ICU-Acquired Pneumonia Is Associated with Poor Health Post-COVID-19 Syndrome
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Procedures
2.4. Outcomes
2.5. Statistical Analysis
3. Results
3.1. Definition of the Population
3.2. Clinical Features and Associations with Functional (Lung Function Tests), Imaging and Laboratory Results at 3-Month Follow-Up
3.3. Factors Associated with Persistent Post-COVID-19 Symptoms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rello, J.; Storti, E.; Belliato, M.; Serrano, R. Clinical phenotypes of SARS-CoV-2: Implications for clinicians and researchers. Eur. Respir. J. 2020, 55, 2001028. [Google Scholar] [CrossRef] [PubMed]
- Kolb, M.; Dinh-Xuan, A.T.; Brochard, L. Guideline-directed management of COVID-19: Do’s and Don’ts. Eur. Respir. J. 2021, 57, 2100753. [Google Scholar] [CrossRef] [PubMed]
- Blake, A.; Collins, D.; O’Connor, E.; Bergin, C.; McLaughlin, A.M.; Martin-Loeches, I. Clinical and biochemical characteristics of patients admitted to ICU with SARS-CoV-2. Med. Intensiva 2020, 44, 589–590. [Google Scholar] [CrossRef] [PubMed]
- Martin-Loeches, I.; Arabi, Y.; Citerio, G. If not now, when? A clinical perspective on the unprecedented challenges facing ICUs during the COVID-19 pandemic. Intensive Care Med. 2021, 47, 588–590. [Google Scholar] [CrossRef]
- Esperatti, M.; Ferrer, M.; Theessen, A.; Liapikou, A.; Valencia, M.; Saucedo, L.M.; Zavala, E.; Welte, T.; Torres, A. Nosocomial pneumonia in the intensive care unit acquired by mechanically ventilated versus nonventilated patients. Am. J. Respir. Crit. Care Med. 2010, 182, 1533–1539. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Ceccato, A.; Carbonara, M.; li Bassi, G.; di Natale, P.; Nogas, S.; Ranzani, O.; Speziale, C.; Senussi, T.; Idone, F.; et al. Impact of Cardiovascular Failure in Intensive Care Unit-Acquired Pneumonia: A Single-Center, Prospective Study. Antibiotics 2021, 10, 798. [Google Scholar] [CrossRef]
- Vaes, A.W.; Goërtz, Y.M.J.; Van Herck, M.; Machado, F.V.C.; Meys, R.; Delbressine, J.M.; Houben-Wilke, S.; Gaffron, S.; Maier, D.; Burtin, C.; et al. Recovery from COVID-19: A sprint or marathon? 6-month follow-up data from online long COVID-19 support group members. ERJ Open Res. 2021, 7, 00141–02021. [Google Scholar] [CrossRef]
- D’Cruz, R.F.; Waller, M.D.; Perrin, F.; Periselneris, J.; Norton, S.; Smith, L.-J.; Patrick, T.; Walder, D.; Heitmann, A.; Lee, K.; et al. Chest radiography is a poor predictor of respiratory symptoms and functional impairment in survivors of severe COVID-19 pneumonia. ERJ Open Res. 2021, 7, 00655–02020. [Google Scholar] [CrossRef] [PubMed]
- Townsend, L.; Dowds, J.; O’Brien, K.; Martin-Loeches, I.; Nadarajan, P.; Bannan, C. More on Persistent Poor Health Post-COVID-19 Is Not Associated with Respiratory Complications or Initial Disease Severity. Ann. Am. Thorac. Soc. 2021, 18, 997–1003. [Google Scholar] [CrossRef]
