Bacteroidetes Species Are Correlated with Disease Activity in Ulcerative Colitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Healthy Controls
2.2. Fecal and Mucosal Sample Collection
2.3. Next-Generation Sequencing and Library Preparation
2.4. Multiplex Gene Expression Assay
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Differences in the Composition of the Order Bacteroidales between the Healthy Controls and UC Patients
3.3. Correlation between the Composition of Order Bacteroidales and the Metrics of UC Activity
3.4. Cumulative Relative Abundance of Five Bacteroidetes Species Is Strongly Correlated with the Sum of MES
3.5. Correlations between Relative Abundance of the 12 Key Bacteroidetes species and Expression Levels of UC-Related Genes in the Colonic Mucosa
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cosnes, J.; Gower-Rousseau, C.; Seksik, P.; Cortot, A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 2011, 140, 1785–1794. [Google Scholar] [CrossRef]
- Liu, J.Z.; van Sommeren, S.; Huang, H.; Ng, S.C.; Alberts, R.; Takahashi, A.; Ripke, S.; Lee, J.C.; Jostins, L.; Shah, T.; et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 2015, 47, 979–986. [Google Scholar] [CrossRef]
- Kostic, A.D.; Xavier, R.J.; Gevers, D. The microbiome in inflammatory bowel disease: Current status and the future ahead. Gastroenterology 2014, 146, 1489–1499. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.H.; Zhu, C.X.; Quan, Y.S.; Yang, Z.Y.; Wu, S.; Luo, W.W.; Tan, B.; Wang, X.Y. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J. Gastroenterol. 2018, 24, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, B.; Zhang, Y.; Wei, H.; Lei, Y.; Zhao, L. Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. J. Clin. Microbiol. 2007, 45, 496–500. [Google Scholar] [CrossRef] [Green Version]
- Machiels, K.; Joossens, M.; Sabino, J.; Preter, V.D.; Arijis, I.; Eeckhaut, V.; Ballet, V.; Claes, K.; Immerseel, F.V.; Verbeke, K.; et al. A decrease of the butyrate-producing species Roseburia homins and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2014, 63, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Ullah, N.; Zha, L.; Bai, Y.; Khan, A.; Zhao, T.; Che, T.; Zhang, C. Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens 2019, 8, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costello, S.P.; Hughes, P.A.; Waters, O.; Bryant, R.V.; Vincent, A.D.; Blatchford, P.; Katsikeros, R.; Makanyanga, J.; Campaniello, M.A.; Mavrangelos, C.; et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: A randomized clinical trial. JAMA 2019, 321, 156–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moayyedi, P.; Surette, M.G.; Kim, P.T.; Libertucci, J.; Wolfe, M.; Onischi, C.; Armstrong, D.; Marshall, J.K.; Kassam, Z.; Reinisch, W.; et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 2015, 149, 102–109.e6. [Google Scholar] [CrossRef] [Green Version]
- Paramsothy, S.; Kamm, M.A.; Kaakoush, N.O.; Walsh, A.J.; van den Bogaerde, J.; Samuel, D.; Leong, R.W.L.; Connor, S.; Ng, W.; Paramsothy, R.; et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: A randomized placebo-controlled trial. Lancet 2017, 389, 1218–1228. [Google Scholar] [CrossRef]
