8-Isoprostanes and Asymmetric Dimethylarginine as Predictors of Mortality in Patients Following Coronary Bypass Surgery: A Long-Term Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Laboratory Investigations
2.3. Follow-Up
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. 8-iso-Prostaglandin F2α
3.3. Asymmetric Dimethylarginine
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, M.A.; Mendoza-Núñez, V.M. Oxidative Stress Indexes for Diagnosis of Health or Disease in Humans. Oxidative Med. Cell. Longev. 2019, 2019, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Niki, E. Oxidant-specific biomarkers of oxidative stress. Association with atherosclerosis and implication for antioxidant effects. Free Radic. Biol. Med. 2018, 120, 425–440. [Google Scholar] [CrossRef]
- Pignatelli, P.; Menichelli, D.; Pastori, D.; Violi, F. Oxidative stress and cardiovascular disease: New insights. Kardiol. Pol. 2018, 76, 713–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastori, D.; Carnevale, R.; Pignatelli, P. Is there a clinical role for oxidative stress biomarkers in atherosclerotic diseases? Intern. Emerg. Med. 2014, 9, 123–131. [Google Scholar] [CrossRef]
- Milne, G.L.; Yin, H.; Hardy, K.D.; Davies, S.S.; Roberts, L.J., 2nd. Isoprostane generation and function. Chem. Rev. 2011, 111, 5973–5996. [Google Scholar] [CrossRef] [Green Version]
- Böger, R.H.; Maas, R.; Schulze, F.; Schwedhelm, E. Asymmetric dimethylarginine (ADMA) as a prospective marker of cardiovascular disease and mortality--an update on patient populations with a wide range of cardiovascular risk. Pharmacol. Res. 2009, 60, 481–487. [Google Scholar] [CrossRef]
- Plicner, D.; Mazur, P.; Sadowski, J.; Undas, A. Asymmetric dimethylarginine and oxidative stress following coronary artery bypass grafting: Associations with postoperative outcome. Eur. J. Cardio-Thorac. Surg. 2014, 45, e136–e141. [Google Scholar] [CrossRef] [Green Version]
- LeLeiko, R.M.; Vaccari, C.S.; Sola, S.; Merchant, N.; Nagamia, S.H.; Thoenes, M.; Khan, B.V. Usefulness of elevations in serum choline and free F2)-isoprostane to predict 30-day cardiovascular outcomes in patients with acute coronary syndrome. Am. J. Cardiol. 2009, 104, 638–643. [Google Scholar] [CrossRef]
- Heslop, C.L.; Frohlich, J.J.; Hill, J.S. Myeloperoxidase and C-Reactive Protein Have Combined Utility for Long-Term Prediction of Cardiovascular Mortality After Coronary Angiography. J. Am. Coll. Cardiol. 2010, 55, 1102–1109. [Google Scholar] [CrossRef] [Green Version]
- Eagle, K.A.; Guyton, R.A.; Davidoff, R.; Edwards, F.H.; Ewy, G.A.; Gardner, T.J.; Hart, J.C.; Herrmann, H.C.; Hillis, L.D.; Hutter, A.M.; et al. ACC/AHA 2004 guideline update for coronary artery bypass graft surgery: Summary article: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1999 Guidelines for Coronary Artery Bypass Graft Surgery). J. Am. Coll. Cardiol. 2004, 110, 1168–1176. [Google Scholar]