- Salamanna, F.; Veronesi, F.; Martini, L.; Landini, M.P.; Fini, M. Post-COVID-19 Syndrome: The Persistent Symptoms at the Post-viral Stage of the Disease. A Systematic Review of the Current Data. Front. Med. 2021, 8, 392. [Google Scholar] [CrossRef]
- Townsend, L.; Dyer, A.H.; Jones, K.; Dunne, J.; Mooney, A.; Gaffney, F.; O’Connor, L.; Leavy, D.; O’Brien, K.; Dowds, J.; et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS ONE 2020, 15, e0240784. [Google Scholar] [CrossRef]
- Bangash, M.N.; Owen, A.; Alderman, J.E.; Chotalia, M.; Patel, J.M.; Parekh, D. COVID-19 recovery: Potential treatments for post-intensive care syndrome. Lancet Respir. Med. 2020, 8, 1071–1073. [Google Scholar] [CrossRef]
- Parker, A.J.; Humbir, A.; Tiwary, P.; Mishra, M.; Shanmugam, M.; Bhatia, K.; Duncan, A.; Sharma, M.-P.; Kitchen, G.; Brij, S.; et al. Recovery after critical illness in COVID-19 ICU survivors. Br. J. Anaesth. 2021, 126, e217–e219. [Google Scholar] [CrossRef] [PubMed]
- Estella, Á.; Garcia Garmendia, J.L.; de la Fuente, C.; Machado Casas, J.F.; Yuste, M.E.; Amaya Villar, R.; Estecha, M.A.; Yaguez Mateos, L.; Cantón Bulnes, M.L.; Loza, A.; et al. Predictive factors of six-week mortality in critically ill patients with SARS-CoV-2: A multicenter prospective study. Med. Intensiva 2021. [Google Scholar] [CrossRef] [PubMed]
- Adeloye, D.; Elneima, O.; Daines, L.; Poinasamy, K.; Quint, J.K.; Walker, S.; Brightling, C.E.; Siddiqui, S.; Hurst, J.R.; Chalmers, J.D.; et al. The long-term sequelae of COVID-19: An international consensus on research priorities for patients with pre-existing and new-onset airways disease. Lancet Respir. Med. 2021, 9, 1467–1478. [Google Scholar] [CrossRef]
- Vincent, J.-L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Torres, A.; Povoa, P.; Zampieri, F.G.; Salluh, J.; Nseir, S.; Ferrer, M.; Rodriguez, A. TAVeM study Group The association of cardiovascular failure with treatment for ventilator-associated lower respiratory tract infection. Intensive Care Med. 2019, 45, 1753–1762. [Google Scholar] [CrossRef]
- Acute Respiratory Distress Syndrome. JAMA 2012, 307, 2526–2533. [CrossRef]
- Bestall, J.C.; Paul, E.A.; Garrod, R.; Garnham, R.; Jones, P.W.; Wedzicha, J.A. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax 1999, 54, 581–586. [Google Scholar] [CrossRef]
- McCulloch, C.E.; Searle, S.R. Generalized, Linear, and Mixed Models, 2nd ed.; Shewhart, W.A., Wilks, S.S., McCulloch, C.E., Searle, S.R., Eds.; Wiley Series in Probability and Statistics; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Putman, R.K.; Hunninghake, G.M.; Dieffenbach, P.B.; Barragan-Bradford, D.; Serhan, K.; Adams, U.; Hatabu, H.; Nishino, M.; Padera, R.F.; Fredenburgh, L.E.; et al. Interstitial Lung Abnormalities Are Associated with Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2017, 195, 138–141. [Google Scholar] [CrossRef]
