Impaired Left Ventricular Circumferential Midwall Systolic Performance Appears Linked to Depressed Preload, but Not Intrinsic Contractile Dysfunction or Excessive Afterload, in Paradoxical Low-Flow/Low-Gradient Severe Aortic Stenosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Analysis of Medical Records
2.3. Statistical Analysis
3. Results
4. Discussion
4.1. Comparison with Previous Studies
4.2. Clinical Implications
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clavel, M.A.; Magne, J.; Pibarot, P. Low-gradient aortic stenosis. Eur. Heart J. 2016, 37, 2645–2657. [Google Scholar] [CrossRef] [PubMed]
- Pibarot, P.; Dumesnil, J.G. Low-flow, low-gradient aortic stenosis with normal and depressed left ventricular ejection fraction. J. Am. Coll. Cardiol. 2012, 60, 1845–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, H.; Falk, V.; Bax, J.J.; De Bonis, M.; Hamm, C.; Holm, P.J.; Iung, B.; Lancellotti, P.; Lansac, E.; Rodriguez Muñoz, D.; et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2017, 38, 2739–2791. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e72–e227. [Google Scholar] [PubMed]
- Dayan, V.; Vignolo, G.; Magne, J.; Clavel, M.A.; Mohty, D.; Pibarot, P. Outcome and impact of aortic valve replacement in patients with preserved LVEF and low-gradient aortic stenosis. J. Am. Coll. Cardiol. 2015, 66, 2594–2603. [Google Scholar] [CrossRef] [Green Version]
- Mangner, N.; Stachel, G.; Woitek, F.; Haussig, S.; Schlotter, F.; Höllriegel, R.; Adam, J.; Lindner, A.; Mohr, F.W.; Schuler, G.; et al. Predictors of mortality and symptomatic outcome of patients with low-flow severe aortic stenosis undergoing transcatheter aortic valve replacement. J. Am. Heart Assoc. 2018, 7, e007977. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Q.; Djohan, A.H.; Lim, E.; Ding, Z.P.; Ling, L.H.; Shi, L.; Chan, E.S.; Chin, C.W.L. Effects of aortic valve replacement on severe aortic stenosis and preserved systolic function: Systematic review and network meta-analysis. Sci. Rep. 2017, 7, 5092. [Google Scholar] [CrossRef] [Green Version]
- Hachicha, Z.; Dumesnil, J.G.; Bogaty, P.; Pibarot, P. Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation 2007, 115, 2856–2864. [Google Scholar] [CrossRef] [Green Version]
- Dahl, J.S.; Eleid, M.F.; Pislaru, S.V.; Scott, C.G.; Connolly, H.M.; Pellikka, P.A. Development of paradoxical low-flow, low-gradient severe aortic stenosis. Heart 2015, 101, 1015–1023. [Google Scholar] [CrossRef]
- Chyrchel, B.; Długosz, D.; Bolt, K.; Kruszelnicka, O.; Dziewierz, A.; Świerszcz, J.; Wieczorek-Surdacka, E.; Hryniewiecki, T.; Surdacki, A. Association of inadequately low left ventricular mass with enhanced myocardial contractility in severe degenerative aortic stenosis. J. Clin. Med. 2018, 7, 464. [Google Scholar] [CrossRef] [Green Version]
- Chyrchel, B.; Bolt, K.; Długosz, D.; Urbańska, A.; Nowak-Kępczyk, M.; Bałata, J.; Rożanowska, A.; Czestkowska, E.; Kruszelnicka, O.; Surdacki, A. Better myocardial function in aortic stenosis with low left ventricular mass: A mechanism of protection against heart failure regardless of stenosis severity? J. Clin. Med. 2019, 8, 1836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czestkowska, E.; Rożanowska, A.; Długosz, D.; Bolt, K.; Świerszcz, J.; Kruszelnicka, O.; Chyrchel, B.; Surdacki, A. Depressed systemic arterial compliance and impaired left ventricular midwall performance in aortic stenosis with concomitant type 2 diabetes: A retrospective cross-sectional study. Cardiovasc. Diabetol. 