Application Progress of High-Throughput Sequencing in Ocular Diseases
Abstract
:1. Introduction
2. Traditional Diagnostic Methods to Determine the Cause of Ocular Diseases
2.1. Microbial Culture Technology
2.2. Polymerase Chain Reaction (PCR)
2.3. Confocal Microscopy
3. Applications of HTS Technology in Ocular Diseases
3.1. HTS Can Identify Ocular Surface Microbes
3.1.1. Identification of Non-Pathogenic Microorganisms on the Ocular Surface
3.1.2. Identification of Pathogenic Microorganisms on the Ocular Surface
3.2. Application of HTS Technology in Intraocular Diseases
3.2.1. Diabetic Retinopathy (DR)
3.2.2. Uveitis
3.2.3. Endophthalmitis
3.2.4. Intraocular Tumor
3.2.5. Glaucoma
3.3. Application of HTS in the Refractive System
4. Discussion
4.1. Advantages and Limitations of Traditional Pathogen Identification Techniques
4.2. Application Status and Prospects of HTS Technology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Watson, J.D.; Crick, F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Holley, R.W.; Apgar, J.; Everett, G.A.; Madison, J.T.; Marquisee, M.; Merrill, S.H.; Penswick, J.R.; Zamir, A. Structure of a Ribonucleic Acid. Science 1965, 147, 1462–1465. [Google Scholar] [CrossRef] [PubMed]
- Madison, J.T.; Holley, R.W. The Presence of 5,6-Dihydrouridylic Acid in Yeast “Soluble” Ribonucleic Acid. Biochem. Biophys. Res. Commun. 1965, 18, 153–157. [Google Scholar] [CrossRef]
- Min Jou, W.; Haegeman, G.; Ysebaert, M.; Fiers, W. Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein. Nature 1972, 237, 82–88. [Google Scholar]
- Sanger, F.; Coulson, A.R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 1975, 94, 441–448. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorado, G.; Gálvez, S.; Rosales, T.E.; Vásquez, V.F.; Hernández, P. Analyzing Modern Biomolecules: The Revolution of Nucleic-Acid Sequencing—Review. Biomolecules 2021, 11, 1111. [Google Scholar] [CrossRef]
- Ditz, B.; Christenson, S.; Rossen, J.; Brightling, C.; Kerstjens, H.A.M.; van den Berge, M.; Faiz, A. Sputum microbiome profiling in COPD: Beyond singular pathogen detection. Thorax 2020, 75, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Pareek, C.S.; Smoczynski, R.; Tretyn, A. Sequencing technologies and genome sequencing. J. Appl. Genet. 2011, 52, 413–435. [Google Scholar] [CrossRef] [Green Version]
- Logares, R.; Sunagawa, S.; Salazar, G.; Cornejo-Castillo, F.M.; Ferrera, I.; Sarmento, H.; Hingamp, P.; Ogata, H.; de Vargas, C.; Lima-Mendez, G.; et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ. Microbiol. 2014, 16, 2659–2671. [Google Scholar] [CrossRef]
