Vitreomacular Interface Disorders in Proliferative Diabetic Retinopathy: An Optical Coherence Tomography Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Data Collection
2.3. Evaluation of OCT Images
2.4. Statistical Analysis
3. Results
3.1. Background Characteristics of Patients
3.2. Prevalence of VMID in PDR
3.3. Factors Associated with VMID in PDR
3.4. Comparisons of Intraretinal Structure and Visual Acuity in PDR with and without VMID
3.5. Comparisons of the MH Eyes with and without VMID
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duker, J.S.; Kaiser, P.K.; Binder, S.; de Smet, M.D.; Gaudric, A.; Reichel, E.; Sadda, S.R.; Sebag, J.; Spaide, R.F.; Stalmans, P. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 2013, 120, 2611–2619. [Google Scholar] [CrossRef] [PubMed]
- Liesenborghs, I.; De Clerck, E.E.B.; Berendschot, T.; Goezinne, F.; Schram, M.T.; Henry, R.M.A.; Stehouwer, C.D.A.; Webers, C.A.B.; Schouten, J. Prevalence of optical coherence tomography detected vitreomacular interface disorders: The Maastricht Study. Acta Ophthalmol. 2018, 96, 729–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eser Öztürk, H.; Eşki Yücel, Ö.; Süllü, Y. Vitreomacular Interface Disorders in Behçet’s Uveitis. Turk. J. Ophthalmol. 2017, 47, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Fragiotta, S.; Rossi, T.; Carnevale, C.; Cutini, A.; Tricarico, S.; Casillo, L.; Scuderi, G.; Vingolo, E.M. Vitreo-macular interface disorders in retinitis pigmentosa. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 2137–2146. [Google Scholar] [CrossRef]
- Akbar Khan, I.; Mohamed, M.D.; Mann, S.S.; Hysi, P.G.; Laidlaw, D.A. Prevalence of vitreomacular interface abnormalities on spectral domain optical coherence tomography of patients undergoing macular photocoagulation for centre involving diabetic macular oedema. Br. J. Ophthalmol. 2015, 99, 1078–1081. [Google Scholar] [CrossRef]
- Heng, L.Z.; Comyn, O.; Peto, T.; Tadros, C.; Ng, E.; Sivaprasad, S.; Hykin, P.G. Diabetic retinopathy: Pathogenesis, clinical grading, management and future developments. Diabet Med. 2013, 30, 640–650. [Google Scholar] [CrossRef]
- Sebag, J. Diabetic vitreopathy. Ophthalmology 1996, 103, 205–206. [Google Scholar] [CrossRef]
- Vaz-Pereira, S.; Morais-Sarmento, T.; Esteves Marques, R. Optical coherence tomography features of neovascularization in proliferative diabetic retinopathy: A systematic review. Int. J. Retin. Vitr. 2020, 6, 26. [Google Scholar] [CrossRef]
- Chang, P.Y.; Yang, C.M.; Yang, C.H.; Chen, M.S.; Wang, J.Y. Pars plana vitrectomy for diabetic fibrovascular proliferation with and without internal limiting membrane peeling. Eye 2009, 23, 960–965. [Google Scholar] [CrossRef]
- Hsu, Y.R.; Yang, C.M.; Yeh, P.T. Clinical and histological features of epiretinal membrane after diabetic vitrectomy. Graefes Arch Clin. Exp. Ophthalmol. 2014, 252, 401–410. [Google Scholar] [CrossRef]
- Ohno-Matsui, K.; Wu, P.C.; Yamashiro, K.; Vutipongsatorn, K.; Fang, Y.; Cheung, C.M.G.; Lai, T.Y.Y.; Ikuno, Y.; Cohen, S.Y.; Gaudric, A.; et al. IMI Pathologic Myopia. Investig. Ophthalmol. Vis. Sci. 2021, 62, 5. [Google Scholar] [CrossRef] [PubMed]
- Early Treatment Diabetic Retinopathy Study Research Group. Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology 1991, 98, 741–756. [Google Scholar] [CrossRef]
