Changes in Neutrophil–Lymphocyte or Platelet–Lymphocyte Ratios and Their Associations with Clinical Outcomes in Idiopathic Pulmonary Fibrosis
Abstract
:1. Introduction
2. Methods
2.1. Patient Population
2.2. Reference Ranges
2.3. Baseline NLR and PLR
2.4. Changes in NLR and PLR
2.5. Validation Using GIPF-001 and GIPF-007 Cohorts
3. Results
3.1. Patients
3.2. Estimated Reference Ranges
3.3. Baseline NLR and PLR
3.4. Changes in NLR
3.5. Changes in PLR
3.6. Validation Using the GIPF-001 and GIPF-007 Cohort
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lederer, D.J.; Martinez, F.J. Idiopathic pulmonary fibrosis. N. Engl. J. Med. 2018, 378, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- King, T.E., Jr.; Bradford, W.Z.; Castro-Bernardini, S.; Fagan, E.A.; Glaspole, I.; Glassberg, M.K.; Gorina, E.; Hopkins, P.M.; Kardatzke, D.; Lancaster, L.; et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014, 370, 2083–2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noble, P.W.; Albera, C.; Bradford, W.Z.; Costabel, U.; Glassberg, M.K.; Kardatzke, D.; King, T.E., Jr.; Lancaster, L.; Sahn, S.A.; Szwarcberg, J.; et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): Two randomised trials. Lancet 2011, 377, 1760–1769. [Google Scholar] [CrossRef]
- Richeldi, L.; du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y.; et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med. 2014, 370, 2071–2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maher, T.M.; Oballa, E.; Simpson, J.K.; Porte, J.; Habgood, A.; Fahy, W.A.; Flynn, A.; Molyneaux, P.L.; Braybrooke, R.; Divyateja, H.; et al. An epithelial biomarker signature for idiopathic pulmonary fibrosis: An analysis from the multicentre PROFILE cohort study. Lancet Respir. Med. 2017, 5, 946–955. [Google Scholar] [CrossRef] [Green Version]
- Neighbors, M.; Cabanski, C.R.; Ramalingam, T.R.; Sheng, X.R.; Tew, G.W.; Gu, C.; Jia, G.; Peng, K.; Ray, J.M.; Ley, B.; et al. Prognostic and predictive biomarkers for patients with idiopathic pulmonary fibrosis treated with pirfenidone: Post-hoc assessment of the CAPACITY and ASCEND trials. Lancet Respir. Med. 2018, 6, 615–626. [Google Scholar] [CrossRef]
- Alexander, N.I. Reference values of neutrophil-lymphocyte ratio, platelet-lymphocyte ratio and mean platelet volume in healthy adults in North Central Nigeria. J. Blood Lymph. 2016, 6, 1000143. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, W.-J.; Zhi, Q.; Shen, M.; Jiang, M.; Bian, X.; Gong, F.-R.; Zhou, C.; Lian, L.; Wu, M.-Y.; et al. Neutrophil/lymphocyte ratio is a more sensitive systemic inflammatory response biomarker than platelet/lymphocyte ratio in the prognosis evaluation of unresectable pancreatic cancer. Oncotarget 2017, 8, 88835–88844. [Google Scholar] [CrossRef] [Green Version]