- Laudadio, I.; Fulci, V.; Palone, F.; Stronati, L.; Cucchiara, S.; Carissimi, C. Quantitative Assessment of Shotgun Metagenomics and 16S rDNA Amplicon Sequencing in the Study of Human Gut Microbiome. Omics A J. Integr. Biol. 2018, 22, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Ardui, S.; Ameur, A.; Vermeesch, J.R.; Hestand, M.S. Single molecule real-time (SMRT) sequencing comes of age: Applications and utilities for medical diagnostics. Nucleic Acids Res. 2018, 46, 2159–2168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, N.A.; Elenitoba-Johnson, K.S.J. Enabling Precision Oncology Through Precision Diagnostics. Annu. Rev. Pathol. 2020, 15, 97–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastropasqua, L.; Toto, L.; Chiricosta, L.; Diomede, F.; Gugliandolo, A.; Silvestro, S.; Marconi, G.D.; Sinjari, B.; Vecchiet, J.; Cipollone, F.; et al. Transcriptomic analysis revealed increased expression of genes involved in keratinization in the tears of COVID-19 patients. Sci. Rep. 2021, 11, 19817. [Google Scholar] [CrossRef]
- Bhikoo, R.; Wang, N.; Welch, S.; Polkinghorne, P.; Niederer, R. Factors Associated With Positive Microbial Culture in Patients With Endophthalmitis Based on Clinical Presentation and Multimodal Intraocular Sampling. Asia-Pac. J. Ophthalmol. 2020, 9, 4–8. [Google Scholar] [CrossRef]
- Hoffman, J.J.; Dart, J.K.G.; De, S.K.; Carnt, N.; Cleary, G.; Hau, S. Comparison of culture, confocal microscopy and PCR in routine hospital use for microbial keratitis diagnosis. Eye 2021. [Google Scholar] [CrossRef]
- Deng, Y.; Ge, X.; Li, Y.; Zou, B.; Wen, X.; Chen, W.; Lu, L.; Zhang, M.; Zhang, X.; Li, C.; et al. Identification of an intraocular microbiota. Cell Discov. 2021, 7, 13. [Google Scholar] [CrossRef]
- Rezende, F.A.; Qian, C.X.; Sapieha, P. Evaluation of the vitreous microbial contamination rate in office-based three-port microincision vitrectomy surgery using Retrector technology. BMC Ophthalmol. 2014, 14, 58. [Google Scholar] [CrossRef] [Green Version]
- Bacchelli, C.; Williams, H.J. Opportunities and technical challenges in next-generation sequencing for diagnosis of rare pediatric diseases. Expert Rev. Mol. Diagn. 2016, 16, 1073–1082. [Google Scholar] [CrossRef] [Green Version]
- Leung, E.H.; Kuriyan, A.E.; Flynn, H.W., Jr.; Miller, D.; Huang, L.C. Persistently Vitreous Culture-Positive Exogenous Bacterial Endophthalmitis. Am. J. Ophthalmol. 2016, 165, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.J.; Yadav, R.; Sanyam, S.D.; Chaudhary, P.; Roshan, A.; Singh, S.K.; Arunga, S.; Hu, V.H.; Macleod, D.; Leck, A.; et al. Microbial Keratitis in Nepal: Predicting the Microbial Aetiology from Clinical Features. J. Fungi 2022, 8, 201. [Google Scholar] [CrossRef] [PubMed]
- Saiki, R.K.; Scharf, S.; Faloona, F.; Mullis, K.B.; Horn, G.T.; Erlich, H.A.; Arnheim, N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 1985, 230, 1350–1354. [Google Scholar] [CrossRef] [PubMed]
- Green, M.R.; Sambrook, J. Nested Polymerase Chain Reaction. Cold Spring Harb. Protoc. 2019. [Google Scholar] [CrossRef] [PubMed]
- Kubista, M.; Andrade, J.M.; Bengtsson, M.; Forootan, A.; Jonák, J.; Lind, K.; Sindelka, R.; Sjöback, R.; Sjögreen, B.; Strömbom, L.; et al. The real-time polymerase chain reaction. Mol. Asp. Med. 2006, 27, 95–125. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Quantification of RNA by Real-Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Cold Spring Harb. Protoc. 2018. [Google Scholar] [CrossRef]