- Holladay, J.T. Visual acuity measurements. J. Cataract. Refract. Surg. 2004, 30, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Meuer, S.M.; Myers, C.E.; Klein, B.E.; Swift, M.K.; Huang, Y.; Gangaputra, S.; Pak, J.W.; Danis, R.P.; Klein, R. The epidemiology of vitreoretinal interface abnormalities as detected by spectral-domain optical coherence tomography: The beaver dam eye study. Ophthalmology 2015, 122, 787–795. [Google Scholar] [CrossRef] [Green Version]
- Pang, C.E.; Spaide, R.F.; Freund, K.B. Comparing functional and morphologic characteristics of lamellar macular holes with and without lamellar hole-associated epiretinal proliferation. Retina 2015, 35, 720–726. [Google Scholar] [CrossRef]
- Im, J.C.; Kim, J.H.; Park, D.H.; Shin, J.P. Structural Changes of the Macula on Optical Coherence Tomography after Vitrectomy for Proliferative Diabetic Retinopathy. Ophthalmologica 2017, 238, 186–195. [Google Scholar] [CrossRef]
- Su, C.C.; Yang, C.H.; Yeh, P.T.; Yang, C.M. Macular tractional retinoschisis in proliferative diabetic retinopathy: Clinical characteristics and surgical outcome. Ophthalmologica 2014, 231, 23–30. [Google Scholar] [CrossRef]
- Staurenghi, G.; Sadda, S.; Chakravarthy, U.; Spaide, R.F. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: The IN•OCT consensus. Ophthalmology 2014, 121, 1572–1578. [Google Scholar] [CrossRef]
- Zur, D.; Iglicki, M.; Feldinger, L.; Schwartz, S.; Goldstein, M.; Loewenstein, A.; Barak, A. Disorganization of Retinal Inner Layers as a Biomarker for Idiopathic Epiretinal Membrane After Macular Surgery-The DREAM Study. Am. J. Ophthalmol. 2018, 196, 129–135. [Google Scholar] [CrossRef]
- Yang, C.M.; Yeh, P.T.; Cheng, S.F.; Yang, C.H.; Chen, M.S. Macular appearance after diabetic vitrectomy for fibrovascular proliferation: An optical coherence tomography study. Acta Ophthalmol. 2010, 88, 193–198. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Hagenau, F.; Vogt, D.; Ziada, J.; Guenther, S.R.; Haritoglou, C.; Wolf, A.; Priglinger, S.G.; Schumann, R.G. Vitrectomy for Diabetic Macular Edema: Optical Coherence Tomography Criteria and Pathology of the Vitreomacular Interface. Am. J. Ophthalmol. 2019, 200, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.; Xu, L.; You, Q.S.; Wang, Y.X.; Chen, C.X.; Yang, H.; Zhou, J.Q.; Jonas, J.B.; Wei, W.B. Prevalence and associations of incomplete posterior vitreous detachment in adult Chinese: The Beijing Eye Study. PLoS ONE 2013, 8, e58498. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; Stalmans, P. Prevalence of Vitreoretinal Interface Abnormalities as Detected by Spectral-Domain Optical Coherence Tomography. Ophthalmologica 2016, 236, 81–87. [Google Scholar] [CrossRef]
- Yeh, P.T.; Cheng, C.K.; Chen, M.S.; Yang, C.H.; Yang, C.M. Macular hole in proliferative diabetic retinopathy with fibrovascular proliferation. Retina 2009, 29, 355–361. [Google Scholar] [CrossRef]
- Govetto, A.; Dacquay, Y.; Farajzadeh, M.; Platner, E.; Hirabayashi, K.; Hosseini, H.; Schwartz, S.D.; Hubschman, J.P. Lamellar Macular Hole: Two Distinct Clinical Entities? Am. J. Ophthalmol. 2016, 164, 99–109. [Google Scholar] [CrossRef]
- Maheshwary, A.S.; Oster, S.F.; Yuson, R.M.; Cheng, L.; Mojana, F.; Freeman, W.R. The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema. Am. J. Ophthalmol. 2010, 150, 63–67.e61. [Google Scholar] [CrossRef] [Green Version]