- Gary, T.; Pichler, M.; Belaj, K.; Hafner, F.; Gerger, A.; Froehlich, H.; Eller, P.; Rief, P.; Hackl, G.; Pilger, E.; et al. Platelet-to-lymphocyte ratio: A novel marker for critical limb ischemia in peripheral arterial occlusive disease patients. PLoS ONE 2013, 8, e67688. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, M.; Ates, I.; Oztas, E.; Yuksel, M.; Akpinar, M.Y.; Coskun, O.; Kayacetin, E. A new marker to determine prognosis of acute pancreatitis: PLR and NLR combination. J. Med. Biochem. 2018, 37, 21–30. [Google Scholar] [CrossRef]
- Uslu, A.U.; Küçük, A.; Şahin, A.; Ugan, Y.; Yilmaz, R.; Güngör, T.; Bağcacı, S.; Küçükşen, S. Two new inflammatory markers associated with Disease Activity Score-28 in patients with rheumatoid arthritis: Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio. Int. J. Rheum. Dis. 2015, 18, 731–735. [Google Scholar] [CrossRef]
- Paliogiannis, P.; Fois, A.G.; Sotgia, S.; Mangoni, A.A.; Zinellu, E.; Pirina, P.; Negri, S.; Carru, C.; Zinellu, A. Neutrophil to lymphocyte ratio and clinical outcomes in COPD: Recent evidence and future perspectives. Eur. Respir. Rev. 2018, 27, 170113. [Google Scholar] [CrossRef] [Green Version]
- Mikolasch, T.A.; Sahota, J.; Garthwaite, H.S.; Win, T.; Ganeshan, B.; Heightman, M.; Hoy, L.; Machado, M.; Groves, A.M.; Porter, J.C. S142 neutrophil lymphocyte ratio (NLR) as a predictive biomarker in idiopathic pulmonary fibrosis (IPF). Thorax 2018, 73, A88–A89. [Google Scholar] [CrossRef]
- King, T.E., Jr.; Albera, C.; Bradford, W.Z.; Costabel, U.; Hormel, P.; Lancaster, L.; Noble, P.W.; Sahn, S.A.; Szwarcberg, J.; Thomeer, M.; et al. Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): A multicentre, randomised, placebo-controlled trial. Lancet 2009, 374, 222–228. [Google Scholar] [CrossRef]
- Raghu, G.; Brown, K.K.; Bradford, W.Z.; Starko, K.; Noble, P.W.; Schwartz, D.A.; King, T.E., Jr. A placebo-controlled trial of interferon gamma-1b in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med. 2004, 350, 125–133. [Google Scholar] [CrossRef]
- Bhorade, S.; Morgenthien, E.; Castle, J.; Limb, S.; Mehta, J. Changes in neutrophil-lymphocyte and platelet-lymphocyte ratios and clinical outcomes in idiopathic pulmonary fibrosis. Eur. Respir. J. 2018, 52, PA4805. [Google Scholar] [CrossRef]
- Morales-Mantilla, D.E.; King, K.Y. The role of interferon-gamma in hematopoietic stem cell development, homeostasis, and disease. Curr. Stem Cell Rep. 2018, 4, 264–271. [Google Scholar] [CrossRef] [Green Version]
- D’alessandro, M.; Bergantini, L.; Carleo, A.; Cameli, P.; Perrone, A.; Fossi, A.; Sestini, P.; Bargagli, E. Neutrophil-to-lymphocyte ratio in bronchoalveolar lavage from IPF patients: A novel prognostic biomarker? Minerva Med. 2020. [Google Scholar] [CrossRef]