2019, 18, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Długosz, D.; Bolt, K.; Sam, W.S.; Nawara, T.; Kruszelnicka, O.; Chyrchel, B.; Surdacki, A. Excessive left ventricular hypertrophy in moderate degenerative aortic stenosis: An ineffective compensatory mechanism triggered by primary myocardial dysfunction and enhanced by concomitant mild renal impairment? Kardiol. Pol. 2018, 76, 1486–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, G.; Zile, M.R.; Blaustein, A.S.; Gaasch, W.H. Left ventricular chamber filling and midwall fiber lengthening in patients with left ventricular hypertrophy: Overestimation of fiber velocities by conventional midwall measurements. Circulation 1985, 71, 266–272. [Google Scholar] [CrossRef] [Green Version]
- de Simone, G.; Devereux, R.B.; Roman, M.J.; Ganau, A.; Saba, P.S.; Alderman, M.H.; Laragh, J.H. Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension. J. Am. Coll. Cardiol. 1994, 23, 1444–1451. [Google Scholar] [CrossRef] [Green Version]
- Aurigemma, G.P.; Silver, K.H.; Priest, M.A.; Gaasch, W.H. Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy. J. Am. Coll. Cardiol. 1995, 26, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Aoyagi, T.; Fujii, A.M.; Flanagan, M.F.; Arnold, L.W.; Brathwaite, K.W.; Colan, S.D.; Mirsky, I. Transition from compensated hypertrophy to intrinsic myocardial dysfunction during development of left ventricular pressure-overload hypertrophy in conscious sheep. Systolic dysfunction precedes diastolic dysfunction. Circulation 1993, 88 Pt 1, 2415–2425. [Google Scholar] [CrossRef] [Green Version]
- Carter-Storch, R.; Moller, J.E.; Christensen, N.L.; Rasmussen, L.M.; Pecini, R.; Søndergård, E.; Videbæk, L.M.; Dahl, J.S. End-systolic wall stress in aortic stenosis: Comparing symptomatic and asymptomatic patients. Open Heart 2019, 6, e001021. [Google Scholar] [CrossRef] [Green Version]
- Gerdts, E.; Saeed, S.; Midtbø, H.; Rossebø, A.; Chambers, J.B.; Einarsen, E.; Bahlmann, E.; Devereux, R. Higher left ventricular mass-wall stress-heart rate product and outcome in aortic valve stenosis. Heart 2019, 105, 1629–1633. [Google Scholar] [CrossRef]
- Reichek, N.; Wilson, J.; St John Sutton, M.; Plappert, T.A.; Goldberg, S.; Hirshfeld, J.W. Noninvasive determination of left ventricular end-systolic stress: Validation of the method and initial application. Circulation 1982, 65, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Gaasch, W.H.; Zile, M.R.; Hoshino, P.K.; Apstein, C.S.; Blaustein, A.S. Stress-shortening relations and myocardial blood flow in compensated and failing canine hearts with pressure-overload hypertrophy. Circulation 1989, 79, 872–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohn, D.W.; Lee, S.P.; Kim, H.K.; Kim, Y.J.; Yoo, B.W.; Kim, H.C. LV peak instantaneous wall stress versus time-stress-integral as measures of afterload in aortic stenosis. Heart 2015, 101, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Carabello, B.A.; Green, L.H.; Grossman, W.; Cohn, L.H.; Koster, J.K.; Collins, J.J. Hemodynamic determinants of prognosis of aortic valve replacement in critical aortic stenosis and advanced congestive heart failure. Circulation 1980, 62, 42–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Briand, M.; Dumesnil, J.G.; Kadem, L.; Tongue, A.G.; Rieu, R.; Garcia, D.; Pibarot, P. Reduced systemic arterial compliance impacts significantly on left ventricular afterload and function in aortic stenosis: Implications for diagnosis and treatment. J. Am. Coll. Cardiol. 