Physical Activity, Positive and Negative Symptoms of Psychosis, and General Psychopathology among People with Psychotic Disorders: A Meta-Analysis
Abstract
:1. Introduction
2. Method
2.1. Inclusion/Exclusion Criteria
2.2. Data Extraction and Quality Assessment
2.3. Coding
2.4. Data Synthesis and Analysis
3. Results
3.1. Characteristics of Included Studies and Risk of Bias Evaluation
3.2. Associations between PA and Positive, Negative, and General Psychopathology Symptoms
3.3. Moderating Effects: The Diagnosis, the Type of PA Intervention, Studies’ Design and Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moreno-Küstner, B.; Martín, C.; Pastor, L. Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses. PLoS ONE 2018, 13, e0195687. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Devylder, J. Psychotic symptoms predict health outcomes even after adjusting for substance use, smoking and co-occurring psychiatric disorders: Findings from the NCS-R and NLAAS. World Psychiatry 2015, 14, 101–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vancampfort, D.; Rosenbaum, S.; Schuch, F.; Ward, P.B.; Richards, J.; Mugisha, J.; Probst, M.; Stubbs, B. Cardiorespiratory fitness in severe mental illness: A systematic review and meta-analysis. Sports Med. 2017, 47, 343–352. [Google Scholar] [CrossRef]
- Vancampfort, D.; Firth, J.; Schuch, F.B.; Rosenbaum, S.; Mugisha, J.; Hallgren, M.; Probst, M.; Ward, P.B.; Gaughran, F.; De Hert, M.; et al. Sedentary behavior and physical activity levels in people with schizophrenia, bipolar disorder and major depressive disorder: A global systematic review and meta-analysis. World Psychiatry 2017, 16, 308–315. [Google Scholar] [CrossRef]
- Dauwan, M.; Begemann, M.J.H.; Heringa, S.M.; Sommer, I.E. Exercise improves clinical symptoms, quality of life, global functioning, and depression in schizophrenia: A systematic review and meta-analysis. Schizophr. Bull. 2016, 42, 588–599. [Google Scholar] [CrossRef]
- Rosenbaum, S.; Tiedemann, A.; Sherrington, C.; Curtis, J.; Ward, P.B. Physical activity interventions for people with mental illness: A systematic review and meta-analysis. J. Clin. Psychiatry 2014, 75, 964–974. [Google Scholar] [CrossRef]
- Engel, G.L. The clinical application of the biopsychosocial model. Am. J. Psychiatry 1980, 137, 535–544. [Google Scholar] [CrossRef]
- Cotman, C.W.; Berchtold, N.C.; Christie, L.-A. Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends Neurosci. 2007, 30, 464–472. [Google Scholar] [CrossRef]
- Favalli, G.; Li, J.; Belmonte-de-Abreu, P.; Wong, A.H.C.; Daskalakis, Z.J. The role of BDNF in the pathophysiology and treatment of schizophrenia. J. Psychiatr. Res. 2012, 46, 1–11. [Google Scholar] [CrossRef]
- Nieto, R.R.; Carrasco, A.; Corral, S.; Castillo, R.; Gaspar, P.A.; Bustamante, M.L.; Silva, H. BDNF as a biomarker of cognition in schizophrenia/psychosis: An updated review. Front. Psychiatry 2021, 12, 662407. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J.A.; First, M.B. Psychotic disorders. N. Engl. J. Med. 2018, 379, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Hagger, M.S.; Wood, C.; Stiff, C.; Chatzisarantis, N.L.D. The strength model of self-regulation failure and health-related behaviour. Health Psychol. Rev. 2009, 3, 208–238. [Google Scholar] [CrossRef]
- Snyder, H.R. Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychol. Bull. 2013, 139, 81–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabe, M.; Kaiser, S.; Sentissi, O. Physical exercise for negative symptoms of schizophrenia: Systematic review of randomized controlled trials and meta-analysis. Gen. Hosp. Psychiatry 2020, 62, 13–20. [Google Scholar] [CrossRef]
