; Gupta, V.B.; Chick, J.M.; Greco, T.M.; Wu, Y.; Chitranshi, N.; Wall, R.V.; Hone, E.; Deng, L.; Dheer, Y.; et al. Age-related neurodegenerative disease associated pathways identified in retinal and vitreous proteome from human glaucoma eyes. Sci. Rep. 2017, 7, 12685. [Google Scholar] [CrossRef] [Green Version]
- Hadders, M.A.; Beringer, D.X.; Gros, P. Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science 2007, 317, 1552–1554. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, H.W., Jr.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suri, F.; Yazdani, S.; Chapi, M.; Safari, I.; Rasooli, P.; Daftarian, N.; Jafarinasab, M.R.; Ghasemi Firouzabadi, S.; Alehabib, E.; Darvish, H.; et al. COL18A1 is a candidate eye iridocorneal angle-closure gene in humans. Hum. Mol. Genet. 2018, 27, 3772–3786. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, S.; Mai, K.; McCluskey, P.; Wakefield, D. The role of lumican in ocular disease. ISRN Ophthalmol. 2013, 2013, 632302. [Google Scholar] [CrossRef] [Green Version]
- Diskin, S.; Kumar, J.; Cao, Z.; Schuman, J.S.; Gilmartin, T.; Head, S.R.; Panjwani, N. Detection of differentially expressed glycogenes in trabecular meshwork of eyes with primary open-angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Stingl, K.; Mayer, A.K.; Llavona, P.; Mulahasanovic, L.; Rudolph, G.; Jacobson, S.G.; Zrenner, E.; Kohl, S.; Wissinger, B.; Weisschuh, N. CDHR1 mutations in retinal dystrophies. Sci. Rep. 2017, 7, 6992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikopoulos, K.; Avila-Fernandez, A.; Corton, M.; Lopez-Molina, M.I.; Perez-Carro, R.; Bontadelli, L.; Di Gioia, S.A.; Zurita, O.; Garcia-Sandoval, B.; Rivolta, C.; et al. Identification of two novel mutations in CDHR1 in consanguineous Spanish families with autosomal recessive retinal dystrophy. Sci. Rep. 2015, 5, 13902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient Characteristics | Count |
---|---|
POAG patients | 49 |
Female/Male | 33/16 |
AA/Caucasian | 29/20 |
Smoking, N/Y | 37/12 |
Hypertension, N/Y | 16/33 |
Cardiovascular disease, N/Y | 46/3 |
Cerebrovascular disease, N/Y | 48/1 |
Collagen vascular disease, N/Y | 43/6 |
Age (in years) | 68.67 ± 11.4 |
IOP | 14.9 ± 9.7 |
UniProt ID | Gene Symbol | Description | Corr.coeff (ρ) | p-Value |
---|---|---|---|---|
P68871 | HBB | Hemoglobin subunit beta | 0.399 | 0.039 |
P09871 | C1S | Complement C1s subcomponent | 0.396 | 0.041 |
P05090 | APOD | Apolipoprotein D | 0.354 | 0.013 |
P0C0L4 | C4A | Complement C4-A | 0.352 | 0.013 |
P0C0L5 | C4B | Complement C4-B | 0.349 | 0.014 |
P39060 | COL18A1 | Collagen alpha-1(XVIII) chain | 0.349 | 0.034 |
P51884 | LUM | Lumican | 0.287 | 0.046 |
P61916 | NPC2 | NPC intracellular cholesterol transporter 2 | 0.286 | 0.046 |
P51172 | SCNN1D | Amiloride-sensitive sodium channel subunit delta | −0.529 | 0.001 |
Q96JP9 | CDHR1 | Cadherin-related family member 1 | −0.436 | 0.026 |
P07358 | C8B | Complement component C8 beta chain | −0.419 | 0.037 |
UniProt ID | Gene Symbol | Description | Corr.coeff (ρ) | p-Value |
---|---|---|---|---|
Q96JP9 | CDHR1 | Cadherin-related family member 1 | 0.607 | 0.002 |
P51172 | SCNN1D | Amiloride-sensitive sodium channel subunit delta | 0.460 | 0.021 |
P07358 | C8B | Complement component C8 beta chain | 0.454 | 0.034 |
Q8WZ42 | TTN | Titin | 0.399 | 0.039 |
P39060 | COL18A1 | Collagen alpha-1(XVIII) chain | −0.426 | 0.021 |
P05090 | APOD | Apolipoprotein D | −0.391 | 0.014 |
P0C0L5 | C4B | Complement C4-B | −0.347 | 0.03 |
P0C0L4 | C4A | Complement C4-A | −0.345 | 0.032 |
P51884 | LUM | Lumican | −0.327 | 0.042 |
UniProt ID | Gene Symbol | Description | Corr.coeff (ρ) | p-Value |
---|---|---|---|---|
P01782 | IGHV3-9 | Immunoglobulin heavy variable 3-9 | 0.342 | 0.048 |
Q5T3U5 | ABCC10 | Multidrug resistance-associated protein 7 | 0.319 | 0.035 |
P02751 | FN1 | Fibronectin | −0.433 | 0.015 |
P39060 | COL18A1 | Collagen alpha-1(XVIII) chain | −0.395 | 0.016 |
P05090 | APOD | Apolipoprotein D | −0.347 | 0.016 |
P51884 | LUM | Lumican | −0.329 | 0.023 |
P61626 | LYZ | Lysozyme C | −0.311 | 0.048 |
UniProt ID | Gene Symbol | Description | Fold Change (FC) | p-Value |
---|---|---|---|---|
P08571 | CD14 | Monocyte differentiation antigen CD14 | 2.726 | 0.022 |
P05090 | APOD | Apolipoprotein D | 1.629 | 0.011 |
P0C0L5 | C4B | Complement C4-B | 1.481 | 0.046 |
P0C0L4 | C4A | Complement C4-A | 1.476 | 0.046 |
A0A075B6P5 | IGKV2-28 | Immunoglobulin kappa variable 2-28 | −2.321 | 0.038 |
Q8WZ42 | TTN | Titin | −2.016 | 0.028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodeboyina, S.K.; Lee, T.J.; Bollinger, K.; Ulrich, L.; Bogorad, D.; Estes, A.; Zhi, W.; Sharma, S.; Sharma, A. Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study. J. Clin. Med. 2021, 10, 1180. https://doi.org/10.3390/jcm10061180
Kodeboyina SK, Lee TJ, Bollinger K, Ulrich L, Bogorad D, Estes A, Zhi W, Sharma S, Sharma A. Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study. Journal of Clinical Medicine. 2021; 10(6):1180. https://doi.org/10.3390/jcm10061180
Chicago/Turabian StyleKodeboyina, Sai Karthik, Tae Jin Lee, Kathryn Bollinger, Lane Ulrich, David Bogorad, Amy Estes, Wenbo Zhi, Shruti Sharma, and Ashok Sharma. 2021. "Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study" Journal of Clinical Medicine 10, no. 6: 1180. https://doi.org/10.3390/jcm10061180
APA StyleKodeboyina, S. K., Lee, T. J., Bollinger, K., Ulrich, L., Bogorad, D., Estes, A., Zhi, W., Sharma, S., & Sharma, A. (2021). Aqueous Humor Proteomic Alterations Associated with Visual Field Index Parameters in Glaucoma Patients: A Pilot Study. Journal of Clinical Medicine, 10(6), 1180. https://doi.org/10.3390/jcm10061180