2005, 46, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Mirsky, I.; Aoyagi, T.; Crocker, V.M.; Fujii, A.M. Preload dependence of fiber shortening rate in conscious dogs with left ventricular hypertrophy. J. Am. Coll. Cardiol. 1990, 15, 890–899. [Google Scholar] [CrossRef] [Green Version]
- Gotzmann, M.; Hauptmann, S.; Hogeweg, M.; Choudhury, D.S.; Schiedat, F.; Dietrich, J.W.; Westhoff, T.H.; Bergbauer, M.; Mügge, A. Hemodynamics of paradoxical severe aortic stenosis: Insight from a pressure-volume loop analysis. Clin. Res. Cardiol. 2019, 108, 931–939. [Google Scholar] [CrossRef]
- Eleid, M.F.; Nishimura, R.A.; Borlaug, B.A.; Sorajja, P. Invasive measures of afterload in low gradient severe aortic stenosis with preserved ejection fraction. Circ. Heart Fail 2013, 6, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Pislaru, C.; Miranda, W.R.; Nkomo, V.T.; Connolly, H.M.; Pislaru, S.V.; Pellikka, P.A.; Lewis, B.R.; Carabello, B.A.; Oh, J.K. Left ventricular contractility and wall stress in patients with aortic stenosis with preserved or reduced ejection fraction. JACC Cardiovasc. Imaging 2020, 13 Pt 1, 357–369. [Google Scholar] [CrossRef]
- Lee, S.P.; Kim, Y.J.; Kim, J.H.; Park, K.; Kim, K.H.; Kim, H.K.; Cho, G.Y.; Sohn, D.W.; Oh, B.H.; Park, Y.B. Deterioration of myocardial function in paradoxical low-flow severe aortic stenosis: Two-dimensional strain analysis. J. Am. Soc. Echocardiogr. 2011, 24, 976–983. [Google Scholar] [CrossRef]
- Adda, J.; Mielot, C.; Giorgi, R.; Cransac, F.; Zirphile, X.; Donal, E.; Sportouch-Dukhan, C.; Réant, P.; Laffitte, S.; Cade, S.; et al. Low-flow, low-gradient severe aortic stenosis despite normal ejection fraction is associated with severe left ventricular dysfunction as assessed by speckle-tracking echocardiography: A multicenter study. Circ. Cardiovasc. Imaging 2012, 5, 27–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, A.A.; Taub, C.C.; Garcia, M.J.; Shan, J.; Slovut, D.P. Paradoxical low-flow aortic stenosis is defined by increased ventricular hydraulic load and reduced longitudinal strain. J. Cardiovasc. Med. 2017, 18, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Seo, Y.; Ishizu, T.; Takeuchi, M.; Izumo, M.; Suzuki, K.; Yamashita, E.; Oshima, S.; Akashi, Y.J.; Otsuji, Y.; et al. Prognostic value of global longitudinal strain in paradoxical low-flow, low-gradient severe aortic stenosis with preserved ejection fraction. Circ. J. 2014, 78, 2750–2759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, S.; Störk, S.; Niemann, M.; Lange, V.; Strotmann, J.M.; Frantz, S.; Beer, M.; Gattenlöhner, S.; Voelker, W.; Ertl, G.; et al. Low-gradient aortic valve stenosis myocardial fibrosis and its influence on function and outcome. J. Am. Coll. Cardiol. 2011, 58, 402–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heymans, S.; Schroen, B.; Vermeersch, P.; Milting, H.; Gao, F.; Kassner, A.; Gillijns, H.; Herijgers, P.; Flameng, W.; Carmeliet, P.; et al. Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 2005, 112, 1136–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McConkey, H.Z.R.; Marber, M.; Chiribiri, A.; Pibarot, P.; Redwood, S.R.; Prendergast, B.D. Coronary microcirculation in aortic stenosis. Circ. Cardiovasc. Interv. 2019, 12, e007547. [Google Scholar] [CrossRef] [PubMed]