- Nathan, S.D.; Whitney Brown, A.; Mogulkoc, N.; Soares, F.; Collins, A.C.; Cheng, J.; Peterson, J.; Cannon, B.; King, C.S.; Barnett, S.D. The association between white blood cell count and outcomes in patients with idiopathic pulmonary fibrosis. Respir. Med. 2020, 170, 106068. [Google Scholar] [CrossRef]
- Scott, M.K.D.; Quinn, K.; Li, Q.; Carroll, R.; Warsinske, H.; Vallania, F.; Chen, S.; Carns, M.A.; Aren, K.; Sun, J.; et al. Increased monocyte count as a cellular biomarker for poor outcomes in fibrotic diseases: A retrospective, multicentre cohort study. Lancet Respir. Med. 2019, 7, 497–508. [Google Scholar] [CrossRef] [Green Version]
- Gregory, A.D.; Kliment, C.R.; Metz, H.E.; Kim, K.-H.; Kargl, J.; Agostini, B.A.; Crum, L.T.; Oczypok, E.A.; Oury, T.A.; Houghton, A.M. Neutrophil elastase promotes myofibroblast differentiation in lung fibrosis. J. Leukoc. Biol. 2015, 98, 143–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Z.; Ye, Q.; Qiu, M.; Hao, Y.; Han, J.; Zeng, H. Increased activated regulatory T cells proportion correlate with the severity of idiopathic pulmonary fibrosis. Respir. Res. 2017, 18, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reilkoff, R.A.; Peng, H.; Murray, L.A.; Peng, X.; Russell, T.; Montgomery, R.; Feghali-Bostwick, C.; Shaw, A.; Homer, R.J.; Gulati, M.; et al. Semaphorin 7a+ regulatory T cells are associated with progressive idiopathic pulmonary fibrosis and are implicated in transforming growth factor-β1-induced pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 2013, 187, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Kass, D.J.; Bon, J.; Vuga, L.; Tan, J.; Csizmadia, E.; Otterbein, L.; Soejima, M.; Levesque, M.C.; Gibson, K.F.; et al. Plasma B lymphocyte stimulator and B cell differentiation in idiopathic pulmonary fibrosis patients. J. Immunol. 2013, 191, 2089–2095. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.B.; Fry, C.; Zhou, Y.; Murray, S.; Han, M.K.; Martinez, F.J.; Flaherty, K.R.; The COMET Investigators. Inflammatory leukocyte phenotypes correlate with disease progression in idiopathic pulmonary fibrosis. Front. Med. 2014, 1, 56. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-M.; Yoshida, M.; Kim, M.-S.; Lee, J.-H.; Baek, A.-R.; Jang, A.S.; Kim, D.J.; Minagawa, S.; Chin, S.S.; Park, C.-S.; et al. Involvement of alveolar epithelial cell necroptosis in idiopathic pulmonary fibrosis pathogenesis. Am. J. Respir. Cell Mol. Biol. 2018, 59, 215–224. [Google Scholar] [CrossRef]