- Elyashiv, S.M.; Samson, C.M.; Jabs, D.A. Retinal findings in presumed infectious posterior uveitis and correlation with polymerase chain reaction results. Retina 2020, 40, 567–571. [Google Scholar] [CrossRef]
- Khanaliha, K.; Bokharaei-Salim, F.; Hedayatfar, A.; Esteghamati, A.; Alemzadeh, S.A.; Asgari, Q.; Garshasbi, S.; Salemi, B. Comparison of real-time PCR and nested PCR for toxoplasmosis diagnosis in toxoplasmic retinochoroiditis patients. BMC Infect. Dis. 2021, 21, 1180. [Google Scholar] [CrossRef]
- Sandhu, H.S.; Hajrasouliha, A.; Kaplan, H.J.; Wang, W. Diagnostic Utility of Quantitative Polymerase Chain Reaction versus Culture in Endophthalmitis and Uveitis. Ocul. Immunol. Inflamm. 2019, 27, 578–582. [Google Scholar] [CrossRef]
- Cabrera-Aguas, M.; Kerdraon, Y.; Watson, S.L. Diagnosis using polymerase chain reaction and outcomes in herpes simplex keratitis. Acta Ophthalmol. 2021, 99, e770–e771. [Google Scholar] [CrossRef]
- Magalhaes, K.A.; Pussi, K.F.; Araujo, H.K.; Carmo, S.B.D.; Friozi, E.; Branquinho, L.S.; Lima Junior, M.; Neitzke-Abreu, H.C. Polymerase chain reaction using conjunctival swab samples for detecting Leishmania DNA in dogs. Rev. Bras. Parasitol. Vet. 2021, 30, e009121. [Google Scholar] [CrossRef]
- Elliott, A.D. Confocal Microscopy: Principles and Modern Practices. Curr. Protoc. Cytom. 2020, 92, e68. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, S.; Masoomi, A.; Ahmadikia, K.; Tabatabaei, S.A.; Soleimani, M.; Rezaie, S.; Ghahvechian, H.; Banafsheafshan, A. Fungal keratitis: An overview of clinical and laboratory aspects. Mycoses 2018, 61, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Erie, J.C.; McLaren, J.W.; Patel, S.V. Confocal microscopy in ophthalmology. Am. J. Ophthalmol. 2009, 148, 639–646. [Google Scholar] [CrossRef]
- Randon, M.; Liang, H.; El Hamdaoui, M.; Tahiri, R.; Batellier, L.; Denoyer, A.; Labbe, A.; Baudouin, C. In vivo confocal microscopy as a novel and reliable tool for the diagnosis of Demodex eyelid infestation. Br. J. Ophthalmol. 2015, 99, 336–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyman, A.; Pourazizi, M.; Peyman, M.; Kianersi, F. Natural Honey-Induced Acanthamoeba keratitis. Middle East Afr. J. Ophthalmol. 2019, 26, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Bian, J.; Wang, Y.; Wang, S.; Wang, X.; Shi, W. Clinical features and serial changes of Acanthamoeba keratitis: An in vivo confocal microscopy study. Eye 2020, 34, 327–334. [Google Scholar] [CrossRef]
- Chidambaram, J.D.; Prajna, N.V.; Larke, N.L.; Palepu, S.; Lanjewar, S.; Shah, M.; Elakkiya, S.; Lalitha, P.; Carnt, N.; Vesaluoma, M.H.; et al. Prospective Study of the Diagnostic Accuracy of the In Vivo Laser Scanning Confocal Microscope for Severe Microbial Keratitis. Ophthalmology 2016, 123, 2285–2293. [Google Scholar] [CrossRef] [Green Version]