- Teerlink, T.; Nijveldt, R.J.; de Jong, S.; van Leeuwen, P.A. Determination of arginine, asymmetric dimethylarginine, and symmetric dimethylarginine in human plasma and other biological samples by high-performance liquid chromatography. Anal. Biochem. 2002, 303, 131–137. [Google Scholar] [CrossRef]
- Dayan, V.; Perez, D.; Silva, E.; Soca, G.; Estigarribia, J. CABG and Preoperative use of Beta-Blockers in Patients with Stable Angina are Associated with Better Cardiovascular Survival. Braz. J. Cardiovasc. Surg. 2018, 33, 47–53. [Google Scholar] [CrossRef]
- Adelborg, K.; Horváth-Puhó, E.; Schmidt, M.; Munch, T.; Pedersen, L.; Nielsen, P.H.; Bøtker, H.E.; Sørensen, H.T. Thirty-Year Mortality After Coronary Artery Bypass Graft Surgery: A Danish Nationwide Population-Based Cohort Study. Circ. Cardiovasc. Qual. Outcomes 2017, 10, e002708. [Google Scholar] [CrossRef]
- Davies, S.S.; Roberts, L.J., 2nd. F2-isoprostanes as an indicator and risk factor for coronary heart disease. Free. Radic. Biol. Med. 2011, 50, 559–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Pan, J.; Wang, L.; Zhu, H.; Yu, R.; Zou, Y. Associations of plasma 8-isoprostane levels with the presence and extent of coronary stenosis in patients with coronary artery disease. Atherosclerosis 2006, 184, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Nishibe, A.; Kijima, Y.; Fukunaga, M.; Nishiwaki, N.; Sakai, T.; Nakagawa, Y.; Hata, T. Increased isoprostane content in coronary plaques obtained from vulnerable patients. Prostaglandins Leukot. Essent. Fat. Acids 2008, 78, 257–263. [Google Scholar] [CrossRef]
- Rossi, G.P.; Cesari, M.; Zanchetta, M.; Colonna, S.; Maiolino, G.; Pedon, L.; Cavallin, M.; Maiolino, P.; Pessina, A.C. The T-786C endothelial nitric oxide synthase genotype is a novel risk factor for coronary artery disease in Caucasian patients of the GENICA study. J. Am. Coll. Cardiol. 2003, 41, 930–937. [Google Scholar] [CrossRef] [Green Version]
- Willeit, P.; Freitag, D.F.; Laukkanen, J.A.; Chowdhury, S.; Gobin, R.; Mayr, M.; Di Angelantonio, E.; Chowdhury, R. Asymmetric Dimethylarginine and Cardiovascular Risk: Systematic Review and Meta-Analysis of 22 Prospective Studies. J. Am. Hearth Assoc. 2015, 4, e001833. [Google Scholar] [CrossRef] [Green Version]
- Schlesinger, S.; Sonntag, S.R.; Lieb, W.; Maas, R. Asymmetric and Symmetric Dimethylarginine as Risk Markers for Total Mortality and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Studies. PLoS ONE 2016, 11, e0165811. [Google Scholar] [CrossRef] [PubMed]