- Li, F.J.; Surolia, R.; Li, H.; Wang, Z.; Kulkarni, T.; Liu, G.; de Andrade, J.A.; Kass, D.J.; Thannickal, V.J.; Duncan, S.R.; et al. Autoimmunity to vimentin is associated with outcomes of patients with idiopathic pulmonary fibrosis. J. Immunol. 2017, 199, 1596–1605. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, R.J.; Molyneaux, P.L. The respiratory microbiome in idiopathic pulmonary fibrosis. Ann. Transl. Med. 2017, 5, 250. [Google Scholar] [CrossRef] [Green Version]
- Azab, B.; Camacho-Rivera, M.; Taioli, E. Average values and racial differences of neutrophil lymphocyte ratio among a nationally representative sample of United States subjects. PLoS ONE 2014, 9, e112361. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Kim, N.Y.; Na, S.H.; Youn, Y.H.; Shin, C.S. Reference values of neutrophil-lymphocyte ratio, lymphocyte-monocyte ratio, platelet-lymphocyte ratio, and mean platelet volume in healthy adults in South Korea. Medicine 2018, 97, e11138. [Google Scholar] [CrossRef]
- Angkananard, T.; Anothaisintawee, T.; McEvoy, M.; Attia, J.; Thakkinstian, A. Neutrophil lymphocyte ratio and cardiovascular disease risk: A systematic review and meta-analysis. BioMed Res. Int. 2018, 2018, 2703518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Placebo | Pirfenidone 2403 mg/Day | |||||||
---|---|---|---|---|---|---|---|---|
Q1 (n = 155) | Q2 (n = 155) | Q3 (n = 155) | Q4 (n = 155) | Q1 (n = 155) | Q2 (n = 155) | Q3 (n = 155) | Q4 (n = 154) | |
Male sex, n (%) | 115 (74.2) | 118 (76.1) | 120 (77.4) | 108 (69.7) | 117 (75.5) | 113 (72.9) | 116 (74.8) | 115 (74.7) |
Age, year, mean (SD) | 67.5 (7.4) | 66.6 (7.5) | 65.9 (8.1) | 68.5 (7.0) | 66.4 (8.2) | 66.7 (6.9) | 66.8 (7.8) | 69.0 (7.2) |
Percent predicted FVC, mean (SD) | 71.6 (13.4) | 74.3 (14.3) | 70.4 (12.2) | 71.6 (14.3) | 73.0 (13.1) | 72.1 (13.3) | 70.7 (13.9) | 70.9 (12.4) |
Percent predicted DLco, mean (SD) | 45.3 (9.6) | 46.1 (9.7) | 46.0 (10.1) | 44.9 (14.4) * | 46.6 (9.9) | 45.9 (9.6) | 45.3 (10.8) | 44.7 (10.4) |
Hemoglobin count, g/L, median (Q1, Q3) | 140.0 (129.0, 149.0) | 143.0 (135.0, 151.0) | 143.0 (136.0, 153.0) | 140.0 (131.0, 150.0) | 142.0 (132.0, 152.0) | 143.0 (135.0, 151.0) | 142.0 (133.0, 151.0) | 142.5 (135.0, 149.0) |
Hematocrit count, median (Q1, Q3) | 0.42 (0.39, 0.45) | 0.43 (0.41, 0.45) | 0.42 (0.40, 0.46) | 0.42 (0.39, 0.45) | 0.42 (0.40, 0.45) | 0.43 (0.40, 0.45) | 0.43 (0.40, 0.45) | 0.42 (0.40, 0.45) |
Platelet count, GI/L, median (Q1, Q3) | 240.0 (206.0, 296.0) | 240.0 (199.0, 280.0) | 240.0 (199.0, 287.0) | 239.0 (207.0, 278.0) | 243.0 (214.0, 291.0) | 229.0 (196.0, 275.0) | 240.0 (206.0, 278.0) | 236.0 (196.0, 281.0) |
White blood cell count, GI/L, median (Q1, Q3) | 8.5 (7.3, 10.1) | 7.7 (6.6, 8.9) | 7.8 (6.8, 8.8) | 7.9 (6.5, 8.9) | 8.7 (7.2, 9.7) | 7.7 (6.4, 8.8) | 7.6 (6.7, 8.9) | 7.8 (6.5, 8.8) |
