How Well Do Low Population-Specific Values for Muscle Parameters Associate with Indices of Poor Physical Health? Cross-Sectional Data from the Geelong Osteoporosis Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Data
2.3.1. Anthropometry
2.3.2. Muscle strength
2.3.3. Timed up and Go Test
2.3.4. Lean Mass
2.4. Population-Specific Values for Sarcopenia Components
2.5. Indices of Poor Health
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Associations between Low Muscle Parameters and Indices of Poor Health
3.3. Cut-Offs of Skeletal Muscle Deficits Obtained Using Receiver Operating Characteristic Curves
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Sui, S.X.; Williams, L.J.; Holloway-Kew, K.L.; Hyde, N.K.; Pasco, J.A. Skeletal muscle health and cognitive function: A narrative review. Int. J. Mol. Sci. 2020, 22, 255. [Google Scholar] [CrossRef] [PubMed]
- Tembo, M.C.; Holloway-Kew, K.L.; Mohebbi, M.; Sui, S.X.; Hosking, S.M.; Brennan-Olsen, S.L.; Williams, L.J.; Kotowicz, M.A.; Pasco, J.A. The association between a fracture risk tool and frailty: Geelong Osteoporosis Study. BMC Geriatr. 2020, 20, 196. [Google Scholar] [CrossRef]
- Tembo, M.C.; Mohebbi, M.; Holloway-Kew, K.L.; Gaston, J.; Brennan-Olsen, S.L.; Williams, L.J.; Kotowicz, M.A.; Pasco, J.A. The Predictability of Frailty Associated with Musculoskeletal Deficits: A Longitudinal Study. Calcif. Tissue Int. 2021, 109, 525–533. [Google Scholar] [CrossRef]
- Tembo, M.C.; Mohebbi, M.; Holloway-Kew, K.L.; Gaston, J.; Sui, S.X.; Brennan-Olsen, S.L.; Williams, L.J.; Kotowicz, M.A.; Pasco, J.A. The contribution of musculoskeletal factors to physical frailty: A cross-sectional study. BMC Musculoskelet. Disord. 2021, 22, 921. [Google Scholar] [CrossRef]
- Sui, S.X.; Holloway-Kew, K.L.; Hyde, N.K.; Williams, L.J.; Tembo, M.C.; Leach, S.; Pasco, J.A. Prevalence of sarcopenia employing population-specific cut-points: Cross-sectional data from the Geelong Osteoporosis Study, Australia. J. Clin. Med. 2021, 10, 343. [Google Scholar] [CrossRef]
- Sui, S.X.; Holloway-Kew, K.L.; Hyde, N.K.; Williams, L.J.; Tembo, M.C.; Leach, S.; Pasco, J.A. Definition-specific prevalence estimates for sarcopenia in an Australian population: The Geelong Osteoporosis Study. JCSM Cli. Rep. 2020, 5, 89–98. [Google Scholar] [CrossRef]
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical definition of sarcopenia. Clin. Cases Miner Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef]
- Pasco, J.A.; Sui, S.X.; West, E.C.; Holloway-Kew, K.L.; Hyde, N.K.; Stuart, A.L.; Gaston, J.; Williams, L.J. Operational definitions of sarcopenia should consider depressive symptoms. JCSM Clin. Rep. 2021, 6, 62–68. [Google Scholar] [CrossRef]
- Sui, S.X.; Holloway-Kew, K.L.; Hyde, N.K.; Williams, L.J.; Leach, S.; Pasco, J.A. Muscle strength and gait speed rather than lean mass are better indicators for poor cognitive function in older men. Sci. Rep. 2020, 10, 10367. [Google Scholar] [CrossRef] [PubMed]
- Pasco, J.A.; Stuart, A.L.; Sui, S.X.; Holloway-Kew, K.L.; Hyde, N.K.; Tembo, M.C.; Rufus-Membere, P.; Kotowicz, M.A.; Williams, L.J. Dynapenia and low Cognition: A cross-sectional association in postmenopausal women. J. Clin. Med. 2021, 10, 173. [Google Scholar] [CrossRef] [PubMed]
- Leirós-Rodríguez, R.; Romo-Pérez, V.; García-Soidán, J.L.; Soto-Rodríguez, A. Prevalence and Factors Associated with Functional Limitations during Aging in a Representative Sample of Spanish Population. Phys. Occup. Ther. 2018, 36, 156–167. [Google Scholar] [CrossRef]