- Vaddavalli, P.K.; Garg, P.; Sharma, S.; Sangwan, V.S.; Rao, G.N.; Thomas, R. Role of confocal microscopy in the diagnosis of fungal and acanthamoeba keratitis. Ophthalmology 2011, 118, 29–35. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, B.; Li, W. Defining the normal core microbiome of conjunctival microbial communities. Clin. Microbiol. Infect. 2016, 22, 643.e7–643.e12. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.; Brulc, J.M.; Iovieno, A.; Bates, B.; Garoutte, A.; Miller, D.; Revanna, K.V.; Gao, X.; Antonopoulos, D.A.; Slepak, V.Z.; et al. Diversity of bacteria at healthy human conjunctiva. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5408–5413. [Google Scholar] [CrossRef] [Green Version]
- Kuo, M.T.; Chao, T.L.; Kuo, S.F.; Chien, C.C.; Chen, A.; Lai, Y.H.; Huang, Y.T. A Genomic Approach to Investigating Ocular Surface Microorganisms: Monitoring Core Microbiota on Eyelid Margin with a Dot hybridization Assay. Int. J. Mol. Sci. 2020, 21, 8299. [Google Scholar] [CrossRef]
- Shivaji, S.; Jayasudha, R.; Sai Prashanthi, G.; Kalyana Chakravarthy, S.; Sharma, S. The Human Ocular Surface Fungal Microbiome. Investig. Ophthalmol. Vis. Sci. 2019, 60, 451–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lalitha, P.; Seitzman, G.D.; Kotecha, R.; Hinterwirth, A.; Chen, C.; Zhong, L.; Cummings, S.; Lebas, E.; Sahoo, M.K.; Pinsky, B.A.; et al. Unbiased Pathogen Detection and Host Gene Profiling for Conjunctivitis. Ophthalmology 2019, 126, 1090–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doan, T.; Wilson, M.R.; Crawford, E.D.; Chow, E.D.; Khan, L.M.; Knopp, K.A.; O’Donovan, B.D.; Xia, D.; Hacker, J.K.; Stewart, J.M.; et al. Illuminating uveitis: Metagenomic deep sequencing identifies common and rare pathogens. Genome Med. 2016, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Gonzales, J.; Doan, T.; Shantha, J.G.; Bloomer, M.; Wilson, M.R.; DeRisi, J.L.; Acharya, N. Metagenomic deep sequencing of aqueous fluid detects intraocular lymphomas. Br. J. Ophthalmol. 2018, 102, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Akileswaran, L.; Tibbetts, M.D.; Garg, S.J.; Van Gelder, R.N. Identification of torque teno virus in culture-negative endophthalmitis by representational deep DNA sequencing. Ophthalmology 2015, 122, 524–530. [Google Scholar] [CrossRef] [Green Version]
- Ai, J.W.; Weng, S.S.; Cheng, Q.; Cui, P.; Li, Y.J.; Wu, H.L.; Zhu, Y.M.; Xu, B.; Zhang, W.H. Human Endophthalmitis Caused by Pseudorabies Virus Infection, China, 2017. Emerg. Infect. Dis. 2018, 24, 1087–1090. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhang, J.; Gong, M.; Pan, R.; Liu, Y.; Tao, L.; He, K. Transcriptome Analysis of the Gene Expression Profiles Associated with Fungal Keratitis in Mice Based on RNA-Seq. Investig. Ophthalmol. Vis. Sci. 2020, 61, 32. [Google Scholar] [CrossRef]
- Lee, S.N.; Kim, S.J.; Yoon, S.A.; Song, J.M.; Ahn, J.S.; Kim, H.C.; Choi, A.M.K.; Yoon, J.H. CD44v3-Positive Intermediate Progenitor Cells Contribute to Airway Goblet Cell Hyperplasia. Am. J. Respir. Cell Mol. Biol. 2021, 64, 247–259. [Google Scholar] [CrossRef]
- Qin, T.; Yang, J.; Huang, D.; Zhang, Z.; Huang, Y.; Chen, H.; Xu, G. DOCK4 stimulates MUC2 production through its effect on goblet cell differentiation. J. Cell. Physiol. 2021, 236, 6507–6519. [Google Scholar] [CrossRef]