- Han, X.; Fan, Y.; Alwalid, O.; Li, N.; Jia, X.; Yuan, M.; Li, Y.; Cao, Y.; Gu, J.; Wu, H.; et al. Six-month Follow-up Chest CT Findings after Severe COVID-19 Pneumonia. Radiology 2021, 299, E177–E186. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, J.; Canamar, C.P.; Voyageur, C.; Tangpraphaphorn, S.; Lemus, A.; Coffey, C.; Wald-Dickler, N.; Holtom, P.; Shoenberger, J.; Bowdish, M.; et al. Mortality and Readmission Rates Among Patients With COVID-19 After Discharge From Acute Care Setting With Supplemental Oxygen. JAMA Netw. Open 2021, 4, e213990. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Shang, Y.; Song, W.; Li, Q.; Xie, H.; Xu, Q.; Jia, J.; Li, L.; Mao, H.; Zhou, X.; et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine 2020, 25, 100463. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef]
- Soriano, J.B.; Waterer, G.; Peñalvo, J.L.; Rello, J. Nefer, Sinuhe and clinical research assessing post COVID-19 condition. Eur. Respir. J. 2021, 57, 2004423. [Google Scholar] [CrossRef]
- Morin, L.; Savale, L.; Pham, T.; Colle, R.; Figueiredo, S.; Harrois, A.; Gasnier, M.; Lecoq, A.-L.; Meyrignac, O.; Noel, N.; et al. Four-Month Clinical Status of a Cohort of Patients After Hospitalization for COVID-19. JAMA 2021, 325, 1525. [Google Scholar] [CrossRef]
- Anastasio, F.; Barbuto, S.; Scarnecchia, E.; Cosma, P.; Fugagnoli, A.; Rossi, G.; Parravicini, M.; Parravicini, P. Medium-term impact of COVID-19 on pulmonary function, functional capacity and quality of life. Eur. Respir. J. 2021. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, C.; Wu, J.; Chen, M.; Wang, Z.; Luo, L.; Zhou, X.; Liu, X.; Huang, X.; Yuan, S.; et al. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir. Res. 2020, 21, 163. [Google Scholar] [CrossRef]
- Ekbom, E.; Frithiof, R.; Öi, E.; Larson, I.M.; Lipcsey, M.; Rubertsson, S.; Malinovschi, A. Impaired diffusing capacity for carbon monoxide is common in critically ill COVID-19 patients at four months post-discharge. Respir. Med. 2021, 182, 106394. [Google Scholar] [CrossRef]
- O’Donnell, J.S.; Peyvandi, F.; Martin-Loeches, I. Pulmonary immuno-thrombosis in COVID-19 ARDS pathogenesis. Intensive Care Med. 2021, 47, 899–902. [Google Scholar] [CrossRef] [PubMed]
- Ward, S.E.; Curley, G.F.; Lavin, M.; Fogarty, H.; Karampini, E.; McEvoy, N.L.; Clarke, J.; Boylan, M.; Alalqam, R.; Worrall, A.P.; et al. Von Willebrand factor propeptide in severe coronavirus disease 2019 (COVID-19): Evidence of acute and sustained endothelial cell activation. Br. J. Haematol. 2021, 192, 714–719. [Google Scholar] [CrossRef]
- Jafari, D.; Gandomi, A.; Makhnevich, A.; Qiu, M.; Rolston, D.M.; Gottesman, E.P.; Tsegaye, A.; Mayo, P.H.; Stewart, M.E.; Zhang, M.; et al. Trajectories of Hypoxemia & Respiratory System Mechanics of COVID-19 ARDS in the NorthCARDS Dataset. medRxiv 2021. [Google Scholar] [CrossRef]