- Vogel, J.S.; van der Gaag, M.; Slofstra, C.; Knegtering, H.; Bruins, J.; Castelein, S. The effect of mind-body and aerobic exercise on negative symptoms in schizophrenia: A meta-analysis. Psychiatry Res. 2019, 279, 295–305. [Google Scholar] [CrossRef]
- Sabe, M.; Sentissi, O.; Kaiser, S. Meditation-based mind-body therapies for negative symptoms of schizophrenia: Systematic review of randomized controlled trials and meta-analysis. Schizophr. Res. 2019, 212, 15–25. [Google Scholar] [CrossRef]
- Taylor, C.I.; Tompsett, C.; Sanders, R.; Cobley, S. The effectiveness of structured exercise programmes on psychological and physiological outcomes for patients with psychotic disorders: A systematic review and meta-analysis. Int. J. Sport Exerc. Psychol. 2020, 18, 336–361. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Behere, R.V.; Arasappa, R.; Jagannathan, A.; Varambally, S.; Venkatasubramanian, G.; Thirthalli, J.; Subbakrishna, D.K.; Nagendra, H.R.; Gangadhar, B.N. Effect of yoga therapy on facial emotion recognition deficits, symptoms and functioning in patients with schizophrenia. Acta Psychiatr. Scand. 2011, 123, 147–153. [Google Scholar] [CrossRef]
- Ho, R.T.H.; Fong, T.C.T.; Wan, A.H.Y.; Au-Yeung, F.S.W.; Wong, C.P.K.; Ng, W.Y.H.; Cheung, I.K.M.; Lo, P.H.Y.; Ng, S.M.; Chan, C.L.W.; et al. A randomized controlled trial on the psychophysiological effects of physical exercise and Tai-chi in patients with chronic schizophrenia. Schizophr. Res. 2016, 171, 42–49. [Google Scholar] [CrossRef]
- Manjunath, R.B.; Varambally, S.; Thirthalli, J.; Basavaraddi, I.V.; Gangadhar, B.N. Efficacy of yoga as an add-on treatment for in-patients with functional psychotic disorder. Indian J. Psychiatry 2013, 55 (Suppl. S3), S374–S378. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.A.E.; Cassilhas, R.C.; Attux, C.; Cordeiro, Q.; Gadelha, A.L.; Telles, B.A.; Bressan, R.A.; Ferreira, F.N.; Rodstein, P.H.; Daltio, C.S.; et al. A 20-week program of resistance or concurrent exercise improves symptoms of schizophrenia: Results of a blind, randomized controlled trial. Rev. Bras. Psiquiatr. 2015, 37, 271–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, B.H.; Ciliska, D.; Dobbins, M.; Micucci, S. A process for systematically reviewing the literature: Providing the research evidence for public health nursing interventions. Worldviews Evid.-Based Nurs. 2004, 1, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Acil, A.A.; Dogan, S.; Dogan, O. The effects of physical exercises to mental state and quality of life in patients with schizophrenia. J. Psychiatr. Ment. Health Nurs. 2008, 15, 808–815. [Google Scholar] [CrossRef]
- Campos, C.; Mesquita, F.; Marques, A.; Trigueiro, M.J.; Orvalho, V.; Rocha, N.B.F. Feasibility and acceptability of an exergame intervention for schizophrenia. Psychol. Sport Exerc. 2015, 19, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Dodd, K.J.; Duffy, S.; Stewart, J.A.; Impey, J.; Taylor, N. A small group aerobic exercise programme that reduces body weight is feasible in adults with severe chronic schizophrenia: A pilot study. Disabil. Rehabil. 2011, 33, 1222–1229. [Google Scholar] [CrossRef]
- Firth, J.; Carney, R.; Elliott, R.; French, P.; Parker, S.; McIntyre, R.; McPhee, J.S.; Yung, A.R. Exercise as an intervention for first-episode psychosis: A feasibility study. Early Interv. Psychiatry 2018, 12, 307–315. [Google Scholar] [CrossRef]
- Fisher, E.; Wood, S.J.; Upthegrove, R.; Aldred, S. Designing a feasible exercise intervention in first-episode psychosis: Exercise quality, engagement and effect. Psychiatry Res. 2020, 286, 112840. [Google Scholar] [CrossRef]
