The Neuroprotective Effect of Thiopental on the Postoperative Neurological Complications in Patients Undergoing Surgical Clipping of Unruptured Intracranial Aneurysm: A Retrospective Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Surgery and Anesthesia
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williams, L.N.; Brown, R.D., Jr. Management of unruptured intracranial aneurysms. Neurol. Clin. Pract. 2013, 3, 99–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batjer, H.H.; Frankfurt, A.I.; Purdy, P.D.; Smith, S.S.; Samson, D.S. Use of etomidate, temporary arterial occlusion, and intraoperative angiography in surgical treatment of large and giant cerebral aneurysms. J. Neurosurg. 1988, 68, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Dhandapani, S.; Pal, S.S.; Gupta, S.K.; Mohindra, S.; Chhabra, R.; Malhotra, S.K. Does the impact of elective temporary clipping on intraoperative rupture really influence neurological outcome after surgery for ruptured anterior circulation aneurysms?--A prospective multivariate study. Acta Neurochir. 2013, 155, 237–246. [Google Scholar] [CrossRef]
- Samson, D.; Batjer, H.H.; Bowman, G.; Mootz, L.; Krippner, W.J., Jr.; Meyer, Y.J.; Allen, B.C. A clinical study of the parameters and effects of temporary arterial occlusion in the management of intracranial aneurysms. Neurosurgery 1994, 34, 22–28. [Google Scholar]
- Taylor, C.L.; Selman, W.R.; Kiefer, S.P.; Ratcheson, R.A. Temporary vessel occlusion during intracranial aneurysm repair. Neurosurgery 1996, 39, 893–905. [Google Scholar] [PubMed]
- Lavine, S.D.; Masri, L.S.; Levy, M.L.; Giannotta, S.L. Temporary occlusion of the middle cerebral artery in intracranial aneurysm surgery: Time limitation and advantage of brain protection. Neurosurg. Focus 1997, 2, e4. [Google Scholar] [CrossRef]
- Wiebers, D.O.; Whisnant, J.P.; Huston, J., III; Meissner, I.; Brown, R.D., Jr.; Piepgras, D.G.; Forbes, G.S.; Thielen, K.; Nichols, D.; O’Fallon, W.M.; et al. Unruptured intracranial aneurysms: Natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 2003, 362, 103–110. [Google Scholar] [CrossRef]
- Minamisawa, H.; Nordström, C.H.; Smith, M.L.; Siesjö, B.K. The influence of mild body and brain hypothermia on ischemic brain damage. J. Cereb. Blood Flow Metab. 1990, 10, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Yeon, J.Y.; Seo, D.-W.; Hong, S.-C.; Kim, J.-S. Transcranial motor evoked potential monitoring during the surgical clipping of unruptured intracranial aneurysms. J. Neurol. Sci. 2010, 293, 29–34. [Google Scholar] [CrossRef]
- Kim, T.K.; Park, I.S. Comparative Study of Brain Protection Effect between Thiopental and Etomidate Using Bispectral Index during Temporary Arterial Occlusion. J. Korean Neurosurg. Soc. 2011, 50, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, M.; Furuya, H.; Patel, P.M. Neuroprotective effects of anesthetic agents. J. Anesth. 2005, 19, 150–156. [Google Scholar] [CrossRef]
- Sano, T.; Patel, P.M.; Drummond, J.C.; Cole, D.J. A Comparison of the Cerebral Protective Effects of Etomidate, Thiopental, and Isoflurane in a Model of Forebrain Ischemia in the Rat. Anesth. Analg. 1993, 76, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Kassell, N.F.; Peerless, S.J.; Drake, C.G.; Boarini, D.J.; Adams, H.P. Treatment of Ischemic Deficits from Cerebral Vasospasm with High Dose Barbiturate Therapy. Neurosurgery 1980, 7, 593–597. [Google Scholar] [CrossRef]
