Greater In-Hospital Care and Early Rehabilitation Needs in People with COVID-19 Compared with Those without COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Participants Who Tested Positive and Negative for COVID-19
2.3. Data Collection and Outcomes
2.4. Data Collected in Both Groups
2.5. Data Collected in the COVID+ Group Only
2.6. Statistical Methods
3. Results
3.1. Participants
3.2. Comparison of Participants in the COVID+ versus COVID- Group
3.3. Comparison of COVID+ Participants Grouped According to Their Discharge Destination
3.4. Data Collected in the COVID+ Group Only (1STS)
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, D.; Comish, P.; Kang, R. The hallmarks of COVID-19 disease. PLoS Pathog. 2020, 16, e1008536. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.F.; Matthay, M.A.; Luce, J.M.; Flick, M.R. An expanded definition of the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 1988, 138, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Roca, O.; Messika, J.; Caralt, B.; Garcia-de-Acilu, M.; Sztrymf, B.; Ricard, J.D.; Masclans, J.R. Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: The utility of the ROX index. J. Crit. Care 2016, 35, 200–205. [Google Scholar] [CrossRef]
- Hakim, R.; Watanabe-Tejada, L.; Sukhal, S.; Tulaimat, A. Acute respiratory failure in randomized trials of noninvasive respiratory support: A systematic review of definitions, patient characteristics, and criteria for intubation. J. Crit. Care 2020, 57, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Xi, H.; Huang, L.; Yuan, Z.; Liao, Y.; Tang, Y.; Liao, J.; Min, L.; Yu, Z. Molecular Epidemiology and Clinical Features Analysis of Respiratory Adenovirus Infections Reveals Correlations between Genotype, Inflammatory Biomarkers, and Disease Severity. Biomed. Res. Int. 2020, 2020, 4357910. [Google Scholar] [CrossRef] [PubMed]
- Dittmer, D.K.; Teasell, R. Complications of immobilization and bed rest. Part 1: Musculoskeletal and cardiovascular complications. Can. Fam. Physician 1993, 39, 1428–1432, 1435–1437. [Google Scholar]
- Prescott, H.C.; Angus, D.C. Enhancing Recovery from Sepsis: A Review. JAMA 2018, 319, 62–75. [Google Scholar] [CrossRef]
- Carratala, J.; Garcia-Vidal, C.; Ortega, L.; Fernandez-Sabe, N.; Clemente, M.; Albero, G.; Lopez, M.; Castellsague, X.; Dorca, J.; Verdaguer, R.; et al. Effect of a 3-step critical pathway to reduce duration of intravenous antibiotic therapy and length of stay in community-acquired pneumonia: A randomized controlled trial. Arch. Intern. Med. 2012, 172, 922–928. [Google Scholar] [CrossRef] [Green Version]
- Mundy, L.M.; Leet, T.L.; Darst, K.; Schnitzler, M.A.; Dunagan, W.C. Early mobilization of patients hospitalized with community-acquired pneumonia. Chest 2003, 124, 883–889. [Google Scholar] [CrossRef] [Green Version]
- Rice, H.; Hill, K.; Fowler, R.; Watson, C.; Waterer, G.; Harrold, M. Reduced Step Count and Clinical Frailty in Hospitalized Adults with Community-Acquired Pneumonia. Respir. Care 2020, 65, 455–463. [Google Scholar] [CrossRef]
- Connolly, B.; Salisbury, L.; O’Neill, B.; Geneen, L.; Douiri, A.; Grocott, M.P.; Hart, N.; Walsh, T.S.; Blackwood, B. Exercise rehabilitation following intensive care unit discharge for recovery from critical illness: Executive summary of a Cochrane Collaboration systematic review. J. Cachexia Sarcopenia Muscle 2016, 7, 520–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweickert, W.D.; Pohlman, M.C.; Pohlman, A.S.; Nigos, C.; Pawlik, A.J.; Esbrook, C.L.; Spears, L.; Miller, M.; Franczyk, M.; Deprizio, D.; et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: A randomised controlled trial. Lancet 2009, 373, 1874–1882. [Google Scholar] [CrossRef]
- Schaller, S.J.; Anstey, M.; Blobner, M.; Edrich, T.; Grabitz, S.D.; Gradwohl-Matis, I.; Heim, M.; Houle, T.; Kurth, T.; Latronico, N.; et al. Early, goal-directed mobilisation in the surgical intensive care unit: A randomised controlled trial. Lancet 2016, 388, 1377–1388. [Google Scholar] [CrossRef]
- Kress, J.P.; Hall, J.B. ICU-acquired weakness and recovery from critical illness. N. Engl. J. Med. 2014, 370, 1626–1635. [Google Scholar] [CrossRef] [Green Version]
- Topp, R.; Ditmyer, M.; King, K.; Doherty, K.; Hornyak, J., 3rd. The effect of bed rest and potential of prehabilitation on patients in the intensive care unit. AACN Clin. Issues 2002, 13, 263–276. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Clinical Management of COVID-19 Patients: Living Guide. 23 November 2021. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2 (accessed on 23 March 2022).