- Gholipour, A.; Abolghasemi, S.; Gholinia, K.; Taheri, S. Token reinforcement therapeutic approach is more effective than exercise for controlling negative symptoms of schizophrenic patients: A randomized controlled trial. Int. J. Prev. Med. 2012, 3, 466–470. [Google Scholar]
- Kaltsatou, A.; Kouidi, E.; Fountoulakis, K.; Sipka, C.; Theochari, V.; Kandylis, D.; Deligiannis, A. Effects of exercise training with traditional dancing on functional capacity and quality of life in patients with schizophrenia: A randomized controlled study. Clin. Rehabil. 2015, 29, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.M.; Hui, C.L.M.; Chang, W.C.; Chan, S.K.W.; Li, Y.K.; Lee, J.T.M.; Lin, J.J.X.; Chen, E.Y.H. Impact of physical activity on functioning of patients with first-episode psychosis—A 6 months prospective longitudinal study. Schizophr. Res. 2013, 150, 538–541. [Google Scholar] [CrossRef] [PubMed]
- Leutwyler, H.; Hubbard, E.M.; Jeste, D.V.; Miller, B.; Vinogradov, S. Associations of schizophrenia symptoms and neurocognition with physical activity in older adults with schizophrenia. Biol. Res. Nurs. 2014, 16, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romain, A.J.; Fankam, C.; Karelis, A.D.; Letendre, E.; Mikolajczak, G.; Stip, E.; Abdel-Baki, A. Effects of high intensity interval training among overweight individuals with psychotic disorders: A randomized controlled trial. Schizophr. Res. 2019, 210, 278–286. [Google Scholar] [CrossRef]
- Scheewe, T.W.; Backx, F.J.G.; Takken, T.; Jörg, F.; van Strater, A.C.P.; Kroes, A.G.; Kahn, R.S.; Cahn, W. Exercise therapy improves mental and physical health in schizophrenia: A randomised controlled trial. Acta Psychiatr. Scand. 2013, 127, 464–473. [Google Scholar] [CrossRef]
- Scheewe, T.W.; van Haren, N.E.M.; Sarkisyan, G.; Schnack, H.G.; Brouwer, R.M.; de Glint, M.; Hulshoff Pol, H.E.; Backx, F.J.G.; Kahn, R.S.; Cahn, W. Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: A randomised controlled trial in patients with schizophrenia and healthy controls. Eur. Neuropsychopharmacol. 2013, 23, 675–685. [Google Scholar] [CrossRef] [Green Version]
- Shimada, T.; Ito, S.; Makabe, A.; Yamanushi, A.; Takenaka, A.; Kobayashi, M. Aerobic exercise and cognitive functioning in schizophrenia: A pilot randomized controlled trial. Psychiatry Res. 2019, 282, 112638. [Google Scholar] [CrossRef]
- Shin, S.; Yeom, C.-W.; Shin, C.; Shin, J.-H.; Jeong, J.H.; Shin, J.U.; Lee, Y.R. Activity monitoring using a mHealth device and correlations with psychopathology in patients with chronic schizophrenia. Psychiatry Res. 2016, 246, 712–718. [Google Scholar] [CrossRef]
- Su, C.-Y.; Wang, P.-W.; Lin, Y.-J.; Tang, T.-C.; Liu, M.-F.; Chen, M.-D. The effects of aerobic exercise on cognition in schizophrenia: A 3-month follow-up study. Psychiatry Res. 2016, 244, 394–402. [Google Scholar] [CrossRef]
- Svatkova, A.; Mandl, R.C.W.; Scheewe, T.W.; Cahn, W.; Kahn, R.S.; Hulshoff Pol, H.E. Physical exercise keeps the brain connected: Biking increases white matter integrity in patients with schizophrenia and healthy controls. Schizophr. Bull. 2015, 41, 869–878. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H.; Sassa, T.; Shibuya, T.; Kato, M.; Koeda, M.; Murai, T.; Matsuura, M.; Asai, K.; Suhara, T.; Okubo, Y. Effects of sports participation on psychiatric symptoms and brain activations during sports observation in schizophrenia. Transl. Psychiatry 2012, 2, e96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vancampfort, D.; De Hert, M.; Myin-Germeys, I.; Rosenbaum, S.; Stubbs, B.; Van Damme, T.; Probst, M. Validity and correlates of the International Physical Activity Questionnaire in first-episode psychosis. Early Interv. Psychiatry 2017, 13, 562–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vancampfort, D.; Probst, M.; Scheewe, T.; Knapen, J.; De Herdt, A.; De Hert, M. The functional exercise capacity is correlated with global functioning in patients with schizophrenia. Acta Psychiatr. Scand. 