- Rossen, N.G.; Fuentes, S.; van der Spek, M.J.; Tijssen, J.G.; Hartman, J.H.; Duflou, A.; Lowenberg, M.; van den Brink, G.R.; Mathus-Vliegen, E.M.; de Vos, W.M.; et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology 2015, 149, 110–118.e4. [Google Scholar] [CrossRef]
- Ishikawa, D.; Sasaki, T.; Osada, T.; Kuwahara-Arai, K.; Haga, K.; Shibuya, T.; Hiramatsu, K.; Watanabe, S. Changes in intestinal microbiota following combination therapy with fecal microbial transplantation and antibiotics for ulcerative colitis. Inflamm. Bowel Dis. 2017, 23, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Okahara, K.; Ishikawa, D.; Nomura, K.; Ito, S.; Haga, K.; Takahashi, M.; Shibuya, T.; Osada, T.; Nagahara, A. Matching between donors and ulcerative colitis patients is important for long-term maintenance after fecal microbiota transplantation. J. Clin. Med. 2020, 9, 1650. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, D.; Sasaki, T.; Takahashi, M.; Kuwahara-Arai, K.; Haga, K.; Ito, S.; Okahara, K.; Nakajima, A.; Shibuya, T.; Osada, T.; et al. The microbial composition of Bacteroidetes species in ulcerative colitis is effectively improved by combination therapy with fecal microbiota transplantation and antibiotics. Inflamm. Bowel Dis. 2018, 12, 2590–2598. [Google Scholar] [CrossRef]
- Noor, S.O.; Ridgway, K.; Scovell, L.; Kemsley, E.K.; Lund, E.K.; Jamieson, C.; Johnson, I.T.; Narbad, A. Ulcerative colitis and irritable bowel patients exhibit distinct abnormalities of the gut microbiota. BMC Gastroenterol. 2010, 10, 134. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Li, P.; An, Y.; Ren, J.; Yan, D.; Cui, J.; Li, D.; Li, M.; Wang, M.; Zhong, G. Phloretin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by regulating the gut microbiota. Pharmacol. Res. 2019, 150, 104489. [Google Scholar] [CrossRef]
- Ma, H.Q.; Yu, T.; Zhao, X.J.; Zhang, Y.; Zhang, H.J. Fecal microbial dysbiosis in Chinese patients with inflammatory bowel disease. World J. Gastroenterol. 2018, 24, 1464–1477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delday, M.; Mulder, I.; Logan, E.T.; Grant, G. Bacteroides thetaiotaomicron ameliorates colon inflammation in preclinical models of crohn’s disease. Inflamm. Bowel Dis. 2019, 25, 85–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.M.; Donaldson, G.P.; Mikulski, Z.; Boyajian, S.; Ley, K.; Mazmanian, S.K. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 2013, 501, 426–429. [Google Scholar] [CrossRef] [Green Version]
- Feitoza, A.B.; Pereira, A.F.; da Costa, N.F.; Ribeiro, B.G. Conjugated linoleic acid (CLA): Effect modulation of body composition and lipid profile. Nutr. Hosp. 2009, 24, 422–428. [Google Scholar]
- Devillard, E.; McIntosh, F.M.; Duncan, S.H.; Wallace, R.J. Metabolism of linoleic acid by human gut bacteria: Different routes for biosynthesis of conjugated linoleic acid. J. Bacteriol. 2007, 189, 2566–2570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devillard, E.; McIntosh, F.M.; Paillard, D.; Thomas, N.A.; Shingfield, K.J.; Wallace, R.J. Differences between human subjects in the composition of the faecal bacterial community and faecal metabolism of linoleic acid. Microbiology 2009, 155, 513–520. [Google Scholar] [CrossRef] [Green Version]