- Serban, C.; Sahebkar, A.; Ursoniu, S.; Mikhailidis, D.P.; Rizzo, M.; Lip, G.Y.; Hovingh, G.K.; Kastelein, J.J.; Kalinowski, L.; Rysz, J.; et al. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci. Rep. 2015, 5, 9902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruger, P.C.; Guzik, T.J.; Eikelboom, J.W. How can the results of the COMPASS trial benefit patients with coronary or peripheral artery disease in Poland? Kardiol. Pol. 2019, 77, 661–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desperak, P.; Hudzik, B.; Gąsior, M. Assessment of patients with coronary artery disease who may benefit from the use of rivaroxaban in the real world: Implementation of the COMPASS trial criteria in the TERCET registry population. Pol. Arch. Intern. Med. 2019, 129, 460–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable at Time of CABG | All Patients (n = 152) | All Deaths | Cardiovascular Death | ||||
---|---|---|---|---|---|---|---|
No (n = 84) | Yes (n = 68) | p-Value | No (n = 120) | Yes (n = 32) | p-Value | ||
Age (years) | 65.2 ± 8.3 | 63.0 ± 8.1 | 67.9 ± 7.9 | <0.001 | 64.4 ± 7.8 | 67.9 ± 9.6 | 0.037 |
Male, n (%) | 118 (77.6) | 65 (77.4) | 53 (77.9) | 0.688 | 94 (78.3) | 24 (75.0) | 0.687 |
BMI (kg/m2) | 28.0 ± 3.8 | 28.6 ± 3.7 | 27.3 ± 3.9 | 0.049 | 28.2 ± 3.9 | 27.2 ± 3.7 | 0.189 |
Peripheral vascular disease, n (%) | 24 (15.8) | 11 (13.1) | 13 (19.1) | 0.311 | 18 (15.0) | 6 (18.7) | 0.605 |
Type 2 diabetes, n (%) | 43 (28.3) | 18 (21.4) | 25 (36.8) | 0.037 | 31 (25.8) | 12 (37.5) | 0.193 |
Insulin, n (%) | 22 (14.5) | 10 (11.9) | 12 (17.6) | 0.317 | 17 (14.2) | 5 (15.6) | 0.783 |
Hypertension, n (%) | 123 (80.9) | 69 (82.1) | 54 (79.4) | 0.670 | 100 (83.3) | 23 (71.9) | 0.143 |
Preoperative MI, n (%) | 123 (80.9) | 67 (79.8) | 56 (82.3) | 0.686 | 97 (80.8) | 26 (81.2) | 0.957 |
Postoperative MI, n (%) | 13 (8.5) | 6 (7.1) | 7 (10.3) | 0.410 | 10 (8.3) | 3 (9.4) | 1.000 |
Dyslipidemia, n (%) | 98 (64.5) | 58 (69.0) | 40 (58.8) | 0.190 | 81 (67.5) | 17 (53.1) | 0.131 |
Previous PCI, n (%) | 18 (11.8) | 11 (13.1) | 7 (10.3) | 0.595 | 15 (12.5) | 3 (9.4) | 0.766 |
COPD, n (%) | 7 (4.61) | 4 (4.8) | 3 (4.4) | 1.000 | 5 (4.2) | 2 (6.2) | 0.638 |
ACE inhibitors, n (%) | 133 (87.5) | 74 (88.1) | 59 (86.8) | 0.805 | 105 (87.5) | 28 (87.5) | 1.000 |
Beta blockers, n (%) | 135 (88.8) | 79 (94.0) | 56 (82.3) | 0.023 | 107 (89.2) | 28 (87.5) | 0.758 |
Statins, n (%) | 135 (88.8) | 77 (91.7) | 58 (85.3) | 0.215 | 110 (91.7) | 25 (78.1) | 0.047 |
EuroSCORE I (points) | 2.9 ± 1.8 | 2.5 ± 1.7 | 3.5 ± 1.8 | <0.001 | 2.7 ± 1.8 | 3.8 ± 1.9 | 0.002 |
ICU length of stay ≥2 days, n (%) | 58 (38.2) | 26 (30.9) | 32 (47.1) | 0.042 | 40 (33.3) | 18 (56.2) | 0.018 |
Cause of Death (ICD-10 Codes) | Number of Patients (%) |
---|---|
Cardiovascular diseases | 32 (47.06) |
Heart diseases (I10–I52) | 22 (32.35) |
Cerebrovascular diseases (I60–I69) | 4 (5.88) |
Other diseases of the circulatory system (I70–I99) | 6 (8.82) |
Malignant neoplasms (C00–C97) | 16 (23.53) |
Respiratory diseases (J00–J99) | 11 (16.18) |
Accidents (V01–X59) | 2 (2.94) |
Diabetes mellitus (E10–E14) | 1 (1.47) |
Other diagnosis | 6 (8.82) |
Age-related physical debility (R54) | 1 (1.47) |
Ill-defined and unknown cause of mortality (R99) | 1 (1.47) |