- Mayer, T.E.; Etminan, N.; Morita, A.; Juvela, S. The unruptured intracranial aneurysm treatment score: A multidisciplinary consensus. Neurology 2016, 86, 792–793. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.K.; Wiedmann, M.; Assaad, N.N.; Heller, G.Z. Complication-Effectiveness analysis for unruptured intracranial aneurysm surgery: A propensity cohort study. Neurosurgery 2016, 78, 648–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, J.D.; Huston, J., III; Layton, K.F.; Piepgras, D.G.; Brwon, R.D., Jr. Intracranial aneurysm enlargement on serial magnetic resonance angiography: Frequency and risk factors. Stroke 2009, 40, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Michenfelder, J.D. The Interdependency of Cerebral Functional and Metabolic Effects Following Massive Doses of Thiopental in the Dog. Anesthesiology 1974, 41, 231–236. [Google Scholar] [CrossRef]
- Drummond, J.C.; Cole, D.J.; Patel, P.M.; Reynolds, L.W. Focal cerebral ischemia during anesthesia with etomidate, isoflurane, or thiopental: A comparison of the extent of cerebral injury. Neurosurgery 1995, 37, 742–748. [Google Scholar] [CrossRef]
- Kofke, W.A.; Nemoto, E.M.; Hossmann, K.A.; Taylor, F.; Kessler, P.D.; Stezoski, S.W. Brain blood flow and metabolism after global ischemia and post-insult thiopental therapy in monkeys. Stroke 1979, 10, 554–560. [Google Scholar] [CrossRef] [Green Version]
- Musch, T.I.; Pelligrino, D.A.; Dempsey, J.A. Effects of prolonged N2O and barbiturate anaesthesia on brain metabolism and pH in the dog. Respir. Physiol. 1980, 39, 121–131. [Google Scholar] [CrossRef]
- Zarchin, N.; Guggenheimer-Furman, E.; Meilin, S.; Ornstein, E.; Mayevsky, A. Thiopental induced cerebral protection during ischemia in gerbils. Brain Res. 1998, 780, 230–236. [Google Scholar] [CrossRef]
- Charlesworth, P.; Jacobson, I.; Richards, C.D. Pentobarbitone modulation of NMDA receptors in neurones isolated from the rat olfactory brain. Br. J. Pharmacol. 1995, 116, 3005–3013. [Google Scholar] [CrossRef] [Green Version]
- Schmid-Elsaesser, R.; Schröder, M.; Zausinger, S.; Hungerhuber, E.; Baethmann, A.; Reulen, H.J. EEG burst suppression is not necessary for maximum barbiturate protection in transient focal cerebral ischemia in the rat. J. Neurol. Sci. 1999, 162, 14–19. [Google Scholar] [CrossRef]
- Almaas, R.; Saugstad, O.D.; Pleasure, D.; Rootwelt, T. Effect of Barbiturates on Hydroxyl Radicals, Lipid Peroxidation, and Hypoxic Cell Death in Human NT2-N Neurons. Anesthesiology 2000, 92, 764–774. [Google Scholar] [CrossRef]
- Hindman, B.J.; Bayman, E.O.; Pfisterer, W.K.; Torner, J.C.; Todd, M.M.; Investigators, I. No association between intraoperative hypothermia or supplemental protective drug and neurologic outcomes in patients undergoing temporary clipping during cerebral aneurysm surgery: Findings from the Intraoperative Hypothermia for Aneurysm Surgery Trial. Anesthesiology 2010, 112, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, V.J.; Umamaheswara Rao, G.S. Quantification of Burst Suppression and Bispectral Index with 2 Different Bolus Doses of Thiopentone Sodium. J. Neurosurg. Anesthesiol. 2007, 19, 179–182. [Google Scholar] [CrossRef]