- Gattinoni, L.; Coppola, S.; Cressoni, M.; Busana, M.; Rossi, S.; Chiumello, D. COVID-19 Does Not Lead to a “Typical” Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2020, 201, 1299–1300. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Benítez, I.D.; Carmona, P.; Santisteve, S.; Monge, A.; Moncusí-Moix, A.; Gort-Paniello, C.; Pinilla, L.; Carratalá, A.; Zuil, M.; et al. Pulmonary Function and Radiologic Features in Survivors of Critical COVID-19. Chest 2021. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected with SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA J. Am. Med. Assoc. 2020, 323, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Lakbar, I.; Luque-Paz, D.; Mege, J.-L.; Einav, S.; Leone, M. COVID-19 gender susceptibility and outcomes: A systematic review. PLoS ONE 2020, 15, e0241827. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.A.; McAuley, H.; Harrison, E.M.; Shikotra, A.; Singapuri, A.; Sereno, M.; Elneima, O.; Docherty, A.B.; Lone, N.I.; Leavy, O.C.; et al. Physical, Cognitive and Mental Health Impacts of COVID-19 Following Hospitalisation—A Multi-Centre Prospective Cohort Study. Available online: https://doi.org/10.1101/2021.03.22.21254057 (accessed on 30 December 2021). [CrossRef]
- Bein, T.; Weber-Carstens, S.; Apfelbacher, C. Long-term outcome after the acute respiratory distress syndrome. Curr. Opin. Crit. Care 2018, 24, 35–40. [Google Scholar] [CrossRef] [PubMed]
- van Gassel, R.J.J.; Bels, J.L.M.; Raafs, A.; van Bussel, B.C.T.; van de Poll, M.C.G.; Simons, S.O.; van der Meer, L.W.L.; Gietema, H.A.; Posthuma, R.; van Santen, S. High Prevalence of Pulmonary Sequelae at 3 Months after Hospital Discharge in Mechanically Ventilated Survivors of COVID-19. Am. J. Respir. Crit. Care Med. 2021, 203, 371–374. [Google Scholar] [CrossRef]
- Rouzé, A.; Martin-Loeches, I.; Povoa, P.; Makris, D.; Artigas, A.; Bouchereau, M.; Lambiotte, F.; Metzelard, M.; Cuchet, P.; Boulle Geronimi, C.; et al. Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: A European multicenter cohort study. Intensive Care Med. 2021, 47, 188–198. [Google Scholar] [CrossRef]
Demographic Item | n |
---|---|
Age *, mean (SD), years | 58.5 (SD11.9) |
Sex (Female), n (%) | 326 (32.9) |
SOFA *, mean (SD) | 5.1 (SD 3.0) |
CHF, n (%) | 92 (9.3) |
Hypertension, n (%) | 441 (44.5) |
COPD, n (%) | 81 (8.2) |
Asthma, n (%) | 65 (6.6) |
CKD), n (%) | 53 (5.4) |
Cirrhosis, n (%) | 13 (1.3) |
Mild liver failure, n (%) | 19 (1.9) |
Neurologic, n (%) | 48 (4.8) |
Dementia, n (%) | 3 (0.3) |
Autoimmune, n (%) | 56 (5.7) |
Gastrointestinal, n (%) | 80 (8.1) |
Endocrine, n (%) | 75 (7.6) |
Obesity (BMI >30 kg/m2, n (%) | 391 (39.5) |
Diabetes Mellitus, n (%) | 186 (18.8) |
Haematologic disease, n (%) | 52 (5.3) |