- Dionyssiotis, Y. Analyzing the problem of falls among older people. Int. J. Gen. Med. 2012, 5, 805–813. [Google Scholar] [CrossRef] [Green Version]
- Antela, B.; Leirós-Rodríguez, R.; Soidán, J.L. Compliance with the recommendations of the World Health Organization on the practice of physical activity in people over 65 years in Spain. J. Hum. Sport 2020, 17, 29–38. [Google Scholar] [CrossRef]
- Abimanyi-Ochom, J.; Watts, J.J.; Borgström, F.; Nicholson, G.C.; Shore-Lorenti, C.; Stuart, A.L.; Zhang, Y.; Iuliano, S.; Seeman, E.; Prince, R.; et al. Changes in quality of life associated with fragility fractures: Australian arm of the International Cost and Utility Related to Osteoporotic Fractures Study (AusICUROS). Osteoporos Int. 2015, 26, 1781–1790. [Google Scholar] [CrossRef] [Green Version]
- Briggs, A.M.; Sun, W.; Miller, L.J.; Geelhoed, E.; Huska, A.; Inderjeeth, C.A. Hospitalisations, admission costs and re-fracture risk related to osteoporosis in Western Australia are substantial: A 10-year review. Aust. N. Z. J. Public Health 2015, 39, 557–562. [Google Scholar] [CrossRef]
- Monagle, S. Reducing falls in community dwelling elderly. The role of GP care planning. Aust. Fam. Physician 2002, 31, 1111–1115. [Google Scholar]
- Kirk, B.; Zanker, J.; Bani Hassan, E.; Bird, S.; Brennan-Olsen, S.; Duque, G. Sarcopenia Definitions and Outcomes Consortium (SDOC) Criteria are Strongly Associated With Malnutrition, Depression, Falls, and Fractures in High-Risk Older Persons. J. Am. Med. Dir. Assoc. 2021, 22, 741–745. [Google Scholar] [CrossRef]
- Pasco, J.A.; Nicholson, G.C.; Kotowicz, M.A. Cohort profile: Geelong Osteoporosis Study. Int. J. Epidemiol. 2012, 41, 1565–1575. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The Timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Gould, H.; Brennan, S.L.; Kotowicz, M.A.; Nicholson, G.C.; Pasco, J.A. Total and appendicular lean mass reference ranges for Australian men and women: The Geelong osteoporosis study. Calcif. Tissue Int. 2014, 94, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Pasco, J.A.; Holloway-Kew, K.L.; Tembo, M.C.; Sui, S.X.; Anderson, K.B.; Rufus-Membere, P.; Hyde, N.K.; Williams, L.J.; Kotowicz, M.A. Normative data for lean mass using FNIH criteria in an Australian setting. Calcif. Tissue Int. 2019, 104, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Sui, S.X.; Holloway-Kew, K.L.; Hyde, N.K.; Williams, L.J.; Tembo, M.C.; Mohebbi, M.; Gojanovic, M.; Leach, S.; Pasco, J.A. Handgrip strength and muscle quality in Australian women: Cross-sectional data from the Geelong Osteoporosis Study. J. Cachexia Sarcopenia Muscle 2020, 11, 690–697. [Google Scholar] [CrossRef] [PubMed]
- Pasco, J.A.; Stuart, A.L.; Holloway-Kew, K.L.; Tembo, M.C.; Sui, S.X.; Anderson, K.B.; Hyde, N.K.; Williams, L.J.; Kotowicz, M.A. Lower-limb muscle strength: Normative data from an observational population-based study. BMC Musculoskelet. Disord. 2020, 21, 89. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Unal, I. Defining an Optimal Cut-Point Value in ROC Analysis: An Alternative Approach. Comput. Math Methods Med. 2017, 2017, 3762651. [Google Scholar] [CrossRef]
- Pasco, J.A.; Sui, S.X.; Tembo, M.C.; Holloway-Kew, K.L.; Rufus, P.G.; Kotowicz, M.A. Sarcopenic obesity and falls in the elderly. J. Gerontol. Geriatri. Res. 2018, 7, 465. [Google Scholar] [CrossRef]
- Öztürk, Z.A.; Türkbeyler, İ.H.; Abiyev, A.; Kul, S.; Edizer, B.; Yakaryılmaz, F.D.; Soylu, G. Health-related quality of life and fall risk associated with age-related body composition changes; sarcopenia, obesity and sarcopenic obesity. Intern Med. J. 2018, 48, 973–981. [Google Scholar] [CrossRef]