- Lange, K.; Buerger, M.; Stallmach, A.; Bruns, T. Effects of antibiotics on gut microbiota. Dig. Dis. 2016, 34, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Krogsgaard, L.R.; Munck, L.K.; Bytzer, P.; Wildt, S. An altered composition of the microbiome in microscopic colitis is driven towards the composition in healthy controls by treatment with budesonide. Scand. J. Gastroenterol. 2019, 54, 446–452. [Google Scholar] [CrossRef]
- Goh, S.H.; Potter, S.; Wood, J.O.; Hemmingsen, S.M.; Reynolds, R.P.; Chow, A.W. HSP60 gene sequences as universal targets for microbial species identification: Studies with coagulase-negative staphylococci. J. Clin. Microbiol. 1996, 34, 818–823. [Google Scholar] [CrossRef] [Green Version]
- Kelsey, J.J.; Rachel, T.N. Vibrio ecology in the neuse river estuary, north carolina, characterized by next-generation amplicon sequencing of the gene encoding heat shock protein 60 (hsp60). Appl. Environ. Microbiol. 2018, 84, e00333-18. [Google Scholar]
- Sakamoto, M.; Ohkuma, M. Usefulness of the hsp60 gene for the identification and classification of Gram-negative anaerobic rods. J. Med. Microbiol. 2010, 59, 1293–1302. [Google Scholar] [CrossRef] [Green Version]
- Osada, T.; Ohkusa, T.; Okayasu, I.; Yoshida, T.; Hirai, S.; Beppu, K.; Shibuya, T.; Sakamoto, N.; Kobayashi, O.; Nagahara, A.; et al. Correlations among total colonoscopic findings, clinical symptoms, and laboratory markers in ulcerative colitis. J. Gastroenterol. Hepatol. 2009, 23 (Suppl. S2), S262–S267. [Google Scholar]
- Mosli, M.H.; Feagan, B.G.; Zou, G.; Sandborn, W.J.; D’Haens, G.; Khanna, R.; Shackelton, L.M.; Walker, C.W.; Nelson, S.; Vandervoort, M.K.; et al. Development and validation of a histological index for UC. Gut 2017, 66, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wu, Y.; Li, J.; Bap, Y.; Guo, Y.; Yang, W. The Dynamic changes of gut microbiota in Muc2 deficient mice. Int. J. Mol. Sci. 2018, 19, 2809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allakhverdi, Z.; Fitzpatrick, D.; Boisvert, A.; Baba, N.; Bouguermouh, S.; Sarfati, M.; Delespesse, G. Expression of CD103 identifies human regulatory T-cell subsets. J. Allergy Clin. Immunol. 2006, 118, 1342–1349. [Google Scholar] [CrossRef] [PubMed]
- del Rio, M.L.; Bernhardt, G.; Rodriguez-Barbosa, J.I.; Förster, R. Development and functional specialization of CD103 dendritic cells. Immunol. Rev. 2010, 234, 268–281. [Google Scholar] [CrossRef]
- Annacker, O.; Coombes, J.L.; Malmstorm, V.; Uhlig, H.; Bourne, T.; Lindbom, B.J.; Agace, W.; Parker, C.M.; Powrie, F. Essential role for CD103 in the T cell-mediated regulation of experimental colitis. J. Exp. Med. 2005, 202, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Lines, J.L.; Pantazi, E.; Mak, J.; Sempere, L.F.; Wang, L.; O’Connell, S.; Ceeraz, S.; Suriawinata, A.; Yan, S.; Ernstoff, M.S.; et al. VISTA is an immune checkpoint molecule for human T cells. Cancer Res. 2014, 74, 1924–1932. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Wong, H.Y.; Lin, J.L.; Moliner, A.; Schwarz, H. Induction of CD137 expression by viral genes reduces T cell constimulation. J. Cell Physiol. 2019, 234, 21076–21088. [Google Scholar] [CrossRef]