Neutrophil count, GI/L, median (Q1, Q3) | 5.8 (4.9, 7.3) | 4.8 (4.0, 5.6) | 4.6 (3.9, 5.7) | 4.8 (4.0, 5.8) | 5.7 (4.8, 7.0) | 4.6 (3.7, 5.5) | 4.6 (3.9, 5.6) | 4.8 (3.9, 5.8) |
Lymphocyte count, GI/L, median (Q1, Q3) | 1.8 (1.5, 2.1) | 2.1 (1.7, 2.6) | 2.2 (1.9, 2.8) | 2.0 (1.6, 2.5) | 2.0 (1.4, 2.3) | 2.1 (1.7, 2.7) | 2.1 (1.8, 2.7) | 2.0 (1.5, 2.4) |
Monocyte count, GI/L, median (Q1, Q3) | 0.46 (0.36, 0.60) | 0.46 (0.35, 0.55) | 0.48 (0.39, 0.60) | 0.47 (0.38, 0.57) | 0.48 (0.39, 0.60) | 0.47 (0.40, 0.58) | 0.48 (0.38, 0.58) | 0.47 (0.39, 0.56) |
Eosinophil count, GI/L, median (Q1, Q3) | 0.20 (0.13, 0.30) | 0.20 (0.13, 0.30) | 0.23 (0.14, 0.33) | 0.25 (0.17, 0.36) | 0.20 (0.12, 0.33) | 0.21 (0.14, 0.32) | 0.24 (0.14, 0.33) | 0.24 (0.14, 0.37) |
Basophil count, GI/L, median (Q1, Q3) | 0.05 (0.04, 0.07) | 0.05 (0.03, 0.07) | 0.05 (0.04, 0.07) | 0.05 (0.04, 0.07) | 0.05 (0.04, 0.07) | 0.05 (0.04, 0.07) | 0.05 (0.04, 0.07) | 0.05 (0.04, 0.06) |
NLR, median (Q1, Q3) | 3.2 (2.7, 4.3) | 2.3 (1.7, 3.2) | 2.0 (1.5, 2.6) | 2.4 (1.9, 3.2) | 3.0 (2.3, 4.1) | 2.2 (1.7, 2.7) | 2.3 (1.6, 2.8) | 2.5 (1.8, 3.3) |
PLR, median (Q1, Q3) | 138.5 (110.0, 172.4) * | 114.2 (91.7, 148.0) | 105.6 (82.6, 140.4) † | 117.5 (97.0, 152.3) ‡ | 129.5 (104.7, 171.8) | 106.0 (86.6, 139.2) ‡ | 117.6 (89.4, 141.9) | 123.1 (95.8, 150.0) |
Patient Group | Number of Values | Lower Limit (2.5th Percentile) | Upper Limit (97.5th Percentile) | |
---|---|---|---|---|
Estimated Reference Ranges (90% CI) | ||||
NLR | All patients | 1334 | 1.06 (1.01–1.09) | 6.38 (5.90–6.98) |
Male | 993 | 1.10 (1.05–1.16) | 6.60 (5.95–7.27) | |
Female | 341 | 0.96 (0.89–1.06) | 4.99 (4.54–6.98) | |
<65 year | 468 | 1.08 (0.99–1.15) | 5.90 (5.06–6.91) | |
≥65 year | 866 | 1.05 (0.96–1.10) | 6.60 (5.92–7.27) | |
PLR | All patients | 1323 | 56.79 (54.55–57.75) | 250.45 (240.52–275.46) |
Male | 986 | 56.41 (54.55–57.75) | 252.13 (238.20–279.82) | |
Female | 337 | 56.97 (46.42–64.09) | 248.60 (240.00–303.03) | |
<65 year | 466 | 55.49 (46.79–61.01) | 240.00 (229.09–258.09) | |
≥65 year | 857 | 56.97 (52.52–59.31) | 263.11 (246.88–289.83) |
Q1 (n = 155) | Q2 (n = 155) | Q3 (n = 155) | Q4 (n = 155) | Cochran–Armitage p-Value * | |
---|---|---|---|---|---|
NLR change from baseline † to Month 12, ‡ median (Q1, Q3) | −0.8 (−1.4, −0.6) | −0.1 (−0.2, 0.0) | 0.4 (0.3, 0.6) | 1.6 (1.1, 2.7) | – |
Neutrophils percent change from baseline to Month 12, median (Q1, Q3) | −18.5 (−30.9, −8.1) | −1.5 (−12.3, 10.9) | 18.2 (1.3, 31.0) | 34.9 (19.9, 74.3) | – |
Lymphocytes percent change from baseline to Month 12, median (Q1, Q3) | 16.8 (1.9, 36.1) | 3.2 (−8.8, 14.9) | −5.3 (−16.6, 8.6) | −17.4 (−32.2, −8.2) | – |
Absolute decline in percent predicted FVC from baseline to Month 12, median (Q1, Q3) | −4.4 (−8.6, −1.8) | −3.7 (−8.6, 0.1) | −4.5 (−8.9, −1.1) | −9.4 (−18.1, −2.9) | – |
