Soluble ST2 and All-Cause Mortality in Patients with Chronic Obstructive Pulmonary Disease—A 10-Year Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Subject Characteristics and Study Endpoints
2.3. IL-33 and sST2 Measurement
2.4. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. IL-33, sST2 and Determinants of COPD
3.3. sST2 Predicts Mortality in COPD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, J.; Ward, E.M.; Siegel, R.L.; Jemal, A. Temporal Trends in Mortality in the United States, 1969–2013. JAMA 2015, 314, 1731–1739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lortet-Tieulent, J.; Soerjomataram, I.; Lopez-Campos, J.L.; Ancochea, J.; Coebergh, J.W.; Soriano, J.B. International trends in chronic obstructive pulmonary disease mortality, 1995–2017. Eur. Respir. J. 2019, 54, 1901791. [Google Scholar] [CrossRef] [PubMed]
- Celli, B.R. Predictors of mortality in COPD. Respir. Med. 2010, 104, 773–779. [Google Scholar] [CrossRef] [Green Version]
- Suissa, S.; Dell’Aniello, S.; Ernst, P. Long-term natural history of chronic obstructive pulmonary disease: Severe exacerbations and mortality. Thorax 2012, 67, 957–963. [Google Scholar] [CrossRef] [Green Version]
- Soler-Cataluna, J.J.; Martinez-Garcia, M.A.; Roman Sanchez, P.; Salcedo, E.; Navarro, M.; Ochando, R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax 2005, 60, 925–931. [Google Scholar] [CrossRef] [Green Version]
- Zielinski, J. Circumstances of death in chronic obstructive pulmonary disease. Monaldi Arch. Chest Dis. 1998, 53, 324–330. [Google Scholar] [PubMed]
- Rello, J.; Rodriguez, A.; Torres, A.; Roig, J.; Sole-Violan, J.; Garnacho-Montero, J.; de la Torre, M.V.; Sirvent, J.M.; Bodi, M. Implications of COPD in patients admitted to the intensive care unit by community-acquired pneumonia. Eur. Respir. J. 2006, 27, 1210–1216. [Google Scholar] [CrossRef] [Green Version]
- Restrepo, M.I.; Mortensen, E.M.; Pugh, J.A.; Anzueto, A. COPD is associated with increased mortality in patients with community-acquired pneumonia. Eur. Respir. J. 2006, 28, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Divo, M.; Cote, C.; de Torres, J.P.; Casanova, C.; Marin, J.M.; Pinto-Plata, V.; Zulueta, J.; Cabrera, C.; Zagaceta, J.; Hunninghake, G.; et al. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2012, 186, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Hansell, A.L.; Walk, J.A.; Soriano, J.B. What do chronic obstructive pulmonary disease patients die from? A multiple cause coding analysis. Eur. Respir. J. 2003, 22, 809–814. [Google Scholar] [CrossRef] [Green Version]
- Molofsky, A.B.; Savage, A.K.; Locksley, R.M. Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity 2015, 42, 1005–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demyanets, S.; Kaun, C.; Pentz, R.; Krychtiuk, K.A.; Rauscher, S.; Pfaffenberger, S.; Zuckermann, A.; Aliabadi, A.; Groger, M.; Maurer, G.; et al. Components of the interleukin-33/ST2 system are differentially expressed and regulated in human cardiac cells and in cells of the cardiac vasculature. J. Mol. Cell. Cardiol. 2013, 60, 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Mas, J.; Lax, A.; Asensio-Lopez Mdel, C.; Fernandez-Del Palacio, M.J.; Caballero, L.; Santarelli, G.; Januzzi, J.L.; Pascual-Figal, D.A. Modulation of IL-33/ST2 system in postinfarction heart failure: Correlation with cardiac remodelling markers. Eur. J. Clin. Investig. 