- Weidemann, F.; Herrmann, S.; Störk, S.; Niemann, M.; Frantz, S.; Lange, V.; Beer, M.; Gattenlöhner, S.; Voelker, W.; Ertl, G.; et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 2009, 120, 577–584. [Google Scholar] [CrossRef] [Green Version]
- Magne, J.; Cosyns, B.; Popescu, B.A.; Carstensen, H.G.; Dahl, J.; Desai, M.Y.; Kearney, L.; Lancellotti, P.; Marwick, T.H.; Sato, K.; et al. Distribution and prognostic significance of left ventricular global longitudinal strain in asymptomatic significant aortic stenosis: An individual participant data meta-analysis. JACC Cardiovasc. Imaging 2019, 12, 84–92. [Google Scholar] [CrossRef]
- Dahl, J.S.; Magne, J.; Pellikka, P.A.; Donal, E.; Marwick, T.H. Assessment of subclinical left ventricular dysfunction in aortic stenosis. JACC Cardiovasc. Imaging 2019, 12, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Ito, S.; Miranda, W.R.; Nkomo, V.T.; Pislaru, S.V.; Villarraga, H.R.; Pellikka, P.A.; Crusan, D.J.; Oh, J.K. Left ventricular global longitudinal strain is associated with long-term outcomes in moderate aortic stenosis. Circ. Cardiovasc. Imaging 2020, 13, e009958. [Google Scholar] [CrossRef] [PubMed]
- Slimani, A.; Roy, C.; de Meester, C.; Bouzin, C.; Pasquet, A.; Pouleur, A.C.; Vancraeynest, D.; Noirhomme, P.; El Khoury, G.; Gerber, B.L.; et al. Structural and functional correlates of gradient-area patterns in severe aortic stenosis and normal ejection fraction. JACC Cardiovasc. Imaging 2021, 14, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.W.L.; Ding, Z.P.; Lam, C.S.P.; Ling, L.H. Paradoxical low-gradient aortic stenosis: The HFpEF of aortic stenosis. J. Am. Coll. Cardiol. 2016, 67, 2447–2448. [Google Scholar] [CrossRef] [PubMed]
- Ng, A.C.; Delgado, V.; Bertini, M.; Antoni, M.L.; van Bommel, R.J.; van Rijnsoever, E.P.; van der Kley, F.; Ewe, S.H.; Witkowski, T.; Auger, D.; et al. Alterations in multidirectional myocardial functions in patients with aortic stenosis and preserved ejection fraction: A two-dimensional speckle tracking analysis. Eur. Heart J. 2011, 32, 1542–1550. [Google Scholar] [CrossRef] [PubMed]
- Galli, E.; Leguerrier, A.; Flecher, E.; Leclercq, C.; Donal, E. Increased valvulo-arterial impedance differently impacts left ventricular longitudinal, circumferential, and radial function in patients with aortic stenosis: A speckle tracking echocardiography study. Echocardiography 2017, 34, 37–43. [Google Scholar] [CrossRef]
- Alvarez, R.; Mollon, P.; Monaco, R.; Villa, D.; Puglia, D. Left ventricular midwall fractional shortening: Its relationship with the diastolic function analyzed by doppler echocardiography and tissue doppler in hypertensive patients. Echocardiography 2004, 21, 207. [Google Scholar] [CrossRef]
- Clavel, M.A.; Ennezat, P.V.; Maréchaux, S.; Dumesnil, J.G.; Capoulade, R.; Hachicha, Z.; Mathieu, P.; Bellouin, A.; Bergeron, S.; Meimoun, P.; et al. Stress echocardiography to assess stenosis severity and predict outcome in patients with paradoxical low-flow, low-gradient aortic stenosis and preserved LVEF. JACC Cardiovasc. Imaging 2013, 6, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Kusunose, K.; Yamada, H.; Nishio, S.; Torii, Y.; Hirata, Y.; Seno, H.; Saijo, Y.; Ise, T.; Yamaguchi, K.; Yagi, S.; et al. Preload stress echocardiography predicts outcomes in patients with preserved ejection fraction and low-gradient aortic stenosis. Circ. Cardiovasc. Imaging 2017, 10, e006690. [Google Scholar] [CrossRef] [Green Version]