Solid cancer, n (%) | 29 (2.9) |
Transplant, n (%) | 4 (0.4) |
HIV, n (%) | 8 (0.6) |
Smoking, n (%) | 42 (4.2) |
Alcohol), n (%) | 28 (2.8) |
Oxygen requirement, n (%) | 981 (99.6) |
NIMV, n (%) | 348 (35.1) |
iMV, n (%) | 665 (67.4) |
Prone, n (%) | 567 (57.4) |
Tracheostomy, n (%) | 312 (31.6) |
ICU length of stay, mean (SD), days | 20.1 (18.2) |
ECMO, n (%) | 18 (1.8) |
CRRT, n (%) | 54 (5.5) |
Shock, n (%) | 596 (60.4) |
NMB, n (%) | 554 (56.2) |
Corticosteroids, n (%) | 750 (76.7) |
CPR, n (%) | 7 (0.7) |
ICUAP, n (%) | 260 (26.4) |
ARDS, n (%) | 739 (74.9) |
Pneumothoraz, n (%) | 45 (4.6) |
COP, n (%) | 46 (4.7) |
PE, n (%) | 97 (9.8) |
Delirium, n (%) | 234 (23.8) |
Post-COVID | Invasive Mechanical Ventilation | |||||
---|---|---|---|---|---|---|
Yes | No | p-Value | Yes | No | p-Value | |
Chest X-ray, n (%) | ||||||
Abnormal | 597 (81.7) | 182 (70) | <0.01 | 540 (73.0) | 235 (81.2) | 0.004 |
ILD | 2 (0.8) | 5 (0.7) | 0.5 | 5 (0.8) | 2 (0.6) | 0.9 |
Persistent infiltrates | 34 (13.1) | 130 (17.8) | 0.08 | 118 (17.7) | 45 (14) | 0.1 |
Fibrotic tract | 12 (4.6) | 54 (7.4) | 0.1 | 50 (5.8) | 19 (4.9) | 0.5 |
Emphysema | 0 | 3 (0.4) | 0.5 | 3 (0.5) | 0 | 0.5 |
CT scan, n (%) | ||||||
Abnormal | 685 (93.7) | 238 (91.5) | 0.2 | 619 (93.1) | 300 (93.2) | 0.9 |
ILD | 0 | 18 (2.5) | 0.006 | 6 (1.9) | 12 (1.8) | 0.9 |
Persistent infiltrates | 43 (16.5) | 118 (16.1) | 0.9 | 120 (18) | 40 (12.4) | 0.02 |
Fibrotic | 27 (10.4) | 88 (12) | 0.5 | 81 (12.2) | 34 (10.4) | 0.5 |
Emphysema | 4 (1.5) | 23 (3.1) | 0.2 | 20 (3) | 7 (2.2) | 0.5 |
PE, n (%) | 2 (0.8) | 11 (1.5) | 0.2 | 12 (1.4) | 1 (0.3) | 0.07 |
PFTs, n (%) | ||||||
FEV1 | 94.2 (18.2) | 87.5 (18.1) | <0.01 | 89.5 (19.2) | 88.1 (17.1) | 0.4 |
FEV1/FVC | 91.4 (16.3) | 97.2 (14.6) | <0.01 | 95.5 (14.8) | 96.5 (15.8) | 0.5 |
DLCO (mL/min/mm Hg) | 78.3 (17.4) | 67.1 (17.7) | <0.01 | 67.1 (18.2) | 74.2 (17.4) | <0.01 |
DLCO 80 | 205 (78.8) | 459 (62.8) | <0.01 | 441 (66.3) | 220 (68.3) | 0.5 |
Post-COVID | ||||
---|---|---|---|---|
Variable | Time-Point | No | Yes | p-Value |
PaO2/FiO2, mean (SD) | Intubation | 130.5 (73.4) | 131.6 (74.9) | 0.8 |
Day 3 | 192.0 (85.7) | 180.0 (75.0) | 0.1 | |
Change from intubation | 66.3 (100.8) | 49.0 (111.7) | 0.1 | |
PaCO2, mean (SD), mmHg | Intubation | 39.4 (9.5) | 40.4 (10.6) | 0.2 |
Day 3 | 43.0 (9.4) | 44.8 (9.8) | 0.03 | |
Change from intubation | 3.4 (11.5) | 3.4 (12.2) | 1.0 | |
VT admission, mean (SD), mL | Intubation | 7.1 (1.2) | 6.9 (3.0) | 0.5 |
Day 3 | 7.2 (1.2) | 7.1 (3.1) | 0.7 | |
Change from intubation | 0.2 (1.0) | 0.3 (1.6) | 0.6 | |
PEEP, mean (SD), cmH2O | Intubation | 12.5 (2.5) | 12.4 (2.5) | 0.7 |
Day 3 | 12.0 (2.7) | 12.1 (2.7) | 0.5 | |
Change from intubation | −0.6 (2.8) | -0.4 (2.9) | 0.6 | |
ΔP, mean (SD) | Intubation | 10.8 (4.6) | 11.8 (4.7) | 0.1 |