2014, 44, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Stojkovic, S.; Kaider, A.; Koller, L.; Brekalo, M.; Wojta, J.; Diedrich, A.; Demyanets, S.; Pezawas, T. GDF-15 is a better complimentary marker for risk stratification of arrhythmic death in non-ischaemic, dilated cardiomyopathy than soluble ST2. J. Cell Mol. Med. 2018, 22, 2422–2429. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, E.O.; Shimpo, M.; Hurwitz, S.; Tominaga, S.; Rouleau, J.L.; Lee, R.T. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation 2003, 107, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.U.; Mueller, T.; Januzzi, J.L., Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute heart failure. J. Am. Coll. Cardiol. 2008, 52, 1458–1465. [Google Scholar] [CrossRef] [PubMed]
- Shimpo, M.; Morrow, D.A.; Weinberg, E.O.; Sabatine, M.S.; Murphy, S.A.; Antman, E.M.; Lee, R.T. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation 2004, 109, 2186–2190. [Google Scholar] [CrossRef] [Green Version]
- Sabatine, M.S.; Morrow, D.A.; Higgins, L.J.; MacGillivray, C.; Guo, W.; Bode, C.; Rifai, N.; Cannon, C.P.; Gerszten, R.E.; Lee, R.T. Complementary roles for biomarkers of biomechanical strain ST2 and N-terminal prohormone B-type natriuretic peptide in patients with ST-elevation myocardial infarction. Circulation 2008, 117, 1936–1944. [Google Scholar] [CrossRef] [Green Version]
- Tuegel, C.; Katz, R.; Alam, M.; Bhat, Z.; Bellovich, K.; de Boer, I.; Brosius, F.; Gadegbeku, C.; Gipson, D.; Hawkins, J.; et al. GDF-15, Galectin 3, Soluble ST2, and Risk of Mortality and Cardiovascular Events in CKD. Am. J. Kidney Dis. 2018, 72, 519–528. [Google Scholar] [CrossRef]
- Homsak, E.; Ekart, R. ST2 as a novel prognostic marker in end-stage renal disease patients on hemodiafiltration. Clin. Chim. Acta 2018, 477, 105–112. [Google Scholar] [CrossRef]
- Jiang, S.W.; Wang, P.; Xiang, X.G.; Mo, R.D.; Lin, L.Y.; Bao, S.S.; Lu, J.; Xie, Q. Serum soluble ST2 is a promising prognostic biomarker in HBV-related acute-on-chronic liver failure. Hepatobiliary Pancreat Dis. Int. 2017, 16, 181–188. [Google Scholar] [CrossRef]
- Lei, Z.; Mo, Z.; Zhu, J.; Pang, X.; Zheng, X.; Wu, Z.; Wang, K.; Li, X.; Xie, D.; Gao, Z. Soluble ST2 plasma concentrations predict mortality in HBV-related acute-on-chronic liver failure. Mediat. Inflamm. 2015, 2015, 535938. [Google Scholar] [CrossRef]
- Dieplinger, B.; Egger, M.; Leitner, I.; Firlinger, F.; Poelz, W.; Lenz, K.; Haltmayer, M.; Mueller, T. Interleukin 6, galectin 3, growth differentiation factor 15, and soluble ST2 for mortality prediction in critically ill patients. J. Crit. Care 2016, 34, 38–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonsdottir, B.; Ziebell Severinsen, M.; von Wowern, F.; San Miguel, C.; Goetze, J.P.; Melander, O. ST2 Predicts Mortality in Patients with Acute Hypercapnic Respiratory Failure Treated with Noninvasive Positive Pressure Ventilation. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 2385–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krychtiuk, K.A.; Stojkovic, S.; Lenz, M.; Brekalo, M.; Huber, K.; Wojta, J.; Heinz, G.; Demyanets, S.; Speidl, W.S. Predictive value of low interleukin-33 in critically ill patients. Cytokine 2018, 103, 109–113. [Google Scholar] [CrossRef]
- Tang, Y.; Guan, Y.; Liu, Y.; Sun, J.; Xu, L.; Jiang, Y. The role of the serum IL-33/sST2 axis and inflammatory cytokines in chronic obstructive pulmonary disease. J. Interferon Cytokine Res. 2014, 34, 162–168. [Google Scholar] [CrossRef]