- Yoon, J.R.; Kim, Y.S.; Kim, T.K. Thiopental-induced Burst Suppression Measured by the Bispectral Index is Extended during Propofol Administration Compared with Sevoflurane. J. Neurosurg. Anesthesiol. 2012, 24, 146–151. [Google Scholar] [CrossRef]
- Khanna, R.K.; Malik, G.M.; Qureshi, N. Predicting outcome following surgical treatment of unruptured intracranial aneurysms: A proposed grading system. J. Neurosurg. 1996, 84, 49–54. [Google Scholar] [CrossRef]
- Ogilvy, C.S.; Carter, B.S. A Proposed Comprehensive Grading System to Predict Outcome for Surgical Management of Intracranial Aneurysms. Neurosurgery 1998, 42, 959–968. [Google Scholar] [CrossRef]
- I Orz, Y.; Hongo, K.; Tanaka, Y.; Nagashima, H.; Osawa, M.; Kyoshima, K.; Kobayashi, S. Risks of surgery for patients with unruptured intracranial aneurysms. Surg. Neurol. 2000, 53, 21–29. [Google Scholar] [CrossRef]
- Ji, W.; Liu, A.; Lv, X.; Kang, H.; Sun, L.; Li, Y.; Yang, X.; Jiang, C.; Wu, Z. Risk Score for Neurological Complications after Endovascular Treatment of Unruptured Intracranial Aneurysms. Stroke 2016, 47, 971–978. [Google Scholar] [CrossRef]
- Orrù, E.; Roccatagliata, L.; Cester, G.; Causin, F.; Castellan, L. Complications of endovascular treatment of cerebral aneurysms. Eur. J. Radiol. 2013, 82, 1653–1658. [Google Scholar] [CrossRef]
- Ashour, R.; Johnson, J.; Ebersole, K.; Aziz-Sultan, M.A. “Successful” coiling of a giant ophthalmic aneurysm resulting in blindness: Case report and critical review. Neurosurg. Rev. 2013, 36, 661–665. [Google Scholar] [CrossRef]
- McDermott, M.W.; Durity, F.A.; Borozny, M.; Mountain, M.A. Temporary vessel occlusion and barbiturate protection in cerebral aneurysm surgery. Neurosurgery 1989, 25, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Byoun, H.S.; Bang, J.S.; Oh, C.W.; Kwon, O.K.; Hwang, G.; Han, J.H.; Kim, T.; Lee, S.U.; Jo, S.R.; Kim, D.G.; et al. The incidence of and risk factors for ischemic complications after microsurgical clipping of unruptured middle cerebral artery aneurysms and the efficacy of intraoperative monitoring of somatosensory evoked potentials: A retrospective study. Clin. Neurol. Neurosurg. 2016, 151, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Elijovich, L.; Higashida, R.T.; Lawton, M.T.; Duckwiler, G.; Giannotta, S.; Johnston, S.C.; Cerebral Aneurysm Rerupture after Treatment, I. Predictors and outcomes of intraprocedural rupture in patients treated for ruptured intracranial aneurysms: The CARAT study. Stroke 2008, 39, 1501–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tziomalos, K.; Athyros, V.G.; Karagiannis, A.; Mikhailidis, D.P. Dyslipidemia as a risk factor for ischemic stroke. Curr. Top. Med. Chem. 2009, 9, 1291–1297. [Google Scholar] [CrossRef]
- Zechariah, A.; ElAli, A.; Hagemann, N.; Jin, F.; Doeppner, T.R.; Helfrich, I.; Mies, G.; Hermann, D.M. Hyperlipidemia Attenuates Vascular Endothelial Growth Factor–Induced Angiogenesis, Impairs Cerebral Blood Flow, and Disturbs Stroke Recovery via Decreased Pericyte Coverage of Brain Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1561–1567. [Google Scholar] [CrossRef] [Green Version]