- Haimovich, A.D.; Ravindra, N.G.; Stoytchev, S.; Young, H.P.; Wilson, F.P.; van Dijk, D.; Schulz, W.L.; Taylor, R.A. Development and Validation of the Quick COVID-19 Severity Index: A Prognostic Tool for Early Clinical Decompensation. Ann. Emerg. Med. 2020, 76, 442–453. [Google Scholar] [CrossRef]
- Rodriguez-Nava, G.; Yanez-Bello, M.A.; Trelles-Garcia, D.P.; Chung, C.W.; Friedman, H.J.; Hines, D.W. Performance of the quick COVID-19 severity index and the Brescia-COVID respiratory severity scale in hospitalized patients with COVID-19 in a community hospital setting. Int. J. Infect. Dis. 2021, 102, 571–576. [Google Scholar] [CrossRef]
- Junhai, Z.; Jing, Y.; Beibei, C.; Li, L. The value of ROX index in predicting the outcome of high flow nasal cannula: A systematic review and meta-analysis. Respir. Res. 2022, 23, 33. [Google Scholar] [CrossRef]
- Jaffri, A.; Jaffri, U.A. Post-Intensive care syndrome and COVID-19: Crisis after a crisis? Heart Lung 2020, 49, 883–884. [Google Scholar] [CrossRef]
- Van Aerde, N.; Van den Berghe, G.; Wilmer, A.; Gosselink, R.; Hermans, G.; Consortium, C. Intensive care unit acquired muscle weakness in COVID-19 patients. Intensive Care Med. 2020, 46, 2083–2085. [Google Scholar] [CrossRef]
- Putman, M.; Stepanova, M.; Conell, M.; Al-Ghandour, E.; Battaglia, C.; Cardace, S.; King, C.; Desai, M. Mechanical Ventliation during COVID: A dichotomy in mortality. Chest 2021, 160, A1133–A1134. [Google Scholar] [CrossRef]
- World Health Organization. Rehabilitation Needs of People Recovering from COVID-19: Scientific Brief. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Sci-Brief-Rehabilitation-2021.1 (accessed on 23 March 2022).