2012, 125, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Van Citters, A.D.; Pratt, S.I.; Jue, K.; Williams, G.; Miller, P.T.; Xie, H.; Bartels, S.J. A pilot evaluation of the In SHAPE individualized health promotion intervention for adults with mental illness. Commun. Ment. Health J. 2010, 46, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Visceglia, E.; Lewis, S. Yoga therapy as an adjunctive treatment for schizophrenia: A randomized, controlled pilot study. J. Altern. Complement. Med. 2011, 17, 601–607. [Google Scholar] [CrossRef]
- Wang, P.-W.; Lin, H.-C.; Su, C.-Y.; Chen, M.-D.; Lin, K.C.; Ko, C.-H.; Yen, C.-F. Effect of aerobic exercise on improving symptoms of individuals with schizophrenia: A single blinded randomized control study. Front. Psychiatry 2018, 9, 167. [Google Scholar] [CrossRef]
- Wu, M.H.; Lee, C.P.; Hsu, S.C.; Chang, C.M.; Chen, C.Y. Effectiveness of high-intensity interval training on the mental and physical health of people with chronic schizophrenia. Neuropsychiatr. Dis. Treat. 2015, 11, 1255–1263. [Google Scholar] [CrossRef] [Green Version]
- Booth, M. Assessment of physical activity: An international perspective. Res. Q. Exerc. Sport 2000, 71 (Suppl. S2), 114–120. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.T.; Rothstein, H.R. Introduction to Meta-Analysis, 2nd ed.; John Wiley & Sons: Chichester, UK, 2021. [Google Scholar]
- Østergaard, S.D.; Opler, M.G.A.; Correll, C.U. Bridging the measurement gap between research and clinical care in schizophrenia. Innov. Clin. Neurosci. 2017, 14, 68–72. [Google Scholar]
- Lin, L. Bias caused by sampling error in meta-analysis with small sample sizes. PLoS ONE 2018, 13, e0204056. [Google Scholar] [CrossRef] [Green Version]
- Walther, S.; van Harten, P.N.; Waddington, J.L.; Cuesta, M.J.; Peralta, V.; Dupin, L.; Foucher, J.R.; Sambataro, F.; Morrens, M.; Kubera, K.M.; et al. Movement disorder and sensorimotor abnormalities in schizophrenia and other psychoses—European consensus on assessment and perspectives. Eur. Neuropsychopharmacol. 2020, 38, 25–39. [Google Scholar] [CrossRef]
- Di Plinio, S.; Perrucci, M.G.; Aleman, A.; Ebisch, S.J.H. I am Me: Brain systems integrate and segregate to establish a multidimensional sense of self. NeuroImage 2020, 205, 116284. [Google Scholar] [CrossRef]
- Heckers, S.; Barch, D.M.; Bustillo, J.; Gaebel, W.; Gur, R.; Malaspina, D.; Owen, M.J.; Schultz, S.; Tandon, R.; Tsuang, M.; et al. Structure of the psychotic disorders classification in DSM-5. Schizophr. Res. 2013, 150, 11–14. [Google Scholar] [CrossRef]
- Orešič, M.; Tang, J.; Seppänen-Laakso, T.; Mattila, I.; Saarni, S.E.; Saarni, S.I.; Lönnqvist, J.; Sysi-Aho, M.; Hyötyläinen, T.; Perälä, J.; et al. Metabolome in schizophrenia and other psychotic disorders: A general population-based study. Genome Med. 2011, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Saarni, S.I.; Viertiö, S.; Perälä, J.; Koskinen, S.; Lönnqvist, J.; Suvisaari, J. Quality of life of people with schizophrenia, bipolar disorder and other psychotic disorders. Br. J. Psychiatry J. Ment. Sci. 2010, 197, 386–394. [Google Scholar] [CrossRef] [Green Version]
First Author, Publication Year | N (% Female) | Age Range, Mean (SD) | Population | Country | Study Design | PS Measure | Intervention | Results * | Quality Score | |
---|---|---|---|---|---|---|---|---|---|---|