- Xu, J.; Flaczyk, A.; Neal, L.M.; Fa, Z.; Eastman, A.J.; Malachowski, A.N.; Cheng, D.; Moore, B.B.; Curtis, J.L.; Osterholzer, J.J.; et al. Scavenger Receptor MARCO Orchestrates Early Defenses and Contributes to Fungal Containment during Cryptococcal Infection. J. Immunol. 2017, 198, 3548–3557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmgaard, D.B.; Barnadas, C.; Mirbarati, S.H.; O’Brien Andersen, L.; Nielsen, H.V.; Stensvold, C.R. Detection and Identification of Acanthamoeba and Other Nonviral Causes of Infectious Keratitis in Corneal Scrapings by Real-Time PCR and Next-Generation Sequencing-Based 16S-18S Gene Analysis. J. Clin. Microbiol. 2021, 59, e02224-20. [Google Scholar] [CrossRef] [PubMed]
- Hirota, K.; Keino, H.; Inoue, M.; Ishida, H.; Hirakata, A. Comparisons of microRNA expression profiles in vitreous humor between eyes with macular hole and eyes with proliferative diabetic retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2015, 253, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Yuan, M.; Liu, Y.; Zhao, X.; Lian, P.; Chen, Y.; Liu, B.; Lu, L. Landscape of microRNA in the aqueous humour of proliferative diabetic retinopathy as assessed by next-generation sequencing. Clin. Exp. Ophthalmol. 2019, 47, 925–936. [Google Scholar] [CrossRef]
- Wang, J.; Valiente-Soriano, F.J.; Nadal-Nicolás, F.M.; Rovere, G.; Chen, S.; Huang, W.; Agudo-Barriuso, M.; Jonas, J.B.; Vidal-Sanz, M.; Zhang, X. MicroRNA regulation in an animal model of acute ocular hypertension. Acta Ophthalmol. 2017, 95, e10–e21. [Google Scholar] [CrossRef] [Green Version]
- Plastino, F.; Pesce, N.A.; André, H. MicroRNAs and the HIF/VEGF axis in ocular neovascular diseases. Acta Ophthalmol. 2021, 99, e1255–e1262. [Google Scholar] [CrossRef]
- Liu, B.; Cong, C.; Ma, Y.; Ma, X.; Zhang, H.; Wang, J. Potential value of lncRNAs as a biomarker for proliferative diabetic retinopathy. Eye 2022, 36, 575–584. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Wang, Y.; Zhang, X.; Gao, K.; Chen, S.; Zhang, X. microRNA Profiling in Glaucoma Eyes with Varying Degrees of Optic Neuropathy by using Next-Generation Sequencing. Investig. Opthalmol. Vis. Sci. 2018, 59, 2955–2966. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, Y.; Chen, Y.; Fang, X.; Wen, T.; Xiao, M.; Chen, S.; Zhang, X. Discovery and Validation of Circulating Hsa-miR-210-3p as a Potential Biomarker for Primary Open-Angle Glaucoma. Investig. Opthalmol. Vis. Sci. 2019, 60, 2925–2934. [Google Scholar] [CrossRef] [Green Version]
- Hubens, W.H.G.; Krauskopf, J.; Beckers, H.J.M.; Kleinjans, J.C.S.; Webers, C.A.B.; Gorgels, T. Small RNA Sequencing of Aqueous Humor and Plasma in Patients With Primary Open-Angle Glaucoma. Investig. Ophthalmol. Vis. Sci. 2021, 62, 24. [Google Scholar] [CrossRef]