- Mikhail, M.; Stewart, S.; Seow, F.; Hogg, R.; Lois, N. Vitreomacular interface abnormalities in patients with diabetic macular oedema and their implications on the response to anti-VEGF therapy. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 1411–1418. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.K.; Cheng, C.K.; Peng, C.H. The incidence and risk factors for the development of vitreomacular interface abnormality in diabetic macular edema treated with intravitreal injection of anti-VEGF. Eye 2017, 31, 762–770. [Google Scholar] [CrossRef] [Green Version]
- Flores-Moreno, I.; Arias-Barquet, L.; Vidal-Martí, M.; Muñoz-Blanco, A.; Rubio-Caso, M.J.; Ruiz-Moreno, J.M.; Duker, J.S.; Caminal, J.M. The Prevalence of Vitreomacular Interface Pathology in a Spanish Tertiary Hospital. Ophthalmologica 2016, 235, 179–183. [Google Scholar] [CrossRef]
- Zapata, M.A.; Figueroa, M.S.; Esteban González, E.; Huguet, C.; Giralt, J.; Gallego Pinazo, R.; Abecia, E. Prevalence of Vitreoretinal Interface Abnormalities on Spectral-Domain OCT in Healthy Participants over 45 Years of Age. Ophthalmology. Retina 2017, 1, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Quinn, N.B.; Steel, D.H.; Chakravarthy, U.; Peto, T.; Hamill, B.; Muldrew, A.; Graham, K.; Elliott, D.; Hennessy, R.; Cruise, S.; et al. Assessment of the Vitreomacular Interface Using High-Resolution OCT in a Population-Based Cohort Study of Older Adults. Ophthalmol. Retin. 2020, 4, 801–813. [Google Scholar] [CrossRef] [PubMed]
Type | N | % of VMID | % of PDR Sample | |
---|---|---|---|---|
VMID | 401 | 100 | 81.3 | |
Vitreomacular relationship | VMA | 10 | 2.5 | 2.0 |
VMT | 66 | 16.5 | 13.4 | |
Epiretinal proliferation | ERM | 389 | 97.0 | 78.9 |
LHEP | 11 | 2.7 | 2.2 | |
Macular hole | LMH | 15 | 3.7 | 3.0 |
FTMH | 9 | 2.2 | 1.8 |
Characteristics | VMID (−) (N = 92) | VMID (+) (N = 401) | p | VMT (N = 66) | p | ERM (N = 389) | p | LMH (N = 15) | p | FTMH (N = 9) | p |
---|---|---|---|---|---|---|---|---|---|---|---|
Age, mean ± SD, year | 56.9 ± 7.6 | 55.3 ± 8.6 | 0.186 | 55.0 ± 8.7 | 0.364 | 55.3 ± 8.6 | 0.192 | 55.9 ± 9.1 | 0.746 | 58.3 ± 4.2 | 0.508 |
Female, N (%) | 57(62) | 257(64) | 0.701 | 44(67) | 0.543 | 249(64) | 0.713 | 13(87) | 0.062 | 8(89) | 0.080 |
Laterality of eye, right, N (%) | 50(54) | 193(48) | 0.282 | 31(47) | 0.360 | 183(47) | 0.207 | 8(53) | 0.942 | 6(67) | 0.478 |
Hypertension, N (%) | 51(55) | 254(63) | 0.159 | 44(67) | 0.155 | 246(63) | 0.166 | 8(53) | 0.879 | 4(44) | 0.527 |
Diabetic macular edema, N (%) | 3(3) | 11(3) | 0.791 | 2(3) | 0.935 | 10(3) | 0.720 | 0(0) | 0.478 | 0(0) | 0.582 |
Prior cataract surgery, N (%) | 6(7) | 50(12) | 0.105 | 10(15) | 0.076 | 48(12) | 0.112 | 2(13) | 0.390 | 0(0) | 0.282 |
Vitreous hemorrhage, N (%) | 47(51) | 203(51) | 0.936 | 34(52) | 0.958 | 200(51) | 0.955 | 3(20) | 0.025 | 3(33) | 0.305 |
Prior intravitreal injection, N (%) | 5(5) | 20(5) | 0.861 | 4(6) | 0.867 | 19(5) | 0.829 | 0(0) | 0.213 | 0(0) | 0.328 |
Prior PRP, N (%) | 45(49) | 194(48) | 0.926 | 33(50) | 0.893 | 186(48) | 0.850 | 11(73) | 0.079 | 3(33) | 0.367 |
FVP, N (%) | 34(37) | 257(64) | <0.001 | 56(85) | <0.001 | 250(64) | <0.001 | 14(93) | <0.001 | 7(78) | 0.002 |
High-risk PDR, N (%) | 59(64) | 331(83) | <0.001 | 61(92) | <0.001 | 322(83) | <0.001 | 14(93) | 0.012 | 9(100) | 0.006 |
Characteristics | VMT (N = 66) | ERM (N = 389) | MH (N = 24) | |||
---|---|---|---|---|---|---|
OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
Age | 0.994 (0.962–1.027) | 0.720 | 0.979 (0.956–1.000) | 0.090 | 1.019 (0.973–1.067) | 0.421 |
Female (vs. male) | 1.172 (0.646–2.128) | 0.600 | 1.070 (0.686–1.680) | 0.760 | 4.173(1.239–14.063) | 0.021 |
Hypertension | 1.221 (0.683–2.183) | 0.500 | 1.320 (0.845–2.050) | 0.220 | 0.615 (0.273–1.385) | 0.240 |
Diabetic macular edema | 1.373 (0.351–5.368) | 0.650 | 0.665 (0.207–2.140) | 0.490 | NA | NA |
Prior cataract surgery | 1.742 (0.829–3.659) | 0.140 | 1.710 (0.769–3.790) | 0.190 | 0.661 (0.145–3.018) | 0.590 |
Vitreous hemorrhage | 1.012 (0.616–1.663) | 0.960 | 1.140 (0.735–1.770) | 0.560 | 0.315 (0.124–0.799) | 0.015 |
Prior intravitreal injection | 1.465 (0.551–3.896) | 0.440 | 0.837 (0.328–2.130) | 0.710 | NA | NA |
Prior PRP | 1.198 (0.674–2.131) | 0.540 | 0.881 (0.574–1.350) | 0.560 | 1.454 (0.639–3.309) | 0.370 |
FVP | 4.297 (2.142–8.621) | <0.001 | 2.770 (1.790–4.280) | <0.001 | 8.170 (1.926–34.687) | 0.004 |
High-risk PDR | 3.121 (1.281–7.603) | 0.012 | 2.580 (1.580–4.210) | <0.001 | 6.312 (0.788–50.536) | 0.083 |
Characteristics | VMID (−) (N = 92) | VMID (+) (N = 401) | p | VMT (N = 66) | p | ERM (N = 389) | p | LMH (N = 15) | p | FTMH (N = 9) | p |
---|---|---|---|---|---|---|---|---|---|---|---|
Macular cysts, N (%) | 20(22) | 168(42) | <0.001 | 31(47) | 0.001 | 163(42) | <0.001 | 9(60) | 0.004 | 6(67) | 0.006 |
Retinoschisis, N (%) | 10(11) | 89(22) | 0.014 | 20(30) | 0.002 | 87(22) | 0.013 | 6(40) | 0.002 | 1(11) | 0.982 |
TRD, N (%) | 12(13) | 164(41) | <0.001 | 54(82) | <0.001 | 157(40) | <0.001 | 11(73) | <0.001 | 9(100) | <0.001 |
SRD, N (%) | 5(5) | 17(4) | 0.625 | 0(0) | 0.019 | 17(4) | 0.667 | 0(0) | 0.213 | 0(0) | 0.328 |
EZ disruption, N (%) | 68(74) | 327(82) | 0.098 | 52(79) | 0.480 | 318(82) | 0.090 | 11(75) | 0.962 | 9(100) | 0.023 |
DRIL, N (%) | 54(59) | 242(60) | 0.770 | 39(59) | 0.960 | 235(60) | 0.763 | 9(60) | 0.924 | 7(78) | 0.247 |
Hard exudates, N (%) | 80(87) | 329(82) | 0.258 | 54(82) | 0.375 | 317(81) | 0.214 | 12(80) | 0.490 | 9(100) | 0.122 |
CMT (um) | 236.7 ± 141.2 | 328.0 ± 206.5 | <0.001 | 385.6 ± 262.1 | <0.001 | 323.1 ± 197.8 | <0.001 | 285.1 ± 358.8 | 0.051 | 610.6 ± 325.1 | <0.001 |
BCVA, mean ± SD | 0.83 ± 0.52 | 1.08 ± 0.69 | 0.001 | 1.10 ± 0.56 | 0.001 | 1.10 ± 0.69 | <0.001 | 1.53 ± 0.87 | 0.001 | 1.63 ± 0.70 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, A.; Xia, H.; Zhang, A.; Liu, X.; Chen, H. Vitreomacular Interface Disorders in Proliferative Diabetic Retinopathy: An Optical Coherence Tomography Study. J. Clin. Med. 2022, 11, 3266. https://doi.org/10.3390/jcm11123266
Lin A, Xia H, Zhang A, Liu X, Chen H. Vitreomacular Interface Disorders in Proliferative Diabetic Retinopathy: An Optical Coherence Tomography Study. Journal of Clinical Medicine. 2022; 11(12):3266. https://doi.org/10.3390/jcm11123266
Chicago/Turabian StyleLin, Aidi, Honghe Xia, Anlin Zhang, Xinyu Liu, and Haoyu Chen. 2022. "Vitreomacular Interface Disorders in Proliferative Diabetic Retinopathy: An Optical Coherence Tomography Study" Journal of Clinical Medicine 11, no. 12: 3266. https://doi.org/10.3390/jcm11123266
APA StyleLin, A., Xia, H., Zhang, A., Liu, X., & Chen, H. (2022). Vitreomacular Interface Disorders in Proliferative Diabetic Retinopathy: An Optical Coherence Tomography Study. Journal of Clinical Medicine, 11(12), 3266. https://doi.org/10.3390/jcm11123266