1 | Acil (2008) [26] | 30 (40%) | 21–45 | Schizophrenia | Turkey | Observational-longitudinal | SANS, SAPS | Aerobic Exercise | Positive: r = 0.33; Negative: r = 0.35 | 3 |
2 | Behere (2011) [21] | 66 (29%) | EXP: 31.3 (9.3); CT: 30.2 (8.0) | Schizophrenia | India | Experimental-longitudinal | PANSS | Exercise Yoga | EX: Positive: r = 0.09; EX: Negative: r = 0.15; YA Positive: r = 0.16; YA: Negative: r = 0.03 | 2 |
3 | Campos (2015) [27] | 32 (25%) | EXP: 39.77 (9.2), CT: 39.00 (5.60) | Schizophrenia | Portugal | Observational-longitudinal | PANSS | Other | Positive: r = −0.05; Negative: r = −0.06; GP: r = −0.04 | 2 |
4 | Dodd (2011) [28] | 8 (25%) | 45.9 (10.1) | Schizophrenia | Australia | Observational-longitudinal | PANSS | Aerobic exercise | Positive: r = −0.14; Negative: r = 0.16; GP: r = 0.17 | 3 |
5 | Firth (2018) [29] | 38 (21%) | 25.8 (4.6) | Other psychotic disorders | United Kingdom | Observational-longitudinal | PANSS | Exercise | Positive: r = 0.25; Negative: r = 0.38; GP: r = 0.40 | 2 |
6 | Fisher (2020) [30] | 22 (0%) | 24.8 (4.8) | Other psychotic disorders | United Kingdom | Experimental-longitudinal | PANSS | Exercise | Positive: r = 0.28; Negative: r = −0.04; GP: r = 0.24 | 1 |
7 | Gholipour (2012) [31] | 45 (0%) | 38 (8) | Schizophrenia | Iran | Observational-longitudinal | SANS | Exercise | Negative: r = 0.61 | 3 |
8 | Ho (2016) [22] | 151 (46%) | 55.0 (7.4) | Schizophrenia | China | Experimental-longitudinal | PANSS | Exercise Tai-chi | Exercises Positive: r = −0.11; Exercises Negative: r = −0.13; Tai-chi Positive: r = −0.38; Tai-chi Negative: r = −0.17 | 2 |
9 | Kaltsatou (2015) [32] | 16 (12%) | 59.9 (14.1) | Schizophrenia | Greece | Experimental-longitudinal | PANSS | Exercise | Positive: r = 0.20; Negative: r = 0.14; GP: r = 0.18 | 2 |
10 | Lee (2013) [33] | 187 (60%) | 37.9 (8.2) | Other psychotic disorders | China | Observational–cross-sectional | SAPS, SANS | Positive CS: r = −0.04; Negative CS: r = 0.14 | 2 | |
11 | Leutwyler (2014) [34] | 30 (40%) | 55-older | Schizophrenia | USA | Observational-cross-sectional | PANSS | Negative: r = −0.20; | 2 | |
12 | Manjunath (2013) [23] | 88 (44%) | EXP: 31.7 (8.8), CT: 31.1 (7.8) | Schizophrenia | India | Observational-longitudinal | PANSS | Yoga Exercise | Positive: Yoga: r = 0.67; Exercise: r = 0.59; Negative: Yoga: r = 0.57; Exercise: r = 0.56; GP: Yoga: r = 0.82; Exercise: r = 0.72 | 2 |
13 | Romain (2019) [35] | 66 (38%) | 30.73 (7.23) | Other psychotic disorders | Canada | Experimental-longitudinal | PANSS | HIIT | Positive: r = 0.60; Negative: r = 0.78; GP: r = 0.89 | 1 |
14 | Scheewe, Backx (2013) [36] | 31 (25%) | 29.2 (7.2) | Schizophrenia | Netherlands | Experimental-longitudinal | PANSS | Exercise | Positive: r = 0.25; Negative: r = 0.13; GP: r = 0.26 | 1 |
15 | Scheewe, van Haren (2013) [37] | 84 (26%) | 28.5 (7.3) | Schizophrenia | Netherlands | Observational-longitudinal | PANSS | Exercise | GP: r = 0.27 | 1 |
16 | Shimada (2019) [38] | 32 a | 20–65 | Schizophrenia | Japan | Experimental-longitudinal | PANSS, SANS | Aerobic exercise | Positive: r = 0.30; Negative: r = 0.48; GP: r = 0.34 | 3 |
17 | Shin (2016) [39] | 61 (43%) | 23–61; 46.59 (8.40) | Schizophrenia | Korea | Observational-cross-sectional | PANSS | Positive: r = −0.51; Negative: r = −0.36; GP: r = −0.46 | 2 | |
18 | Silva (2015) [24] | 34 (0%) | Resistance—32.91 (2.28) Aerobic—35.55 (2.63) | Schizophrenia | Brazil | Experimental-longitudinal | PANSS | Aerobic exercise Resistance exercise | Aerobic-positive: r = 0.57; Aerobic-negative: r = 0.45; Aerobic GP: r = 0.77; Resistance-positive: r = 0.82; Resistance-negative: r = 0.77; Resistance GP: r = 0.88 | 1 |
19 | Su (2016) [40] | 22 (46%) | 37.64 (8.23) | Schizophrenia | Taiwan | Observational-longitudinal | PANSS | Aerobic Exercise | Positive: r = 0.23; Negative: r = 0.37 | 2 |