- Seong, H.; Cho, H.K.; Kee, C.; Song, D.H.; Cho, M.C.; Kang, S.S. Profiles of microRNA in aqueous humor of normal tension glaucoma patients using RNA sequencing. Sci. Rep. 2021, 11, 19024. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, W.; Zhu, D.; Zhou, J. microRNA profiling in the aqueous humor of highly myopic eyes using next generation sequencing. Exp. Eye Res. 2020, 195, 108034. [Google Scholar] [CrossRef] [PubMed]
- Niu, T.; Fang, J.; Shi, X.; Zhao, M.; Xing, X.; Wang, Y.; Zhu, S.; Liu, K. Pathogenesis Study Based on High-Throughput Single-Cell Sequencing Analysis Reveals Novel Transcriptional Landscape and Heterogeneity of Retinal Cells in Type 2 Diabetic Mice. Diabetes 2021, 70, 1185–1197. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Zhang, Z.; Liu, X.; Wang, Q.; Hong, Y.; Li, X.; Liu, J. RNA sequencing reveals BMP4 as a basis for the dual-target treatment of diabetic retinopathy. J. Mol. Med. 2021, 99, 225–240. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Guo, Z.; Zheng, Y.; Li, Q.; Yuan, X.; Hua, X. Analysis of the clinical diagnosis and treatment of uveitis. Ann. Palliat. Med. 2021, 10, 12782–12788. [Google Scholar] [CrossRef]
- Zhang, M.X.; Peng, X.Y.; Hu, F.; Wei, Z.Y.; Lu, X.X.; Liang, Q.F. Identification of pathogens in the vitreous of patients with infectious uveitis by metagenomic sequencing. Chin. J. Ophthalmol. 2020, 56, 519–523. [Google Scholar]
- Valdes, L.; Bispo, P.; Sobrin, L. Application of Metagenomic Sequencing in the Diagnosis of Infectious Uveitis. Semin. Ophthalmol. 2020, 35, 276–279. [Google Scholar] [CrossRef]
- Coleman, B.; Coleman, B.; Jaeger, J. Delayed Onset Postsurgical Endophthalmitis. J. Am. Med. Dir. Assoc. 2021, 22, B5. [Google Scholar] [CrossRef]
- Kim, K.W.; Park, U.C.; Ahn, J.; Kim, J.H.; Lee, S.J.; Nam, K.Y.; Kim, M.; Woo, S.J. Infectious endophthalmitis after scleral fixation of an intraocular lens. Retina 2021, 41, 2310–2317. [Google Scholar] [CrossRef]
- Starr, M.R.; Huang, D.; Israilevich, R.N.; Ammar, M.J.; Patel, L.G.; Gupta, O.P.; Fineman, M.S.; Hsu, J.; Kaiser, R.S.; Kuriyan, A.E.; et al. Endophthalmitis after Minimally Invasive Glaucoma Surgery. Ophthalmology 2021, 128, 1777–1779. [Google Scholar] [CrossRef]
- Monés, J.; Srivastava, S.K.; Jaffe, G.J.; Tadayoni, R.; Albini, T.A.; Kaiser, P.K.; Holz, F.G.; Korobelnik, J.F.; Kim, I.K.; Pruente, C.; et al. Risk of Inflammation, Retinal Vasculitis, and Retinal Occlusion-Related Events with Brolucizumab: Post Hoc Review of HAWK and HARRIER. Ophthalmology 2021, 128, 1050–1059. [Google Scholar] [CrossRef]
- da Rocha-Bastos, R.; Araújo, J.; Silva, R.; Gil-da-Costa, M.; Brandão, E.; Farinha, N.; Falcão-Reis, F.; Dinah-Bragança, T. Retinoblastoma: Experience of a referral center in the North Region of Portugal. Clin. Ophthalmol. 2014, 8, 993–997. [Google Scholar] [CrossRef] [Green Version]
- Soussain, C.; Malaise, D.; Cassoux, N. Primary vitreoretinal lymphoma: A diagnostic and management challenge. Blood 2021, 138, 1519–1534. [Google Scholar] [CrossRef]
- Jahnke, K.; Thiel, E.; Abrey, L.E.; Neuwelt, E.A.; Korfel, A. Diagnosis and management of primary intraocular lymphoma: An update. Clin. Ophthalmol. 2007, 1, 247–258. [Google Scholar]