- Kotowski, M.; Naggara, O.; Darsaut, T.E.; Nolet, S.; Gevry, G.; Kouznetsov, E.; Raymond, J. Safety and occlusion rates of surgical treatment of unruptured intracranial aneurysms: A systematic review and meta-analysis of the literature from 1990 to 2011. J. Neurol. Neurosurg. Psychiatry 2013, 84, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Jo, K.I.; Kim, H.R.; Yeon, J.Y.; Hong, S.C.; Kim, J.S. Treatment outcomes of surgical clipping for unruptured anterior circulation aneurysm—Single institute experiences in the era of neurophysiologic monitoring and endovascular treatment. Neurosurg. Rev. 2015, 38, 677–682. [Google Scholar] [CrossRef]
Variables | Entire Cohort (n = 491) | PS-Matched Cohort (n = 362) | ||||
---|---|---|---|---|---|---|
TPT n = 263 | Non-TPT n = 228 | SMD | TPT n = 181 | Non-TPT n = 181 | SMD | |
Preoperative variables | ||||||
Sex: Female | 185 (70.3%) | 148 (64.9%) | 0.116 | 132 (72.9%) | 118 (65.2%) | 0.168 |
Age (Year) | 59.9 ± 10.4 | 59.0 ± 9.9 | 0.091 | 59.4 ± 9.7 | 59.2 ± 9.8 | 0.023 |
Height (cm) | 159.2 ± 9.7 | 159.5 ± 8.5 | 0.032 | 158.6 ± 10.3 | 159.3 ± 8.4 | 0.067 |
Weight (kg) | 61.8 ± 10.6 | 62.4 ± 10.7 | 0.056 | 61.7 ± 10.5 | 62.0 ± 11.0 | 0.031 |
Smoker | 31 (11.8%) | 43 (18.9%) | 0.197 | 28 (15.5%) | 30 (16.6%) | 0.030 |
Alcohol | 30 (11.4%) | 40 (17.5%) | 0.175 | 25 (13.8%) | 31 (17.1%) | 0.092 |
Hypertension | 139 (52.9%) | 126 (55.3%) | 0.048 | 102 (56.4%) | 101 (55.8%) | 0.011 |
Diabetes Mellitus | 28 (10.6%) | 24 (10.5%) | 0.004 | 20 (11.0%) | 20 (11.0%) | <0.001 |
Coronary Heart Disease | 8 (3.0%) | 12 (5.3%) | 0.112 | 7 (3.9%) | 8 (4.4%) | 0.028 |
Thyroid disease | 8 (3.0%) | 16 (7.0%) | 0.183 | 8 (4.4%) | 10 (5.5%) | 0.051 |
Hyperlipidemia | 46 (17.5%) | 48 (21.1%) | 0.090 | 37 (20.4%) | 36 (19.9%) | 0.014 |
Characteristics of UIA | ||||||
Aneurysm size (mm) | 0.176 | 0.047 | ||||
<5 | 146 (55.5%) | 143 (62.7%) | 108 (59.7%) | 112 (61.9%) | ||
5≤ <10 | 105 (39.9%) | 72 (31.6%) | 65 (35.9%) | 61 (33.7%) | ||
≥10 | 12 (4.6%) | 13 (5.7%) | 8 (4.4%) | 8 (4.4%) | ||
Multiplicity | 0.315 | 0.041 | ||||
1 | 186 (70.7%) | 191 (83.8%) | 143 (79.0%) | 146 (80.7%) | ||
>1 | 77 (29.3%) | 37 (16.2%) | 38 (21.0%) | 35 (19.3%) | ||
Location | 0.563 | 0.179 | ||||
MCA | 181 (68.8%) | 108 (47.4%) | 108 (59.7%) | 99 (54.7%) | ||
ICA | 5 (1.9%) | 4 (1.8%) | 4 (2.2%) | 4 (2.2%) | ||
Acom | 20 (7.6%) | 37 (16.2%) | 20 (11.0%) | 26 (14.4%) | ||
Other anterior circulation | 25 (9.5%) | 51 (22.4%) | 23 (12.7%) | 31 (17.1%) | ||
Posterior circulation | 0 (0.0%) | 5 (2.2%) | 26 (14.4%) | 21 (11.6%) | ||
More than 2 sites | 32 (12.2%) | 23 (10.1%) | 108 (59.7%) | 99 (54.7%) | ||
Intraoperative variables | ||||||
Anesthesia time (min) | 330.3 ± 83.7 | 294.3 ± 76.3 | 0.449 | 302.2 ± 52.1 | 302.1 ± 79.4 | 0.001 |
Operation time (min) | 265.6 ± 80.3 | 230.3 ± 72.7 | 0.461 | 238.7 ± 49.4 | 237.9 ± 75.7 | 0.012 |
Highest SBP (mmHg) | 147.7 ± 16.4 | 145.9 ± 22.7 | 0.092 | 147.9 ± 17.8 | 146.8 ± 23.2 | 0.054 |
Lowest SBP (mmHg) | 87.5 ± 9.7 | 86.1 ± 9.1 | 0.155 | 86.2 ± 9.7 | 86.2 ± 9.1 | 0.001 |
Estimated blood loss (mL) | 577.6 ± 460.2 | 469.5 ± 334.2 | 0.269 | 471.3 ± 252.1 | 475.6 ± 318.8 | 0.015 |
Laboratory variables | ||||||
Preoperative Hb (g/dL) | 13.6 ± 1.4 | 13.7 ± 1.4 | 0.035 | 13.6 ± 1.3 | 13.7 ± 1.3 | 0.041 |
Postoperative Hb (g/dL) | 11.4 ± 1.5 | 11.5 ± 1.3 | 0.066 | 11.4 ± 1.5 | 11.4 ± 1.3 | 0.006 |
Preoperative WBC (103/µL) | 6.7 ± 2.5 | 6.4 ± 1.9 | 0.131 | 6.7 ± 2.3 | 6.5 ± 2.0 | 0.131 |
Postoperative WBC (103/µL) | 8.7 ± 3.8 | 7.7 ± 3.2 | 0.287 | 8.3 ± 3.6 | 7.7 ± 3.1 | 0.150 |
Variables | Event Rate | OR (95% CI) | p Value |
---|---|---|---|
Entire cohort (before PSM) | <0.001 | ||