20 | Svatkova (2015) [41] | 81 (26%) | 18–48 | Schizophrenia | Czech Republic | Experimental-longitudinal | PANSS | Exercise | Positive: r = 0.29; Negative: r = 0.20 GP: r = 0.28 | 2 |
21 | Takahashi (2012) [42] | 23 (48%) | 43.5 (11.8) | Schizophrenia | Japan | Observational-longitudinal | PANSS | Aerobic exercise | Positive: r = 0.04; Negatve: r = 0.09 GP: r = 0.12 | 2 |
22 | Vancampfort (2017) [43] | 19 (26%) | 24.4 (5.1) | Other psychotic disorders | Belgium | Observational-cross-sectional | PANSS | Positive moderate: r = −0.01; Positive vigorous: r = −0.31; Negative moderate: r = 0.06; Negative vigorous: r = 0.11 | 1 | |
23 | Vancampfort (2012) [44] | 52 (40%) | 35.74 (10.75) | Schizophrenia | Belgium | Observational-cross-sectional | PECC | Positive: r = −0.22; Negative: r = −0.45 | 2 | |
24 | Van Citters (2009) [45] | 76 (72%) | 43.5 (11.4) | Other psychotic disorders | USA | Observational-longitudinal | SANS | Exercise | Negative: r = 0.07 | 2 |
25 | Visceglia & Lewis (2011) [46] | 10 (40%) | 37.40 (13.75) | Schizophrenia | USA | Observational-longitudinal | PANSS | Yoga | Positive: r = 0.56; Negative: r = 0.43; GP: r = 0.64 | 2 |
26 | Wang (2018) [47] | 62 (52%) | 38.3 (8.34) | Schizophrenia | Taiwan | Observational-longitudinal | MC-PANSS | Exercise | Positive: r = 0.31; Negative: r = 0.41; GP: r = 0.47 | 1 |
27 | Wu (2015) [48] | 18 (55%) | 38.39 (8.24) | Schizophrenia | Taiwan | Observational-longitudinal | PANSS | HIIT | Positive: r = -.01; Negative: r = 0.31; GP: r = 0.30 | 2 |
The Estimate of the Average Effect | Range of Correlation Coefficient (r) Retrieved from Original Studies a | 95% CI for the Estimate of the Average Effect | Sample Size | k | Heterogeneity | Moderating Effects | τ | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Q | I2% | Qb | p | ||||||||
Overall effects for all studies included | |||||||||||
Positive symptoms | 0.170 * | −0.510; 0.820 | [0.020; 0.312] | 884 | 28 | 108.169 *** | 75.039 | 0.333 | |||
Negative symptoms | 0.214 ** | −0.450; 0.780 | [0.077; 0.343] | 1035 | 31 | 122.252 *** | 75.461 | 0.325 | |||
General psychopathology | 0.451 *** | −0.460; 0.890 | [0.210; 0.640] | 450 | 19 | 123.572 *** | 85.434 | 0.542 | |||
Moderator analyses for positive symptoms | |||||||||||
Moderating effects of the type of PA intervention | 1.425 | 0.700 | |||||||||
Exercises | 0.226 * | −0.220; 0.820 | [0.026; 0.409] | 289 | 12 | 0.268 | |||||
Aerobic exercise | 0.291 ** | −0.140; 0.570 | [0.105; 0.457] | 117 | 5 | 0.000 | |||||
Yoga | 0.484 * | 0.160; 0.670 | [0.069; 0.756] | 72 | 3 | 0.323 | |||||
HIIT | 0.353 | −0.010; 0.600 | [−0.308; 0.784] | 56 | 2 | 0.447 | |||||
Moderating effects of the type of the PA intervention vs. yoga/psychoeducation | 1.167 | 0.280 | |||||||||
Exercises, Aerobic exercises, or HIIT | 0.256 ** | −0.220; 0.820 | [0.107; 0.393] | 462 | 19 | 0.239 | |||||
Yoga | 0.484 * | 0.160; 0.670 | [0.069; 0.756] | 72 | 3 | 0.323 | |||||
Moderating effects of the type of diagnosis | 0.038 | 0.845 | |||||||||
Schizophrenia | 0.182 | −0.510; 0.820 | [−0.005; 0.356] | 579 | 22 | 0.376 | |||||
Other psychotic disorders | 0.148 | −0.310; 0.600 | [−0.146; 0.417] | 305 | 6 | 0.303 | |||||
Moderating effects of symptom assessment | 3.460 | 0.063 | |||||||||
PANSS | 0.199 * | −0.510; 0.820 | [0.024; 0.362] | 630 | 25 | 0.378 | |||||
Other measures | −0.056 | −0.220; 0.330 | [−0.255; 0.148] | 254 | 3 | 0.118 | |||||
Moderating effects of the study design | 15.184 | 0.001 | |||||||||
Observational-longitudinal | 0.326 *** | −0.140; 0.670 | [0.158; 0.475] | 252 | 11 | 0.178 | |||||