- Byers, D.E.; Alexander-Brett, J.; Patel, A.C.; Agapov, E.; Dang-Vu, G.; Jin, X.; Wu, K.; You, Y.; Alevy, Y.; Girard, J.P.; et al. Long-term IL-33-producing epithelial progenitor cells in chronic obstructive lung disease. J. Clin. Investig. 2013, 123, 3967–3982. [Google Scholar] [CrossRef]
- Qiu, C.; Li, Y.; Li, M.; Li, M.; Liu, X.; McSharry, C.; Xu, D. Anti-interleukin-33 inhibits cigarette smoke-induced lung inflammation in mice. Immunology 2013, 138, 76–82. [Google Scholar] [CrossRef]
- Kearley, J.; Silver, J.S.; Sanden, C.; Liu, Z.; Berlin, A.A.; White, N.; Mori, M.; Pham, T.H.; Ward, C.K.; Criner, G.J.; et al. Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity 2015, 42, 566–579. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Yang, S.; Wu, X.; Zhao, J.; Zhao, J.; Ning, Q.; Xu, Y.; Xie, J. Interleukin-33/ST2 signaling promotes production of interleukin-6 and interleukin-8 in systemic inflammation in cigarette smoke-induced chronic obstructive pulmonary disease mice. Biochem. Biophys. Res. Commun. 2014, 450, 110–116. [Google Scholar] [CrossRef]
- Xia, J.; Zhao, J.; Shang, J.; Li, M.; Zeng, Z.; Zhao, J.; Wang, J.; Xu, Y.; Xie, J. Increased IL-33 expression in chronic obstructive pulmonary disease. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2015, 308, L619–L627. [Google Scholar] [CrossRef] [PubMed]
- Wedzicha, J.A.; Seemungal, T.A. COPD exacerbations: Defining their cause and prevention. Lancet 2007, 370, 786–796. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demyanets, S.; Tentzeris, I.; Jarai, R.; Katsaros, K.M.; Farhan, S.; Wonnerth, A.; Weiss, T.W.; Wojta, J.; Speidl, W.S.; Huber, K. An increase of interleukin-33 serum levels after coronary stent implantation is associated with coronary in-stent restenosis. Cytokine 2014, 67, 65–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budczies, J.; Klauschen, F.; Sinn, B.V.; Gyorffy, B.; Schmitt, W.D.; Darb-Esfahani, S.; Denkert, C. Cutoff Finder: A comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS ONE 2012, 7, e51862. [Google Scholar]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Ann. Intern. Med. 2007, 147, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.W.; Rhee, C.K.; Kim, K.U.; Lee, S.H.; Hwang, H.G.; Kim, Y.I.; Kim, D.K.; Lee, S.D.; Oh, Y.M.; Yoon, H.K. Factors associated with plasma IL-33 levels in patients with chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Calverley, P.M.; Anderson, J.A.; Celli, B.; Ferguson, G.T.; Jenkins, C.; Jones, P.W.; Yates, J.C.; Vestbo, J.; TORCH investigators. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N. Engl. J. Med. 2007, 356, 775–789. [Google Scholar] [CrossRef] [Green Version]
Baseline Characteristics | Non-Smoker (n = 20) | Smoker (n = 20) | Stable COPD (n = 59) | AE COPD (n = 29) | p-Value * |
---|---|---|---|---|---|
Demographics | |||||
Age, years | 67 (56–74) | 59 (54–65) | 59 (61–69) | 64 (59–70) | 0.375 |
Male sex, n (%) | 8 (40) | 6 (30) | 31 (53) | 21 (72) | 0.125 |
BMI, kg/m2 | 25 (23–28) | 26 (24–29) | 25 (22–27) | 25 (21–28) | 0.442 |
Active smoking | 0 (0) | 20 (100) | 24 (41) | 10 (35) | <0.001 |
Pack-years | 0 (0–0) | 30 (20–58) | 54 (40–80) | 53 (43–87) | <0.001 |
Functional parameters | |||||
FEV1, %predicted | 101 (85–110) | 97 (90–105) | 38 (26–56) | 34 (29–42) | <0.001 |