Day 3 | 10.7 (4.2) | 11.8 (4.8) | 0.2 | |
Change from intubation | −0.6 (3.0) | −0.1 (5.1) | 0.7 | |
Compliance, mean (SD) | Intubation | 66.3 (86.4) | 47.9 (35.9) | 0.02 |
Day 3 | 42.6 (79.0) | 46.0 (29.0) | 0.6 | |
Change from intubation | −26.1 (127.4) | 0.2 (43.0) | 0.1 | |
VR, mean (SD) | Intubation | 1.7 (0.5) | 1.7 (0.5) | 0.7 |
Day 3 | 1.8 (0.5) | 1.8 (0.5) | 0.8 | |
Change from intubation | 0.2 (0.5) | 0.2 (0.6) | 0.7 |
Post-COVID | |||
---|---|---|---|
No | Yes | p-Value | |
Value (SD) | Mean | ||
Haemoglobin, mean (SD), g/dL | 14.7 (11.3) | 13.9 (1.5) | 0.3 |
WCC, mean (SD), x 109/L | 7.3 (2.2) | 6.81 (2.3) | 0.06 |
Lymphocytes, mean (SD), × 109/L | 2.2 (0.9) | 2.3 (1.4) | 0.6 |
Neutrophiles, mean (SD), × 109/L | 4.4 (3.6) | 3.7 (1.9) | 0.09 |
Monocytes, mean (SD), × 109/L | 0.6 (0.5) | 0.5 (0.2) | 0.2 |
Haematocrit, mean (SD), × 109/L | 41.4 (5.2) | 42.1 (4.6) | 0.1 |
Platelets, mean (SD), × 109/L | 259.3 (73.5) | 247.4 (88.7) | 0.2 |
Prothrombin time, mean (SD), sec | 11.9 (6.8) | 11.8 (4.1) | 0.9 |
INR, mean (SD), IU | 1.3 (0.6) | 1.1 (0.3) | 0.5 |
D-dimer, mean (SD), ng/mL | 410.2 (445.1) | 433.2 (393.4) | 0.6 |
Fibrinogen, mean (SD), ng/mL | 271.2 (249.7) | 358.8 (192.5) | <0.01 |
CRP, mean (SD), mg/L | 6.3 (0.4) | 6.9 (0.6) | 0.7 |
AST, mean (SD), IU/L | 22.3 (13.4) | 23.1 (20.2) | 0.6 |
ALT, mean (SD), IU/L | 24.8 (22.4) | 24.1 (14.3) | 0.6 |
GGT, mean (SD), IU/L | 49.4 (5.6) | 35.4 (5.7) | 0.2 |
Urea, mean (SD), mg/dL | 5.9 (1.8) | 5.8 (1.2) | 0.9 |
Creatinine (mg/dL | 0.9 (0.8) | 0.8 (0.4) | 0.4 |
CK, mean (SD), IU/L | 78.2 (6.7) | 88.8 (9.9) | 0.4 |
LDH, mean (SD), IU/L | 250.4 (104.2) | 235.7 (90.1) | 0.1 |
Univariate (n = 991) | Multivariable (n = 620) | ||||
---|---|---|---|---|---|
Post-COVID | RR (95% CI) | p-Value | |||
No | Yes | p-value | |||
Age, mean (SD), years | 57.85 (12.9) | 58.74 (11.5) | 0.3 | ||
Female sex, n (%) | 66 (25.4) | 260 (35.6) | <0.01 | 1.69 (1.23–2.32) | <0.01 |
SOFA, mean (SD) | 4.6 (2.8) | 5.2 (3.1) | 0.01 | ||
SOFA > 4, n (%) | 65 (39.6) | 244 (51.6) | <0.01 | 1.23 (0.90–1.67) | 0.2 |
CHF, n (%) | 28 (10.8) | 64 (8.8) | 0.3 | ||
Hypertension, n (%) | 115 (44.2) | 326 (44.7) | 0.9 | ||
COPD, n (%) | 18 (6.9) | 63 (8.6) | 0.4 | ||
Asthma, n (%) | 21 (8.1) | 44 (6) | 0.2 | ||
CKD, n (%) | 10 (3.8) | 43 (5.9) | 0.2 | ||
Cirrhosis, n (%) | 0 | 13 (1.8) | 0.02 | -* | - |
Mild liver failure, n (%) | 5 (1.9) | 14 (1.9) | 0.9 | ||
Neurological, n (%) | 9 (3.5) | 39 (5.3) | 0.3 | ||
Dementia, n (%) | 1 (0.4) | 2 (0.3) | 0.7 | ||
Autoimmune, n (%) | 11 (4.2) | 45 (6.2) | 0.2 | ||
Gastrointestinal, n (%) | 15 (5.8) | 65 (8.9) | 0.1 | ||
Endocrine, n (%) | 17 (6.5) | 58 (7.9) | 0.4 | ||
Obesity (BMI >30 kg/m2), n (%) | 98 (37.7) | 293 (40.1) | 0.5 | ||
Diabetes Mellitus, n (%) | 46 (17.7) | 140 (19.2) | 0.6 | ||
Haematological disease, n (%) | 13 (5) | 39 (5.3) | 0.8 | ||