Experimental-longitudinal | 0.250 * | −0.380; 0.820 | [0.009; 0.463] | 294 | 12 | 0.356 | |||||
Observational-cross-sectional | −0.230 | −0.510; −0.008 | [−0.437; 0.001] | 338 | 5 | 0.212 | |||||
Moderating effects of the study quality | 2.613 | 0.271 | |||||||||
High quality | 0.337 * | −0.310; 0.820 | [0.077; 0.553] | 201 | 8 | 0.304 | |||||
Moderate quality | 0.087 | −0.510; 0.670 | [−0.097; 0.265] | 644 | 17 | 0.321 | |||||
Low quality | 0.243 | −0.140; 0.330 | [−0.110; 0.541] | 39 | 3 | 0.000 | |||||
Moderator analyses for negative symptoms | |||||||||||
Moderating effects of the type of the PA intervention vs. yoga/psychoeducation | 7.303 | 0.121 | |||||||||
Exercises | 0.227 | −0.450; 0.770 | [−0.016; 0.445] | 334 | 13 | 0.385 | |||||
Aerobic exercises | 0.403 *** | 0.160; 0.480 | [0.229; 0.552] | 117 | 5 | 0.000 | |||||
Yoga | 0.358 | −0.030; 0.570 | [−0.060; 0.669] | 72 | 3 | 0.298 | |||||
Psychoeducation | −0.148 | −0.360; 0.070 | [−0.528; 0.281] | 137 | 2 | 0.291 | |||||
HIIT | 0.610 * | 0.310; 0.780 | [0.001; 0.889] | 56 | 2 | 0.464 | |||||
Moderating effects of the type of the PA intervention vs. yoga/psychoeducation | 0.837 | 0.360 | |||||||||
Exercises, Aerobic exercises or HIIT | 0.315 ** | −0.450; 0.770 | [0.126; 0.481] | 507 | 20 | 0.377 | |||||
Yoga or Psychoeducation | 0.130 | −0.360; 0.570 | [−0.234; 0.461] | 209 | 5 | 0.369 | |||||
Moderating effects of the type of diagnosis | 0.219 | 0.640 | |||||||||
Schizophrenia | 0.199 * | −0.450; 0.770 | [0.030; 0.357] | 654 | 24 | 0.354 | |||||
Other psychotic disorders | 0.271 * | −0.040; 0.780 | [0.008; 0.498] | 381 | 7 | 0.305 | |||||
Moderating effects of symptom assessment | 0.241 | 0.624 | |||||||||
PANSS | 0.232 ** | −0.360; 0.780 | [0.076; 0.377] | 660 | 26 | 0.337 | |||||
Other | 0.142 | −0.450; 0.610 | [−0.192; 0.447] | 375 | 5 | 0.351 | |||||
Moderating effects of the study design | 11.935 | 0.003 | |||||||||
Observational –longitudinal | 0.371 *** | −0.060; 0.610 | [0.241; 0.488] | 373 | 13 | 0.150 | |||||
Experimental-longitudinal | 0.257 | −0.170; 0.770 | [−0.002; 0.483] | 294 | 12 | 0.393 | |||||
Observational-cross-sectional | −0.138 | −0.450; 0.140 | [−0.382; 0.124] | 368 | 6 | 0.280 | |||||
Moderating effects of study quality | 13.507 | 0.001. | |||||||||
High quality | 0.392 ** | −0.040; 0.780 | [0.113; 0.613] | 201 | 8 | 0.350 | |||||
Moderate quality | 0.088 | −0.450; 0.570 | [−0.061; 0.233] | 750 | 19 | 0.259 | |||||
Low quality | 0.523 *** | 0.160; 0.610 | [0.336; 0.670] | 84 | 4 | 0.000 | |||||
Moderator analyses for general psychopathology symptoms | |||||||||||
Moderating effect of the type of PA intervention | 11.818 | 0.008 | |||||||||
Exercises | 0.420 *** | 0.120; 0.880 | [0.209; 0.594] | 180 | 9 | 0.253 | |||||
Aerobic exercises | 0.464 *** | 0.170; 0.770 | [0.279; 0.615] | 95 | 4 | 0.000 | |||||
Yoga | 0.795 *** | 0.640; 0.820 | [0.648; 0.885] | 45 | 2 | 0.000 | |||||
HIIT | 0.708 | 0.300; 0.890 | [−0.204; 0.962] | 56 | 2 | 0.756 | |||||
Moderating effects of the type of the PA intervention vs. yoga/psychoeducation | 0.014 | 0.905 | |||||||||
Exercises, Aerobic exercises or HIIT | 0.490 *** | 0.120; 0.890 | [0.298; 0.644] | 331 | 15 | 0.365 | |||||
Yoga or Psychoeducation | 0.430 | −0.460; 0.820 | [−0.646; 0.934] | 106 | 3 | 1.057 | |||||
Moderating effects of the type of diagnosis | 0.265 | .607 | |||||||||
Schizophrenia | 0.464 ** | −0.460; 0.890 | [0.195; 0.669] | 401 | 17 | 0.582 | |||||
Other psychotic disorders | 0.372 * | 0.240; 0.400 | [0.091; 0.598] | 49 | 2 | 0.000 | |||||
Moderating effects of the study design | 0.290 | 0.590 | |||||||||
Observational-longitudinal | 0.468 *** | −0.040; 0.820 | [0.264; 0.632] | 240 | 10 | 0.287 | |||||