- Lin, F.Y.; Chintagumpala, M.M. Neonatal Retinoblastoma. Clin. Perinatol. 2021, 48, 53–70. [Google Scholar] [CrossRef]
- Gudiseva, H.V.; Berry, J.L.; Polski, A.; Tummina, S.J.; O’Brien, J.M. Next-Generation Technologies and Strategies for the Management of Retinoblastoma. Genes 2019, 10, 1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, J.H.; Richards, A.L.; Mandelker, D.L.; Berger, M.F.; Walsh, M.F.; Dunkel, I.J.; Donoghue, M.T.A.; Abramson, D.H. Molecular Changes in Retinoblastoma beyond RB1: Findings from Next-Generation Sequencing. Cancers 2021, 13, 149. [Google Scholar] [CrossRef]
- Kang, J.M.; Tanna, A.P. Glaucoma. Med. Clin. N. Am. 2021, 105, 493–510. [Google Scholar] [CrossRef]
- Gammell, P. MicroRNAs: Recently discovered key regulators of proliferation and apoptosis in animal cells: Identification of miRNAs regulating growth and survival. Cytotechnology 2007, 53, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Morgan, I.G.; Ohno-Matsui, K.; Saw, S.M. Myopia. Lancet 2012, 379, 1739–1748. [Google Scholar] [CrossRef]
- Baird, P.N.; Saw, S.M.; Lanca, C.; Guggenheim, J.A.; Smith, E.L., III; Zhou, X.; Matsui, K.O.; Wu, P.C.; Sankaridurg, P.; Chia, A.; et al. Myopia. Nat. Rev. Dis. Primers 2020, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.F.; Hua, K.; Woung, L.C.; Lin, C.H.; Chen, C.T.; Hsu, C.H.; Liou, S.W.; Tsai, C.Y. Expression Profiling of Exosomal miRNAs Derived from the Aqueous Humor of Myopia Patients. Tohoku J. Exp. Med. 2019, 249, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunceviciene, E.; Liutkeviciene, R.; Budiene, B.; Sriubiene, M.; Smalinskiene, A. Independent association of whole blood miR-328 expression and polymorphism at 3′UTR of the PAX6 gene with myopia. Gene 2019, 687, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Low, L.; Fuentes-Utrilla, P.; Hodson, J.; O’Neil, J.D.; Rossiter, A.E.; Begum, G.; Suleiman, K.; Murray, P.I.; Wallace, G.R.; Loman, N.J.; et al. Evaluation of full-length nanopore 16S sequencing for detection of pathogens in microbial keratitis. PeerJ 2021, 9, e10778. [Google Scholar] [CrossRef]
Term | Bacteria | Fungal | Virus | Parasite | Sample | References |
---|---|---|---|---|---|---|
MiSeq Illumina Sequencing Platform | Corynebacterium, Pseudomonas, Staphylococcus, Acinetobacter, Streptococcus, Millisia, Anaerococcus, Finegoldia, Simonsiella, Veillonella | Aspergillus, Setosphaeria, Malassezia, Haematonectria | — | — | Conjunctival swab samples | [39,42] |
GS-FLX 454 | Pseudomonas, Propionibacterium, Bradyrhizobium, Corynebacterium, Acinetobacter, Brevundimonas, Staphylococci, Aquabacterium, Sphingomonas, Streptococcus, Streptophyta,Methylobacterium | — | — | — | Conjunctival swab samples | [40] |
Metagenomic deep sequencing | — | Cryptococcus neoformans | Human adenovirus, Herpes simplex virus, Rubella virus, Epstein-Barr virus, Human herpesvirus 8 | Vittaforma corneae, Toxoplasma gondii | Conjunctival swab samples, Intraocular fluid samples, Aqueous fluid | [43,44,45] |