- Wang, J.; Fraga, M.L.; Rynko, A.; Lo, D.D. TNFR and LTbR agonists induce follicle-associated epithelium and M cell specific genes in rat and human intestinal epithelial cells. Cytokine 2009, 47, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsieh, E.H.; Fernandez, X.; Wang, J.; Calvillo, S.; Croft, M.; Kwon, B.S.; Lo, D.D. CD137 is required for M cell functional maturation but not lineage commitment. Am. J. Pathol. 2010, 177, 666–676. [Google Scholar] [CrossRef]
- Xiao, X.; Yeoh, B.S.; Kumar, M.V. Lipocalin 2: An Emerging Player in Iron Homeostasis and Inflammation. Annu. Rev. Nutr. 2017, 37, 103–130. [Google Scholar] [CrossRef]
- Nielsen, B.S.; Borregaard, N.; Bundgaard, J.R.; Timshel, S.; Sehested, M.; Kjeldsen, L. Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut 1996, 38, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Zollner, A.; Schmiderer, A.; Reider, S.J.; Oberhuber, G.; Pfister, A.; Texler, B.; Watschinger, C.; Koch, R.; Effenberger, M.; Raine, T.; et al. Faecal biomarkers in inflammatory bowel diseases: Calprotectin versus lipocalin-2-a comparative study. J. Crohns Colitis 2021, 15, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.; Morin, J.; Filliettaz, C.; Varada, R.; LaBarre, S.; Radi, Z. Fecal lipocalin-2 as a sensitive and noninvasive biomarker in the TNBS Crohn’s inflammatory bowel disease model. Toxicol. Pathol. 2016, 44, 1084–1094. [Google Scholar] [CrossRef] [Green Version]
- Thorsvik, S.; Damas, J.K.; Granlund, A.V.B.; Flo, T.H.; Bergh, K.; Østvik, A.E.; Sandvik, A.K. Fecal neutrophil gelatinase-associated lipocalin as a biomarker for inflammatory bowel disease. J. Gastroenterol. Hepatol. 2017, 32, 128–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly, Y.M.; Glickman, J.N.; Garrett, W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013, 341, 569–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; van der Veeken, J.; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Neff, C.P.; Rhodes, M.E.; Arnolds, K.L.; Collins, C.B.; Donnelly, J.; Nusbacher, N.; Jedlicka, P.; Schneider, J.M.; McCarter, M.D.; Shaffer, M.; et al. Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties. Cell Host Microbe 2016, 20, 535–547. [Google Scholar] [CrossRef] [Green Version]
- Darnaud, M.; Dos Santos, A.; Gonzalez, P.; Augui, S.; Lacoste, C.; Desterke, C.; Hertogh, G.D.; Valentino, E.; Braun, E.; Zheng, J.; et al. Enteric delivery of regenerating family member 3 alpha alters the intestinal microbiota and controls inflammation in mice with colitis. Gastroenterology 2018, 154, 1009–1023.e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Total (n = 52) |
---|---|
Age (years), mean ± SD | 40.3 ± 13.4 |
Male/female, n (%) | 35/17 (67.3) |
Duration of disease (years), mean ± SD | 9.0 ± 9.4 |
Disease location | |
Proctitis, n (%) | 10 (19.2) |
Left sided colitis, n (%) | 20 (38.5) |
Extensive colitis, n (%) | 22 (42.3) |
Sum of MES, mean ± SD | 5.0 ± 3.4 |
UCEIS, mean ± SD | 5.3 ± 2.8 |
CAI, mean ± SD | 10.2 ± 3.3 |
RHI, mean ± SD | 12.2 ± 8.2 |
Taxonomic Description (Taxonomic Level) | Relative Abundance (%) (Standard Deviation) | Significance Level t Test | |
---|---|---|---|
Healthy | UC | ||
Bacteroidaceae (Family) | 63.06 (28.311) | 42.35 (32.969) | 0.003 |
Marinilabiliaceae (Family) | 0.05 (0.076) | 4.56 (13.892) | 0.024 |
Bacteroides (Genus) | 62.56 (28.782) | 39.90 (33.888) | 0.002 |
Alistipes putredinis (Species) | 2.10 (3.162) | 0.05 (0.139) | <0.001 |
Bacteroides coprocola (Species) | 5.73 (12.042) | 1.24 (4.430) | 0.047 |