- Pibarot, P.; Clavel, M.A. Preload stress echocardiography: A new tool to confirm severity of low-gradient aortic stenosis. Circ. Cardiovasc. Imaging 2017, 10, e007035. [Google Scholar] [CrossRef] [Green Version]
- Raafs, A.G.; Boscutti, A.; Henkens, M.T.H.M.; van den Broek, W.W.A.; Verdonschot, J.A.J.; Weerts, J.; Stolfo, D.; Nuzzi, V.; Manca, P.; Hazebroek, M.R.; et al. Global longitudinal strain is incremental to left ventricular ejection fraction for the prediction of outcome in optimally treated dilated cardiomyopathy patients. J. Am. Heart Assoc. 2022, 11, e024505. [Google Scholar] [CrossRef]
- Cioffi, G.; Mazzone, C.; Barbati, G.; Rossi, A.; Nistri, S.; Ognibeni, F.; Tarantini, L.; Di Lenarda, A.; Faggiano, P.; Pulignano, G.; et al. Value of combined circumferential and longitudinal left ventricular systolic dysfunction to predict adverse outcome in patients with asymptomatic aortic stenosis. J. Heart Valve Dis. 2016, 25, 28–38. [Google Scholar]
- Cramariuc, D.; Bahlmann, E.; Egstrup, K.; Rossebø, A.B.; Ray, S.; Kesäniemi, Y.A.; Nienaber, C.A.; Gerdts, E. Prognostic impact of impaired left ventricular midwall function during progression of aortic stenosis. Echocardiography 2021, 38, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Dweck, M.R.; Joshi, S.; Murigu, T.; Alpendurada, F.; Jabbour, A.; Melina, G.; Banya, W.; Gulati, A.; Roussin, I.; Raza, S.; et al. Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J. Am. Coll. Cardiol. 2011, 58, 1271–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vassiliou, V.S.; Perperoglou, A.; Raphael, C.E.; Joshi, S.; Malley, T.; Everett, R.; Halliday, B.; Pennell, D.J.; Dweck, M.R.; Prasad, S.K. Midwall fibrosis and 5-year outcome in moderate and severe aortic stenosis. J. Am. Coll. Cardiol. 2017, 69, 1755–1756. [Google Scholar] [CrossRef] [PubMed]
- Everett, R.J.; Tastet, L.; Clavel, M.A.; Chin, C.W.L.; Capoulade, R.; Vassiliou, V.S.; Kwiecinski, J.; Gomez, M.; van Beek, E.J.R.; White, A.C.; et al. Progression of hypertrophy and myocardial fibrosis in aortic stenosis: A multicenter cardiac magnetic resonance study. Circ. Cardiovasc. Imaging 2018, 11, e007451. [Google Scholar] [CrossRef] [Green Version]
- Peverill, R.E. Understanding preload and preload reserve within the conceptual framework of a limited range of possible left ventricular end-diastolic volumes. Adv. Physiol. Educ. 2020, 44, 414–422. [Google Scholar] [CrossRef]
Characteristic | P-LFLG-AS n = 30 | NFHG-AS n = 30 | p-Value a |
---|---|---|---|
Age, years | 69 ± 11 | 70 ± 10 | NS |
Women/men, n | 18/12 | 16/14 | NS |
Hypertension, n (%) | 25 (83%) | 24 (80%) | NS |
Body mass index, kg/m2 | 29.0 ± 4.2 | 28.4 ± 4.5 | NS |
eGFR, mL/min/1.73 m2 | 75 ± 13 | 77 ± 15 | NS |
Systolic blood pressure, mmHg | 136 ± 14 | 129 ± 17 | NS |
Diastolic blood pressure, mmHg | 73 ± 8 | 66 ± 8 | 0.02 |
Medication, n (%) | |||
ACEI or ARB | 12 (40%) | 10 (33%) | NS |
Beta-blockers | 16 (53%) | 15 (50%) | NS |
Diuretics | 13 (43%) | 12 (40%) | NS |
Calcium-channel blocker | 10 (33%) | 11 (37%) | NS |
Characteristic | P-LFLG-AS n = 30 | NFHG-AS n = 30 | p-Value a |