Non-TPT group | 38 of 228 (16.7%) | 1 | |
TPT group | 13 of 263 (4.9%) | 0.26 (0.13 to 0.50) | |
PS-matched cohort (After PSM) | |||
Non-TPT group | 31 of 181 (17.7%) | 1 | 0.001 |
TPT group | 10 of 181 (5.5%) | 0.28 (0.13 to 0.60) |
Variables | Odds Ratio (95% CI) | p Value |
---|---|---|
Demographic data | ||
Sex | 0.96 (0.51 to 1.79) | 0.90 |
Age | 1.02 (0.99 to 1.05) | 0.25 |
Height | 1.00 (0.97 to 1.03) | 0.98 |
Weight | 1.01 (0.98 to 1.04) | 0.57 |
Hypertension | 1.25 (0.69 to 2.24) | 0.46 |
Diabetes Mellitus | 1.98 (0.90 to 4.34) | 0.09 |
Coronary heart disease | 0.96 (0.22 to 4.25) | 0.95 |
Thyroid disease | 1.25 (0.36 to 4.34) | 0.73 |
Hyperlipidemia | 2.36 (1.25 to 4.44) | 0.008 * |
Characteristics of Aneurysm | ||
Size | ||
<5 | 1 | |
5≤ <10 | 0.86 (0.45 to 1.66) | 0.65 |
≥10 | 4.39 (1.74 to 11.08) | 0.002 * |
Multiplicity | ||
1 | 1 | |
> 1 | 1.14 (0.58 to 2.22) | 0.71 |
Location | ||
MCA | 1 | |
Acom | 0.97 (0.36 to 2.65) | 0.96 |
Other anterior circulation | 1.87 (0.90 to 3.90) | 0.10 |
ICA/Posterior circulation | - | - |
More than 2 sites | 1.72 (0.74 to 4.03) | 0.21 |
Intraoperative variables | ||
Anesthesia time (min) | 1.00 | - |
Operation time (min) | 1.00 | - |
Highest SBP (mmHg) | 1.00 (0.99 to 1.02) | 0.78 |
Lowest SBP (mmHg) | 1.00 (0.97 to 1.03) | 0.88 |
Use of thiopental | 0.26 (0.14 to 0.50) | <0.001 * |
Estimated blood loss (mL) | 1.00 | - |
Laboratory variables | ||
Preoperative Hb (g/dL) | 0.96 (0.78 to 1.18) | 0.70 |
Postoperative Hb (g/dL) | 1.07 (0.87 to 1.32) | 0.52 |
Preoperative WBC (103/µL) | 0.87 (0.74 to 1.02) | 0.09 |
Postoperative WBC (103/µL) | 0.97 (0.89 to 1.05) | 0.43 |
Variables | Odds Ratio (95% CI) | p Value |
---|---|---|
Use of thiopental | 0.26 (0.13 to 0.51) | <0.001 |
Size of aneurysm ≥ 10 mm | 4.48 (1.69 to 11.87) | 0.003 |
Hyperlipidemia | 2.24 (1.16 to 4.32) | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-G.; Jeon, Y.-T.; Han, J.; Bae, Y.K.; Lee, S.U.; Ryu, J.-H.; Koo, C.-H. The Neuroprotective Effect of Thiopental on the Postoperative Neurological Complications in Patients Undergoing Surgical Clipping of Unruptured Intracranial Aneurysm: A Retrospective Analysis. J. Clin. Med. 2021, 10, 1197. https://doi.org/10.3390/jcm10061197
Kim B-G, Jeon Y-T, Han J, Bae YK, Lee SU, Ryu J-H, Koo C-H. The Neuroprotective Effect of Thiopental on the Postoperative Neurological Complications in Patients Undergoing Surgical Clipping of Unruptured Intracranial Aneurysm: A Retrospective Analysis. Journal of Clinical Medicine. 2021; 10(6):1197. https://doi.org/10.3390/jcm10061197
Chicago/Turabian StyleKim, Byung-Gun, Young-Tae Jeon, Jiwon Han, Yu Kyung Bae, Si Un Lee, Jung-Hee Ryu, and Chang-Hoon Koo. 2021. "The Neuroprotective Effect of Thiopental on the Postoperative Neurological Complications in Patients Undergoing Surgical Clipping of Unruptured Intracranial Aneurysm: A Retrospective Analysis" Journal of Clinical Medicine 10, no. 6: 1197. https://doi.org/10.3390/jcm10061197
APA StyleKim, B. -G., Jeon, Y. -T., Han, J., Bae, Y. K., Lee, S. U., Ryu, J. -H., & Koo, C. -H. (2021). The Neuroprotective Effect of Thiopental on the Postoperative Neurological Complications in Patients Undergoing Surgical Clipping of Unruptured Intracranial Aneurysm: A Retrospective Analysis. Journal of Clinical Medicine, 10(6), 1197. https://doi.org/10.3390/jcm10061197