Parkinson’s disease (G20) | 1 (1.47) |
Other bacterial diseases, not elsewhere classified (A48) | 1 (1.47) |
Chronic kidney disease (N18) | 1 (1.47) |
Neoplasm of uncertain behavior of brain and central nervous system (D43) | 1 (1.47) |
Variable at Time of CABG | All Deaths | Cardiovascular Death | ||
---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
BMI | 0.936 (0.874–1.000) | 0.049 | 0.926 (0.837–1.020) | 0.123 |
Peripheral vascular disease | 1.280 (0.692–2.365) | 0.442 | 1.301 (0.528–3.205) | 0.577 |
Type 2 diabetes | 1.643 (1.002–2.696) | 0.048 | 1.645 (0.802–3.376) | 0.185 |
Insulin use | 1.404 (0.753–2.620) | 0.286 | 1.187 (0.457–3.084) | 0.724 |
Hypertension | 0.972 (0.532–1.775) | 0.926 | 0.606 (0.273–1.347) | 0.235 |
Preoperative MI | 0.918 (0.491–1.718) | 0.791 | 0.826 (0.338–2.017) | 0.680 |
Postoperative MI | 1.685 (0.756–3.755) | 0.230 | 1.444 (0.429–4.859) | 0.570 |
Dyslipidemia | 0.962 (0.583–1.587) | 0.879 | 0.755 (0.368–1.550) | 0.445 |
Previous PCI | 0.765 (0.350–1.673) | 0.502 | 0.684 (0.208–2.245) | 0.531 |
COPD | 0.984 (0.309–3.131) | 0.978 | 1.451 (0.347–6.077) | 0.610 |
ACE inhibitors | 0.919 (0.456–1.853) | 0.813 | 0.970 (0.340–2.766) | 0.955 |
Beta blockers | 0.493 (0.264–0.920) | 0.026 | 0.711 (0.249–2.028) | 0.523 |
Statins | 0.649 (0.331–1.270) | 0.207 | 0.397 (0.171–0.919) | 0.031 |
EuroSCORE I | 1.183 (1.003–1.383) | 0.046 | 1.368 (1.086–1.703) | 0.008 |
ICU length of stay ≥ 2 days | 1.704 (1.058–2.744) | 0.028 | 2.477 (1.232–4.983) | 0.011 |
Variable at Time of CABG | All Patients (n = 152) | All Deaths | Cardiovascular Death | ||||
---|---|---|---|---|---|---|---|
No (n = 84) | Yes (n = 68) | p-Value | No (n = 120) | Yes (n = 32) | p-Value | ||
8-iso-PGF2α | |||||||
baseline (pg/mL) | 357 ± 38.4 | 353 ± 36.2 | 362 ± 40.5 | 0.132 | 354 ± 38.7 | 367 ± 35.7 | 0.045 |
baseline, n (%) (ROC optimal cut off >364 pg/mL for cardiovascular death) | 81 (53.3) | 49 (58.3) | 32 (47.0) | 0.166 | 69 (57.5) | 12 (37.5) | 0.044 |
18–36 h after CABG (pg/mL) | 465 ± 40.1 | 459 ± 35.7 | 473 ± 43.7 | 0.032 | 465 ± 40.4 | 464 ± 39.7 | 0.892 |
difference between baseline and 18–36 h after CABG, n (%) (ROC optimal cut off >135 pg/mL for cardiovascular death) | 89 (58.5) | 48 (57.1) | 41 (60.3) | 0.681 | 66 (55.0) | 23 (71.9) | 0.042 |
5–7 days after CABG (pg/mL) | 414 ± 43.4 | 410 ± 32.9 | 417 ± 51.4 | 0.935 | 413 ± 40.5 | 416 ± 53.8 | 0.803 |
ADMA | |||||||
baseline (μmol/L) | 0.56 ± 0.06 | 0.56 ± 0.05 | 0.56 ± 0.07 | 0.433 | 0.56 ± 0.06 | 0.57 ± 0.06 | 0.164 |
18–36 h after CABG (μmol/L) | 0.93 ± 0.10 | 0.93 ± 0.08 | 0.94 ± 0.12 | 0.780 | 0.94 ± 0.09 | 0.92 ± 0.11 | 0.111 |
18–36 h after CABG, n (%) (ROC optimal cut off >1.01 μmol/L for cardiovascular death) | 52 (34.2) | 26 (30.1) | 26 (38.2) | 0.334 | 36 (30.0) | 16 (50.0) | 0.029 |
difference between baseline and 18–36 h after CABG, n (%) (ROC optimal cut off >0.44 μmol/L for cardiovascular death) | 44 (28.9) | 23 (27.4) | 21 (30.9) | 0.639 | 30 (25.0) | 14 (43.7) | 0.034 |