All-cause mortality, n (%) | 3 (1. 9) | 5 (3.2) | 7 (4.5) | 26 (16.8) | <0.001 |
Absolute decline in percent predicted FVC ≥10% or death, n (%) | 26 (16.8) | 29 (18.7) | 35 (22.6) | 73 (47.1) | <0.001 |
Absolute decline in 6MWD ≥50 m or death, n (%) | 48 (31.0) | 46 (29.7) | 44 (28.4) | 72 (46.5) | 0.009 |
Worsening in UCSD-SOBQ score ≥20 points or death, n (%) | 34 (21.9) | 38 (24.5) | 42 (27.1) | 78 (50.3) | <0.001 |
Any respiratory hospitalization, n (%) | 9 (5.8) | 11 (7.1) | 11 (7.1) | 42 (27.1) | <0.001 |
Any respiratory hospitalization or death, n (%) | 10 (6.5) | 11 (7.1) | 12 (7.7) | 48 (31.0) | <0.001 |
Absolute decline in percent predicted DLco ≥15% or death, § n (%) | 6 (6.3) || | 9 (9.0) ¶ | 9 (10.8) ** | 19 (28.4) †† | <0.001 |
Q1 | Q2 | Q3 | Q4 | Cochran–Armitage p-Value * | |
---|---|---|---|---|---|
NLR, n | 110 | 109 | 109 | 109 | – |
Changes from baseline † to Month 12, ‡ median (Q1, Q3) | −1.8 (−3.8, −1.2) | −0.2 (−0.5, −0.1) | 0.5 (0.2, 0.8) | 2.8 (1.6, 4.9) | – |
All-cause mortality, n (%) | 8 (7.3) | 3 (2.8) | 6 (5.5) | 21 (19.3) | 0.001 |
PLR, n | 108 | 108 | 108 | 107 | – |
Changes from baseline † to Month 12, ‡ median (Q1, Q3) | −53.3 (−95.9, −34.0) | −10.6 (−16.4, −4.5) | 14.9 (7.5, 22.2) | 81.4 (56.9, 137.6) | – |
All-cause mortality, n (%) | 9 (8.3) | 2 (1.9) | 9 (8.3) | 18 (16.8) | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nathan, S.D.; Mehta, J.; Stauffer, J.; Morgenthien, E.; Yang, M.; Limb, S.L.; Bhorade, S. Changes in Neutrophil–Lymphocyte or Platelet–Lymphocyte Ratios and Their Associations with Clinical Outcomes in Idiopathic Pulmonary Fibrosis. J. Clin. Med. 2021, 10, 1427. https://doi.org/10.3390/jcm10071427
Nathan SD, Mehta J, Stauffer J, Morgenthien E, Yang M, Limb SL, Bhorade S. Changes in Neutrophil–Lymphocyte or Platelet–Lymphocyte Ratios and Their Associations with Clinical Outcomes in Idiopathic Pulmonary Fibrosis. Journal of Clinical Medicine. 2021; 10(7):1427. https://doi.org/10.3390/jcm10071427
Chicago/Turabian StyleNathan, Steven D., Jayesh Mehta, John Stauffer, Elizabeth Morgenthien, Ming Yang, Susan L. Limb, and Sangeeta Bhorade. 2021. "Changes in Neutrophil–Lymphocyte or Platelet–Lymphocyte Ratios and Their Associations with Clinical Outcomes in Idiopathic Pulmonary Fibrosis" Journal of Clinical Medicine 10, no. 7: 1427. https://doi.org/10.3390/jcm10071427
APA StyleNathan, S. D., Mehta, J., Stauffer, J., Morgenthien, E., Yang, M., Limb, S. L., & Bhorade, S. (2021). Changes in Neutrophil–Lymphocyte or Platelet–Lymphocyte Ratios and Their Associations with Clinical Outcomes in Idiopathic Pulmonary Fibrosis. Journal of Clinical Medicine, 10(7), 1427. https://doi.org/10.3390/jcm10071427