Solid cancer, n (%) | 8 (3.1) | 21 (2.9) | 0.8 | ||
Transplant, n (%) | 2 (0.8) | 9 (1.2) | 0.7 | ||
HIV, n (%) | 0 | 4 (0.5) | 0.5 | ||
Oxygen requirement, n (%) | 248 (99.2) | 723 (99.7) | 0.2 | ||
NIV, n (%) | 68 (26.5) | 280 (38.9) | <0.01 | 1.01 (0.76–1.34) | 0.9 |
iMV, n (%) | 155 (59.6) | 510 (70.2) | <0.01 | 0.93 (0.68–1.27) | 0.6 |
Prone, n (%) | 136 (52.3) | 431 (59.4) | 0.04 | ||
Tracheostomy, n (%) | 52 (20) | 260 (35.8) | <0.01 | ||
ICU length of stay, mean (SD), days | 14.3 (12.2) | 22.2 (18.2) | <0.01 | ||
ICU length of stay >14 days, n (%) | 91 (35) | 382 (52.3) | <0.01 | 1.54 (1.11–2.14) | <0.01 |
ECMO, n (%) | 52 (2 (0.8) | 16 (2.2) | 0.1 | ||
CRRT, n (%) | 7 (2.7) | 47 (6.5) | 0.02 | ||
Shock, n (%) | 132 (51.6) | 46 (64.3) | <0.01 | ||
NMB, n (%) | 124 (48.2) | 430 (59.6) | <0.01 | ||
Corticosteroids, n (%) | 207 (80.5) | 543 (75.3) | 0.1 | 0.75 (0.54–1.05) | 0.1 |
CPR, n (%) | 2 (0.8) | 5 (0.7) | 0.9 | ||
ICUAP, n (%) | 41 (15.9) | 219 (30.2) | <0.01 | 1.88 (1.22–2.90) | <0.01 |
ARDS, n (%) | 175 (68.4) | 564 (77.6) | <0.01 | 1.41 (1.08–1.83) | 0.01 |
NTX, n (%) | 9 (3.5) | 36 (5.0) | 0.4 | ||
COP, n (%) | 11 (4.3) | 35 (4.9) | 0.9 | ||
PE, n (%) | 33 (13) | 64 (9) | 0.08 | ||
Delirium, n (%) | 52 (20.1) | 182 (25.1) | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin-Loeches, I.; Motos, A.; Menéndez, R.; Gabarrús, A.; González, J.; Fernández-Barat, L.; Ceccato, A.; Pérez-Arnal, R.; García-Gasulla, D.; Ferrer, R.; et al. ICU-Acquired Pneumonia Is Associated with Poor Health Post-COVID-19 Syndrome. J. Clin. Med. 2022, 11, 224. https://doi.org/10.3390/jcm11010224
Martin-Loeches I, Motos A, Menéndez R, Gabarrús A, González J, Fernández-Barat L, Ceccato A, Pérez-Arnal R, García-Gasulla D, Ferrer R, et al. ICU-Acquired Pneumonia Is Associated with Poor Health Post-COVID-19 Syndrome. Journal of Clinical Medicine. 2022; 11(1):224. https://doi.org/10.3390/jcm11010224
Chicago/Turabian StyleMartin-Loeches, Ignacio, Anna Motos, Rosario Menéndez, Albert Gabarrús, Jessica González, Laia Fernández-Barat, Adrián Ceccato, Raquel Pérez-Arnal, Dario García-Gasulla, Ricard Ferrer, and et al. 2022. "ICU-Acquired Pneumonia Is Associated with Poor Health Post-COVID-19 Syndrome" Journal of Clinical Medicine 11, no. 1: 224. https://doi.org/10.3390/jcm11010224
APA StyleMartin-Loeches, I., Motos, A., Menéndez, R., Gabarrús, A., González, J., Fernández-Barat, L., Ceccato, A., Pérez-Arnal, R., García-Gasulla, D., Ferrer, R., Riera, J., Lorente, J. Á., Peñuelas, Ó., Bermejo-Martin, J. F., de Gonzalo-Calvo, D., Rodríguez, A., Barbé, F., Aguilera, L., Amaya-Villar, R., ... Torres, A., on behalf of CIBERESUCICOVID Project (COV20/00110 and ISCIII). (2022). ICU-Acquired Pneumonia Is Associated with Poor Health Post-COVID-19 Syndrome. Journal of Clinical Medicine, 11(1), 224. https://doi.org/10.3390/jcm11010224