5–7 days after CABG (μmol/L) | 0.74 ± 0.11 | 0.73 ± 0.09 | 0.75 ± 0.12 | 0.898 | 0.74 ± 0.10 | 0.74 ± 0.13 | 0.829 |
Variable at Time of CABG | All Deaths | Cardiovascular Death | ||
---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
8-iso-PGF2α | ||||
Baseline | 1.006 (1.000–1.013) | 0.058 | 1.010 (1.001–1.021) | 0.036 |
Baseline (ROC optimal cut off ≤364 pg/mL for lower risk of cardiovascular death) | 0.665 (0.412–1.072) | 0.093 | 0.460 (0.224–0.942) | 0.030 |
18–36 h after CABG | 1.007 (1.000–1.014) | 0.048 | 1.000 (0.990–1.010) | 0.973 |
difference between baseline and 18–36 h after CABG (ROC optimal cut off >135 pg/mL for cardiovascular death) | 1.222 (0.685–2.182) | 0.491 | 2.701 (0.932–7.829) | 0.041 |
5–7 days after CABG | 1.002 (0.994–1.010) | 0.604 | 1.000 (0.988–1.012) | 0.947 |
ADMA | ||||
baseline | 13.589 (0.131–1505.058) | 0.272 | 350.694 (0.358–377,546.745) | 0.095 |
18–36 h after CABG | 4.544 (0.199–98.162) | 0.340 | 0.147 (0.001–14.194) | 0.415 |
18–36 h after CABG (ROC optimal cut off >1.01 μmol/L for cardiovascular death) | 1.417 (0.839–2.394) | 0.195 | 2.467 (1.140–5.340) | 0.020 |
difference between baseline and 18–36 h after CABG (ROC optimal cut off >0.44 μmol/L for cardiovascular death) | 1.186 (0.685–2.053) | 0.545 | 2.192 (1.017–4.728) | 0.047 |
5–7 days after CABG | 6.681 (0.223–197.455) | 0.274 | 2.079 (0.011–375.091) | 0.785 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gołąb, A.; Plicner, D.; Rzucidło-Hymczak, A.; Tomkiewicz-Pająk, L.; Gawęda, B.; Kapelak, B.; Undas, A. 8-Isoprostanes and Asymmetric Dimethylarginine as Predictors of Mortality in Patients Following Coronary Bypass Surgery: A Long-Term Follow-Up Study. J. Clin. Med. 2022, 11, 246. https://doi.org/10.3390/jcm11010246
Gołąb A, Plicner D, Rzucidło-Hymczak A, Tomkiewicz-Pająk L, Gawęda B, Kapelak B, Undas A. 8-Isoprostanes and Asymmetric Dimethylarginine as Predictors of Mortality in Patients Following Coronary Bypass Surgery: A Long-Term Follow-Up Study. Journal of Clinical Medicine. 2022; 11(1):246. https://doi.org/10.3390/jcm11010246
Chicago/Turabian StyleGołąb, Aleksandra, Dariusz Plicner, Anna Rzucidło-Hymczak, Lidia Tomkiewicz-Pająk, Bogusław Gawęda, Bogusław Kapelak, and Anetta Undas. 2022. "8-Isoprostanes and Asymmetric Dimethylarginine as Predictors of Mortality in Patients Following Coronary Bypass Surgery: A Long-Term Follow-Up Study" Journal of Clinical Medicine 11, no. 1: 246. https://doi.org/10.3390/jcm11010246
APA StyleGołąb, A., Plicner, D., Rzucidło-Hymczak, A., Tomkiewicz-Pająk, L., Gawęda, B., Kapelak, B., & Undas, A. (2022). 8-Isoprostanes and Asymmetric Dimethylarginine as Predictors of Mortality in Patients Following Coronary Bypass Surgery: A Long-Term Follow-Up Study. Journal of Clinical Medicine, 11(1), 246. https://doi.org/10.3390/jcm11010246