- Beaudart, C.; Zaaria, M.; Pasleau, F.; Reginster, J.Y.; Bruyère, O. Health outcomes of sarcopenia: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0169548. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Hao, Q.; Ge, M.; Dong, B. Association of sarcopenia and fractures in community-dwelling older adults: A systematic review and meta-analysis of cohort studies. Osteoporos Int. 2018, 29, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ma, J.; Liu, A.; Cui, Y.; Ma, X. The association between sarcopenia and fracture in middle-aged and elderly people: A systematic review and meta-analysis of cohort studies. Injury 2020, 51, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, W.; Wang, C.; Tao, W.; Dou, Q.; Yang, Y. Sarcopenia as a predictor of hospitalization among older people: A systematic review and meta-analysis. BMC Geriatr. 2018, 18, 188. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.S.Y.; Reijnierse, E.M.; Pham, V.K.; Trappenburg, M.C.; Lim, W.K.; Meskers, C.G.M.; Maier, A.B. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2019, 10, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.I.; Lane, J.V. A pilot study to explore the predictive validity of 4 measures of falls risk in frail elderly patients. Arch. Phys. Med. Rehabil. 2005, 86, 1636–1640. [Google Scholar] [CrossRef]
- Arnold, C.M.; Faulkner, R.A. The history of falls and the association of the timed up and go test to falls and near-falls in older adults with hip osteoarthritis. BMC Geriatr. 2007, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Rose, D.J.; Jones, C.J.; Lucchese, N. Predicting the Probability of Falls in Community-Residing Older Adults Using the 8-Foot Up-and-Go: A New Measure of Functional Mobility. J. Aging Phys. Act. 2002, 10, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Ugarte Ll, J.; Vargas, R.F. Timed up and go values in older people with and without a history of falls. Rev. Med. Chil. 2021, 149, 1302–1310. [Google Scholar] [CrossRef]
Total | Women | Men | |
---|---|---|---|
N = 665 | N = 323 | N = 342 | |
Age (year) | 71 (65–78) | 70 (64–75) | 70.0 (66–78) |
Anthropometry | |||
Weight (kg) | 78.9 (±15.7) | 73.9 (±15.4) | 83.9 (±13.8) |
Height (m) | 1.66 (±0.09) | 1.59 (±0.06) | 1.73 (±0.07) |
BMI (kg/m2) | 28.6 (±5.2) | 29.1 (±6.0) | 28.1 (±4.1) |
Sarcopenia components | |||
HGS (kg) | 29 (±1.0) | 23 (±6) | 37 (±6) |
ALM/height2 (kg/m2) | 7.44 (±1.20) | 6.59 (±0.79) | 8.25 (±0.93) |
ALM/BMI (m2) | 0.74 (±0.19) | 0.59 (±0.10) | 0.89 (±0.12) |
TUG (s) | 9.2 (8.0–10.9) | 9.1 (7.9–10.8) | 9.2 (8.0–10.7) |
Indices of poor health | |||
Hospitalisation (≥1 in past month) | 48 (6.9%) | 23 (6.5%) | 25 (7.4%) |
Fracture (≥1 since age 50 year) | 94 (13.4%) | 58 (16.2%) | 36 (10.5%) |
Falls (≥1 in the past 12 month) | 177 (25.3%) | 110 (30.7%) | 67 (19.6%) |
Unadjusted | Adjusted for Age and Sex | ||||
---|---|---|---|---|---|
Sarcopenia Indicators (Predictors) | Indices of Poor Health (Outcomes) | Odds Ratios (95% CI) | p Value | Odds Ratios (95% CI) | p Value |
ALM/BMIGOS | |||||
Hospitalisation (≥1 in past month) | 1.23 (0.64–2.36) | 0.54 | 1.10 (0.56–2.16) | 0.79 | |
Fracture (≥1 since age 50 year) | 1.17 (0.72–1.93) | 0.53 | 1.17 (0.70–1.95) | 0.54 | |
Falls (≥1 in the past 12 month) | 1.51 (1.03–2.22) | 0.03 | 1.43 (0.96–2.14) | 0.08 | |
ALM/height2GOS | |||||
Hospitalisation (≥1 in past month) | 0.82 (0.19–3.54) | 0.79 | 0.68 (0.16–3.02) | 0.62 | |
Fracture (≥1 since age 50 year) | 1.64 (0.49–5.48) | 0.42 | 1.73 (0.51–5.87) | 0.38 | |