Illumina HiSeq 750 | Staphylococcus, Streptococcus | — | Torque Teno Virus | — | Aqueous fluid, Vitreous samples | [46] |
Next-generation sequencing | Thermoanaerobacter wiegelii, Corynebacterium urealyticum, Haloquadratum walsbyi, Brachyspira pilosicoli, Candidatus Nitrososphaera | Cryptococcus gattii | Pseudorabies virus, Suid herpesvirus 1, Bovine herpesvirus 5 | — | Vitreous humor | [47] |
Term | miRNA | Ocular Disease | Sample | References |
---|---|---|---|---|
HiSeq4000 platform | ↑: hsa-miR-99b-5p ↓: miR4433b-3p, hsa-miR-150-5p, hsa-miR-30c-5p, hsa-miR-16-2-3p, hsa-miR-1827, hsa-miR-140-3p, hsa-miR-93-5p | PDR | Aqueous humor | [54] |
HiSeq4000 platform | ↑: hsa-miR-205-5p, hsa-miR-206, hsa-miR-16-5p, hsa-miR-501-3p, hsa-miR-409-3p, hsa-miR-200a-3p, hsa-miR-200b-3p, hsa-miR-382-5p, hsa-miR-543, hsa-miR-136-3p, hsa-miR-30c-2-3p, hsa-miR-139-5p, hsa-miR-340-5p, hsa-miR-488-3p, hsa-miR-202-5p, hsa-miR-369-5p | POAG | Aqueous humor | [58] |
HiSeq4000 platform | ↑: hsa-miR-885-5p, hsa-miR-210-3p, hsa-miR-3149 | POAG | Aqueous humor | [59] |
Illumina NovaSeq 6000 | ↑: Hsa-miR-30a-3p, hsa-miR-143-3p, hsa-miR-211-5p, hsa-miR221-3p ↓: hsa-miR-92a-3p, hsa-miR-451a, hsa-miR-486-5p | POAG | Aqueous humor | [60] |
NextSeq500 system | ↑: hsa-let-7a-5p, hsa-let-7c-5p, hsa-let-7f-5p, hsa-miR-192-5p, hsa-miR-10a-5p, hsa-miR-10b-5p, hsa-miR-375, and hsa-miR-143-3p | NTG | Aqueous humor | [61] |
Illumina HiSeq4000 sequencing platform | ↑: miR-29b, let7b/c/e, miR-214, miR-103, miR-98 | High myopia | Aqueous humor | [62] |
Method | Advantages | Limitations | References |
---|---|---|---|
Microbial Culture | High specificity. | Time-consuming; low positivity rate. | [15,19,41] |
Polymerase Chain Reaction | Samples can be expanded indefinitely; Diagnosis at the molecular level. | Sample site dependence; Only predetermined sequences. | [27,28,29,30] |
Confocal Microscopy | Non-invasive; Quick diagnosis; Can be repeated many times. | Inability to type microbes; Limitation of available parts | [34,35,36] [37,38] |
High-throughput Sequencing | High positive rate; High sensitivity; Can detect RNA directly; Diagnosis at the molecular level. | Expensive; Low specificity. | [42,48,52] [43,44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, X.; Zhang, N.; Cao, W.; Xing, Y.; Yang, N. Application Progress of High-Throughput Sequencing in Ocular Diseases. J. Clin. Med. 2022, 11, 3485. https://doi.org/10.3390/jcm11123485
He X, Zhang N, Cao W, Xing Y, Yang N. Application Progress of High-Throughput Sequencing in Ocular Diseases. Journal of Clinical Medicine. 2022; 11(12):3485. https://doi.org/10.3390/jcm11123485
Chicago/Turabian StyleHe, Xuejun, Ningzhi Zhang, Wenye Cao, Yiqiao Xing, and Ning Yang. 2022. "Application Progress of High-Throughput Sequencing in Ocular Diseases" Journal of Clinical Medicine 11, no. 12: 3485. https://doi.org/10.3390/jcm11123485
APA StyleHe, X., Zhang, N., Cao, W., Xing, Y., & Yang, N. (2022). Application Progress of High-Throughput Sequencing in Ocular Diseases. Journal of Clinical Medicine, 11(12), 3485. https://doi.org/10.3390/jcm11123485