---|---|---|---|
AVA index, cm2/m2 | 0.4 ± 0.1 | 0.4 ± 0.1 | NS |
Mean aortic pressure gradient, mmHg | 31 ± 8 | 54 ± 13 | <0.001 |
LV end-diastolic diameter, mm | 44 ± 5 | 54 ± 5 | <0.001 |
LV end-systolic diameter, mm | 28 ± 7 | 34 ± 7 | <0.001 |
End-diastolic LV posterior wall thickness, mm | 12 ± 2 | 12 ± 2 | NS |
End-diastolic interventricular septum thickness, mm | 14 ± 4 | 14 ± 3 | NS |
LV mass index, g/m2.7 | 60 ± 20 | 111 ± 161 | 0.1 |
LV hypertrophy, n (%) | 20 (67%) | 28 (93%) | 0.02 |
Relative LV wall thickness | 0.62 ± 0.16 | 0.49 ± 0.07 | <0.001 |
EF, % | 61 ± 6 | 59 ± 8 | NS |
Stroke volume index, mL/m2 | 27.6 ± 4.5 | 45.7 ± 9.1 | <0.001 |
LV midwall fractional shortening, % | 12.3 ± 3.5 | 14.7 ± 2.9 | 0.006 |
Circumferential end-systolic LV midwall stress, hPa | 175 ± 83 | 198 ± 69 | NS |
Valvulo-arterial impedance, mmHg per mL/m2 | 3.8 ± 1.1 | 2.2 ± 0.5 | <0.001 |
Systemic arterial compliance, mL/m2 per mmHg | 0.45 ± 0.11 | 0.76 ± 0.23 | <0.001 |
Predictors of LV Midwall Fractional Shortening | Nonstandardized Regression Coefficient ± SEM | p-Value a |
---|---|---|
Unadjusted for either cESS or LVd (R2 = 0.12, p = 0.008) | ||
P-LFLG-AS vs. NFHG-AS | −1.95 ± 0.79 | 0.015 |
AVA index, per decrease by 0.1 cm2/m2 | −0.67 ± 0.40 | 0.09 |
Adjusted for cESS (R2 = 0.38, p < 0.001) | ||
P-LFLG-AS vs. NFHG-AS | −2.35 ± 0.67 | <0.001 |
cESS, per increment by 20 hPa | −0.41 ± 0.08 | <0.001 |
AVA index, per decrease by 0.1 cm2/m2 | −0.56 ± 0.34 | 0.10 |
Adjusted for cESS and LVd (R2 = 0.42, p < 0.001) | ||
P-LFLG-AS vs. NFHG-AS | −1.10 ± 0.85 | 0.21 |
cESS, per increment by 20 hPa | −0.47 ± 0.09 | <0.001 |
LVd, per decrease by 5 mm | −0.71 ± 0.31 | 0.03 |
AVA index, per decrease by 0.1 cm2/m2 | 0.55 ± 0.33 | 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Długosz, D.; Surdacki, A.; Zawiślak, B.; Bartuś, S.; Chyrchel, B. Impaired Left Ventricular Circumferential Midwall Systolic Performance Appears Linked to Depressed Preload, but Not Intrinsic Contractile Dysfunction or Excessive Afterload, in Paradoxical Low-Flow/Low-Gradient Severe Aortic Stenosis. J. Clin. Med. 2022, 11, 2873. https://doi.org/10.3390/jcm11102873
Długosz D, Surdacki A, Zawiślak B, Bartuś S, Chyrchel B. Impaired Left Ventricular Circumferential Midwall Systolic Performance Appears Linked to Depressed Preload, but Not Intrinsic Contractile Dysfunction or Excessive Afterload, in Paradoxical Low-Flow/Low-Gradient Severe Aortic Stenosis. Journal of Clinical Medicine. 2022; 11(10):2873. https://doi.org/10.3390/jcm11102873
Chicago/Turabian StyleDługosz, Dorota, Andrzej Surdacki, Barbara Zawiślak, Stanisław Bartuś, and Bernadeta Chyrchel. 2022. "Impaired Left Ventricular Circumferential Midwall Systolic Performance Appears Linked to Depressed Preload, but Not Intrinsic Contractile Dysfunction or Excessive Afterload, in Paradoxical Low-Flow/Low-Gradient Severe Aortic Stenosis" Journal of Clinical Medicine 11, no. 10: 2873. https://doi.org/10.3390/jcm11102873
APA StyleDługosz, D., Surdacki, A., Zawiślak, B., Bartuś, S., & Chyrchel, B. (2022). Impaired Left Ventricular Circumferential Midwall Systolic Performance Appears Linked to Depressed Preload, but Not Intrinsic Contractile Dysfunction or Excessive Afterload, in Paradoxical Low-Flow/Low-Gradient Severe Aortic Stenosis. Journal of Clinical Medicine, 11(10), 2873. https://doi.org/10.3390/jcm11102873