Falls (≥1 in the past 12 month) | 1.43 (0.68–2.98) | 0.35 | 1.22 (0.57–2.63) | 0.61 | |
HGSGOS | |||||
Hospitalisation (≥1 in past month) | 1.86 (0.99–3.49) | 0.05 | 1.54 (0.76–3.10) | 0.23 | |
Fracture (≥1 since age 50 year) | 1.36 (0.82–2.25) | 0.24 | 1.17 (0.67–2.04) | 0.59 | |
Falls (≥1 in the past 12 month) | 2.44 (1.66–3.58) | <0.001 | 2.04 (1.33–3.14) | 0.001 | |
TUGGOS | |||||
Hospitalisation (≥1 in past month) | 0.73 (0.39–1.34) | 0.30 | 0.89 (0.44–1.80) | 0.74 | |
Fracture (≥1 since age 50 year) | 0.56 (0.35–0.88) | 0.01 | 0.63 (0.38–1.05) | 0.08 | |
Falls (in the past 12 months) | 0.14 (0.29–0.59) | <0.001 | 0.58 (0.38–0.87) | 0.008 | |
ALM/height2EWGSOP2 | |||||
Hospitalisation (≥1 in past month) | 1.18 (0.41–3.45) | 0.76 | 1.02 (0.34–3.04) | 0.97 | |
Fractures (≥1 since age 50 year) | 1.26 (0.57–2.78) | 0.57 | 1.15 (0.51–2.58) | 0.73 | |
Falls (≥1 in the past 12 month) | 1.44 (0.77–2.67) | 0.25 | 1.14 (0.60–2.18) | 0.69 | |
HGSEWGSOP2 | |||||
Hospitalisation (≥1 in past month) | 3.28 (1.54–7.00) | 0.002 | 3.23 (1.35–7.78) | 0.009 | |
Fracture (≥1 since age 50 year) | 1.95 (1.01–3.77) | 0.05 | 1.38 (0.67–2.84) | 0.39 | |
Falls (in the past 12 month) | 3.24 (1.88–5.57) | <0.001 | 1.87 (1.03–3.38) | 0.04 | |
TUGEWGSOP2 | |||||
Hospitalisation (≥1 in past month) | 0.59 (0.13–2.64) | 0.59 | 0.80 (0.17–3.74) | 0.77 | |
Fracture (≥1 since age 50 year) | 055 (0.18–1.70) | 0.30 | 0.67 (0.21–2.16) | 0.50 | |
Falls (≥1 in the past 12 month) | 0.14 (0.05–0.37) | <0.001 | 0.20 (0.07–0.56) | 0.002 | |
ALM/BMIFNIH | |||||
Hospitalisation (≥1 in past month) | 1.36 (0.68–2.71) | 0.38 | 1.25 (0.62–2.53) | 0.53 | |
Fractures (≥1 since age 50 year) | 1.20 (0.71–2.04) | 0.50 | 1.12 (0.65–1.92) | 0.68 | |
Falls (≥1 in the past 12 month) | 1.38 (0.91–2.08) | 0.13 | 1.17 (0.77–1.80) | 0.46 | |
HGSFNIH | |||||
Hospitalisation (≥1 in past month) | 2.55 (1.13–5.77) | 0.02 | 2.37 (0.93–6.01) | 0.07 | |
Fractures (≥1 since age 50 year) | 2.10 (1.08–4.07) | 0.03 | 1.47 (0.71–3.05) | 0.28 | |
Falls (≥1 in the past 12 month) | 3.34 (1.92–5.82) | <0.001 | 1.90 (1.03–3.48) | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sui, S.X.; Holloway-Kew, K.L.; Hyde, N.K.; Williams, L.J.; Tembo, M.C.; West, E.; Pasco, J.A. How Well Do Low Population-Specific Values for Muscle Parameters Associate with Indices of Poor Physical Health? Cross-Sectional Data from the Geelong Osteoporosis Study. J. Clin. Med. 2022, 11, 2906. https://doi.org/10.3390/jcm11102906
Sui SX, Holloway-Kew KL, Hyde NK, Williams LJ, Tembo MC, West E, Pasco JA. How Well Do Low Population-Specific Values for Muscle Parameters Associate with Indices of Poor Physical Health? Cross-Sectional Data from the Geelong Osteoporosis Study. Journal of Clinical Medicine. 2022; 11(10):2906. https://doi.org/10.3390/jcm11102906
Chicago/Turabian StyleSui, Sophia X., Kara L. Holloway-Kew, Natalie K. Hyde, Lana J. Williams, Monica C. Tembo, Emma West, and Julie A. Pasco. 2022. "How Well Do Low Population-Specific Values for Muscle Parameters Associate with Indices of Poor Physical Health? Cross-Sectional Data from the Geelong Osteoporosis Study" Journal of Clinical Medicine 11, no. 10: 2906. https://doi.org/10.3390/jcm11102906
APA StyleSui, S. X., Holloway-Kew, K. L., Hyde, N. K., Williams, L. J., Tembo, M. C., West, E., & Pasco, J. A. (2022). How Well Do Low Population-Specific Values for Muscle Parameters Associate with Indices of Poor Physical Health? Cross-Sectional Data from the Geelong Osteoporosis Study. Journal of Clinical Medicine, 11(10), 2906. https://doi.org/10.3390/jcm11102906