Experimental-longitudinal | 0.566 *** | 0.180; 0.880 | [0.214; 0.788] | 149 | 8 | 0.540 | |||||
Moderating effects of the study quality | 2.242 | 0.326 | |||||||||
High quality | 0.617 ** | 0.240; 0.890 | [0.302; 0.810] | 181 | 7 | 0.483 | |||||
Moderate quality | 0.345 | −0.460; 0.820 | [−0.037; 0.639] | 245 | 10 | 0.587 | |||||
Low quality | 0.294 | 0.170; 0.640 | [−0.157; 0.644] | 24 | 2 | 0.000 |
Estimates of the Average Effect a | Range of Standardized Difference in Means in Original Studies a | 95% CI for the Estimate of the Average Effect | Sample Size | k | Heterogeneity | Moderating Effects | τ | |||
---|---|---|---|---|---|---|---|---|---|---|
Q | I2% | Qb | p | |||||||
Overall effects for all studies included | ||||||||||
Positive symptoms | 0.677 * | −0.295; 3.817 | [0.222; 1.132] | 283 | 12 | 68.033 *** | 83.831 | 0.715 | ||
Negative symptoms | 0.838 ** | −0.0550; 3.826 | [0.231; 1.446] | 283 | 12 | 117.081 *** | 90.605 | 1.006 | ||
General psychopathology | 1.511 *** | 0.337; 5.095 | [0.682; 2.340] | 138 | 8 | 58.586 *** | 88.052 | 1.100 | ||
Analyses for positive symptoms | ||||||||||
Moderating effects of the type of PA intervention | 0.521 | 0.470 | ||||||||
Exercises | 0.743 * | −0.263; 3.817 | [0.088; 1.399] | 167 | 7 | 0.794 | ||||
Aerobic exercise | 1.331 | 0.640; 2.126 | [−0.122; 2.783] | 25 | 2 | 0.944 | ||||
Moderating effects of the type of diagnosis | 0.113 | 0.737 | ||||||||
Schizophrenia | 0.672 ** | −0.295; 3.817 | [0.158; 1.187] | 234 | 10 | 0.744 | ||||
Other psychotic disorders | 0.813 * | 0.363; 1.047 | [0.176; 1.450] | 49 | 2 | 0.298 | ||||
Analyses for negative symptoms | ||||||||||
Moderating of effects of PA intervention | 3.395 | 0.065 | ||||||||
Exercises | 0.446 | −0.550; 3.021 | [−0.138; 1.029] | 167 | 7 | 0.692 | ||||
Aerobic exercises | 1.228 *** | 1.030; 1.555 | [0.635; 1.820] | 25 | 2 | 0.000 | ||||
Moderating effects of the type of diagnosis | 0.217 | 0.641 | ||||||||
Schizophrenia | 0.618 ** | −0.183; 3.021 | [0.173; 1.063] | 234 | 10 | 0.626 | ||||
Other psychotic disorders | 1.643 | −0.550; 3.826 | [−2.645; 5.931] | 49 | 2 | 3.062 | ||||
Analyses forgeneral psychopathology | ||||||||||
Moderating effects of the type of PA intervention | 0.222 | 0.637 | ||||||||
Exercises | 1.218 * | 0.337; 5.095 | [0.206; 2.229] | 75 | 5 | 1.052 | ||||
Aerobic exercises | 1.889 | 0.615; 3.275 | [−0.714; 4.493] | 25 | 2 | 1.803 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swora, E.; Boberska, M.; Kulis, E.; Knoll, N.; Keller, J.; Luszczynska, A. Physical Activity, Positive and Negative Symptoms of Psychosis, and General Psychopathology among People with Psychotic Disorders: A Meta-Analysis. J. Clin. Med. 2022, 11, 2719. https://doi.org/10.3390/jcm11102719
Swora E, Boberska M, Kulis E, Knoll N, Keller J, Luszczynska A. Physical Activity, Positive and Negative Symptoms of Psychosis, and General Psychopathology among People with Psychotic Disorders: A Meta-Analysis. Journal of Clinical Medicine. 2022; 11(10):2719. https://doi.org/10.3390/jcm11102719
Chicago/Turabian StyleSwora, Ernest, Monika Boberska, Ewa Kulis, Nina Knoll, Jan Keller, and Aleksandra Luszczynska. 2022. "Physical Activity, Positive and Negative Symptoms of Psychosis, and General Psychopathology among People with Psychotic Disorders: A Meta-Analysis" Journal of Clinical Medicine 11, no. 10: 2719. https://doi.org/10.3390/jcm11102719
APA StyleSwora, E., Boberska, M., Kulis, E., Knoll, N., Keller, J., & Luszczynska, A. (2022). Physical Activity, Positive and Negative Symptoms of Psychosis, and General Psychopathology among People with Psychotic Disorders: A Meta-Analysis. Journal of Clinical Medicine, 11(10), 2719. https://doi.org/10.3390/jcm11102719