TLC, L | 5.5 (4.9–6.1) | 5.5 (4.8–6.8) | 6.8 (5.9–7.8) | 7.0 (6.0–8.5) | <0.001 |
RV/TLC ratio | 39 (36–46) | 35 (32–40) | 60 (53–66) | 60 (51–69) | <0.001 |
AaDO2, mmHg | 22 (11–25) | 22 (12–24) | 33 (28–38) | 33 (21–40) | <0.001 |
6MWT, meters | 561 (462–660) | 594 (495–594) | 363 (289–528) | 330 (238–462) | <0.001 |
Hemodynamic parameters | |||||
Systolic BP, mmHg | 130 (120–130) | 115 (110–130) | 123 (115–140) | 135 (120–140) | 0.065 |
Diastolic BP, mmHg | 75 (70–80) | 73 (70–80) | 80 (70–80) | 80 (70–80) | 0.396 |
Heart rate, bpm | 71 (65–86) | 60 (62–81) | 85 (77–96) | 87 (77–101) | 0.001 |
Laboratory | |||||
CRP, mg/L | 2.0 (1.0–4.0) | 2.0 (1.0–4.0) | 3.0 (2.0–8.0) | 7.0 (2.0–28.0) | 0.001 |
NT-proBNP, ng/L | 76 (36–177) | 75 (45–166) | 77 (47–155) | 0.819 | |
Creatinine, mg/dL | 0.79 (0.68–0.94) | 0.80 (0.68–0.93) | 0.76 (0.65–0.88) | 0.8 (0.64–1.0) | 0.889 |
Hemoglobin, g/dL | 15 (13–15) | 15 (14–15) | 14 (14–16) | 14 (13–16) | 0.520 |
Neutrophils, G/L | 4.2 (3.1–5.4) | 4.0 (3.5–5.1) | 4.7 (3.6–5.8) | 7.6 (4.5–10) | <0.001 |
Platelets, G/L | 247 (216–294) | 265 (240–291) | 250 (223–305) | 282 (224–315) | 0.795 |
Biomarkers | |||||
IL-33, pg/mL | 61.1 (0–1346) | 4.1 (0–73) | 0 (0–34) | 0 (0–23) | 0.002 |
sST2, ng/mL | 18 (12–22) | 25 (14–28) | 24 (21–30) | 37 (31–44) | <0.001 |
Variable | B | SE | Standardize ß | t | p-Value |
---|---|---|---|---|---|
constant | −275.789 | 391.995 | −0.704 | 0.483 | |
Systolic BP, mmHg | 6.062 | 2.720 | 0.173 | 2.229 | 0.028 |
FEV1, % predicted | −2.681 | 1.285 | −0.190 | −2.086 | 0.040 |
Neutrophils, G/L | 52.812 | 15.901 | 0.269 | 3.321 | 0.001 |
LDH, U/L | 3.078 | 1.002 | 0.240 | 3.073 | 0.003 |
Pack-years | 3.243 | 0.881 | 0.318 | 3.681 | 0.000 |
HR per 1-SD | 95% CI | p-Value | |
---|---|---|---|
Univariable | |||
sST2 | 3.9 | 1.7–9.4 | 0.002 |
Multivariable model 1 | |||
sST2 | 3.9 | 1.4–10.9 | 0.007 |
Multivariable model 2 | |||
sST2 | 2.9 | 1.1–8.4 | 0.035 |
All-Cause Mortality | |||
---|---|---|---|
Harrell’s C-Index | 95% CI | p-Value | |
Multivariable model | 0.69 | 0.59–0.80 | |
Multivariable model and sST2 | 0.79 | 0.71–0.87 | 0.036 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urban, M.H.; Stojkovic, S.; Demyanets, S.; Hengstenberg, C.; Valipour, A.; Wojta, J.; Burghuber, O.C. Soluble ST2 and All-Cause Mortality in Patients with Chronic Obstructive Pulmonary Disease—A 10-Year Cohort Study. J. Clin. Med. 2022, 11, 56. https://doi.org/10.3390/jcm11010056
Urban MH, Stojkovic S, Demyanets S, Hengstenberg C, Valipour A, Wojta J, Burghuber OC. Soluble ST2 and All-Cause Mortality in Patients with Chronic Obstructive Pulmonary Disease—A 10-Year Cohort Study. Journal of Clinical Medicine. 2022; 11(1):56. https://doi.org/10.3390/jcm11010056
Chicago/Turabian StyleUrban, Matthias H., Stefan Stojkovic, Svitlana Demyanets, Christian Hengstenberg, Arschang Valipour, Johann Wojta, and Otto C. Burghuber. 2022. "Soluble ST2 and All-Cause Mortality in Patients with Chronic Obstructive Pulmonary Disease—A 10-Year Cohort Study" Journal of Clinical Medicine 11, no. 1: 56. https://doi.org/10.3390/jcm11010056
APA StyleUrban, M. H., Stojkovic, S., Demyanets, S., Hengstenberg, C., Valipour, A., Wojta, J., & Burghuber, O. C. (2022). Soluble ST2 and All-Cause Mortality in Patients with Chronic Obstructive Pulmonary Disease—A 10-Year Cohort Study. Journal of Clinical Medicine, 11(1), 56. https://doi.org/10.3390/jcm11010056