Bacteroides uniformis (Species) | 12.47 (11.960) | 6.29 (9.143) | 0.014 |
Bacteroides cellulosilyticus (Species) | 0.26 (0.648) | 0.002 (0.006) | 0.026 |
Bacteroides intestinalis (Species) | 0.09 (0.224) | 0.0004 (0.002) | 0.030 |
Parabacteroides goldsteinii (Species) | 0.01 (0.028) | 0.002 (0.009) | 0.023 |
Taxonomic Description (Taxonomic Level) | Relative Abundance (%) ± SD | Sum of MES (r, p) | UCEIS (r, p) | CAI (r, p) | RHI (r, p) |
---|---|---|---|---|---|
Prevotellaceae (Family) | 13.40 ± 26.589 | 0.276, 0.048 | |||
Bacteroidaceae (Family) | 42.35 ± 32.969 | −0.388, 0.004 | −0.397, 0.004 | ||
Marinfilaceae (Family) | 0.69 ± 2.186 | 0.278, 0.046 | |||
Porphyromonadaceae (Family) | 28.63 ± 24.786 | 0.299, 0.031 | |||
Dysgonomonas (Genus) | 0.25 ± 1.202 | 0.287, 0.039 | |||
Bacteroides (Genus) | 39.90 ± 33.888 | −0.433, 0.001 | −0.459, <0.001 | ||
Macellibacteroides (Genus) | 0.24 ± 1.080 | 0.372, 0.007 | |||
Alistipes putredinis (Species) | 0.05 ± 0.139 | −0.287, 0.039 | −0.431, 0.001 | −0.325, 0.021 | |
Bacteroides stercoris (Species) | 3.51 ± 9.550 | −0.468, <0.001 | −0.540, <0.001 | −0.357, 0.011 | |
Bacteroides uniformis (Species) | 6.29 ± 9.143 | −0.602, <0.001 | −0.458, <0.001 | −0.370, 0.007 | |
Bacteroides rodentium (Species) | 0.31 ± 0.848 | −0.394, 0.004 | −0.313, 0.024 | −0.440, 0.001 | |
Parabacteroides merdae (Species) | 2.42 ± 5.691 | −0.364, 0.008 | −0.451, <0.001 | −0.341, 0.015 | |
Parabacteroides distasonis (Species) | 16.68 ± 24.498 | −0.307, 0.026 | −0.347, 0.012 | ||
Alistipes shahii (Species) | 0.05 ± 0.139 | −0.303, 0.029 | −0.386, 0.006 | ||
Bacteroides thetaiotaomicron (Species) | 1.41 ± 4.239 | −0.344, 0.012 | −0.383, 0.005 | ||
Bacteroides ovatus (Species) | 1.68 ± 5.004 | −0.398, 0.003 | −0.394, 0.004 | ||
Bacteroides caccae (Species) | 0.94 ± 3.551 | −0.294, 0.034 | |||
Bacteroides massiliensis (Species) | 0.46 ± 2.292 | −0.383, 0.005 | |||
Bacteroides dorei (Species) | 4.92 ± 11.895 | −0.393, 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nomura, K.; Ishikawa, D.; Okahara, K.; Ito, S.; Haga, K.; Takahashi, M.; Arakawa, A.; Shibuya, T.; Osada, T.; Kuwahara-Arai, K.; et al. Bacteroidetes Species Are Correlated with Disease Activity in Ulcerative Colitis. J. Clin. Med. 2021, 10, 1749. https://doi.org/10.3390/jcm10081749
Nomura K, Ishikawa D, Okahara K, Ito S, Haga K, Takahashi M, Arakawa A, Shibuya T, Osada T, Kuwahara-Arai K, et al. Bacteroidetes Species Are Correlated with Disease Activity in Ulcerative Colitis. Journal of Clinical Medicine. 2021; 10(8):1749. https://doi.org/10.3390/jcm10081749
Chicago/Turabian StyleNomura, Kei, Dai Ishikawa, Koki Okahara, Shoko Ito, Keiichi Haga, Masahito Takahashi, Atsushi Arakawa, Tomoyoshi Shibuya, Taro Osada, Kyoko Kuwahara-Arai, and et al. 2021. "Bacteroidetes Species Are Correlated with Disease Activity in Ulcerative Colitis" Journal of Clinical Medicine 10, no. 8: 1749. https://doi.org/10.3390/jcm10081749
APA StyleNomura, K., Ishikawa, D., Okahara, K., Ito, S., Haga, K., Takahashi, M., Arakawa, A., Shibuya, T., Osada, T., Kuwahara-Arai, K., Kirikae, T., & Nagahara, A. (2021). Bacteroidetes Species Are Correlated with Disease Activity in Ulcerative Colitis. Journal of Clinical Medicine, 10(8), 1749. https://doi.org/10.3390/jcm10081749