- Olezene, C.S.; Hansen, E.; Steere, H.K.; Giacino, J.T.; Polich, G.R.; Borg-Stein, J.; Zafonte, R.D.; Schneider, J.C. Functional outcomes in the inpatient rehabilitation setting following severe COVID-19 infection. PLoS ONE 2021, 16, e0248824. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, C.L.; Higgins, A.M.; Bailey, M.J.; Mather, A.M.; Beach, L.; Bellomo, R.; Bissett, B.; Boden, I.J.; Bradley, S.; Burrell, A.; et al. The impact of COVID-19 critical illness on new disability, functional outcomes and return to work at 6 months: A prospective cohort study. Crit. Care 2021, 25, 382. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, C.L.; Higgins, A.M.; Bailey, M.J.; Mather, A.M.; Beach, L.; Bellomo, R.; Bissett, B.; Boden, I.J.; Bradley, S.; Burrell, A.; et al. Comparison of 6-Month Outcomes of COVID-19 vs. Non-COVID-19 Survivors of Critical Illness. Am. J. Respir. Crit. Care Med. 2022, 205, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Edgar, D.W.; Gittings, P.; van der Lee, L.; Naylor, L.; Maiorana, A.; Jacques, A.; Cavalheri, V. Life AfTER covid-19 (LATER-19): A protocol for a prospective, longitudinal, cohort study of symptoms, physical function and psychological outcomes in the context of a pandemic. Tasman Med. J. 2021, 3, 1–10. [Google Scholar]
- Grove, K.; Harrold, M.; Mohd, S.; Natarajan, V.; Hurn, E.; Pearce, J.; Cavalheri, V.; Watson, C.; Edgar, D.W.; Group, L.-C. Research lessons during the COVID-19 pandemic: Collecting longitudinal physical and mental health outcomes. Arch. Public Health 2022, 80, 14. [Google Scholar] [CrossRef]
- Tipping, C.J.; Bailey, M.J.; Bellomo, R.; Berney, S.; Buhr, H.; Denehy, L.; Harrold, M.; Holland, A.; Higgins, A.M.; Iwashyna, T.J.; et al. The ICU Mobility Scale Has Construct and Predictive Validity and Is Responsive. A Multicenter Observational Study. Ann. Am. Thorac. Soc. 2016, 13, 887–893. [Google Scholar] [CrossRef]
- Hodgson, C.; Needham, D.; Haines, K.; Bailey, M.; Ward, A.; Harrold, M.; Young, P.; Zanni, J.; Buhr, H.; Higgins, A.; et al. Feasibility and inter-rater reliability of the ICU Mobility Scale. Heart Lung 2014, 43, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Bohannon, R.W.; Crouch, R. 1-Minute Sit-to-Stand Test: Systematic Review of Procedures, Performance, and Clinimetric Properties. J. Cardiopulm. Rehabil. Prev. 2019, 39, 2–8. [Google Scholar] [CrossRef]
- Corner, E.J.; Wood, H.; Englebretsen, C.; Thomas, A.; Grant, R.L.; Nikoletou, D.; Soni, N. The Chelsea critical care physical assessment tool (CPAx): Validation of an innovative new tool to measure physical morbidity in the general adult critical care population; an observational proof-of-concept pilot study. Physiotherapy 2013, 99, 33–41. [Google Scholar] [CrossRef]
- Corner, E.J.; Soni, N.; Handy, J.M.; Brett, S.J. Construct validity of the Chelsea critical care physical assessment tool: An observational study of recovery from critical illness. Crit. Care 2014, 18, R55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrell, A.J.; Pellegrini, B.; Salimi, F.; Begum, H.; Broadley, T.; Campbell, L.T.; Cheng, A.C.; Cheung, W.; Cooper, D.J.; Earnest, A.; et al. Outcomes for patients with COVID-19 admitted to Australian intensive care units during the first four months of the pandemic. Med. J. Aust. 2021, 214, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Medrinal, C.; Prieur, G.; Bonnevie, T.; Gravier, F.E.; Mayard, D.; Desmalles, E.; Smondack, P.; Lamia, B.; Combret, Y.; Fossat, G. Muscle weakness, functional capacities and recovery for COVID-19 ICU survivors. BMC Anesthesiol. 2021, 21, 64. [Google Scholar] [CrossRef] [PubMed]
- Musheyev, B.; Borg, L.; Janowicz, R.; Matarlo, M.; Boyle, H.; Singh, G.; Ende, V.; Babatsikos, I.; Hou, W.; Duong, T.Q. Functional status of mechanically ventilated COVID-19 survivors at ICU and hospital discharge. J. Intensive Care 2021, 9, 31. [Google Scholar] [CrossRef]
- Musheyev, B.; Janowicz, R.; Borg, L.; Matarlo, M.; Boyle, H.; Hou, W.; Duong, T.Q. Characterizing non-critically ill COVID-19 survivors with and without in-hospital rehabilitation. Sci. Rep. 2021, 11, 21039. [Google Scholar] [CrossRef]
- Johnson, J.K.; Lapin, B.; Green, K.; Stilphen, M. Frequency of Physical Therapist Intervention Is Associated with Mobility Status and Disposition at Hospital Discharge for Patients with COVID-19. Phys. Ther. 2021, 101, pzaa181. [Google Scholar] [CrossRef]
COVID− (n = 27) | COVID+ (n = 38) | p-Value # | |
---|---|---|---|
Sex at birth, female | 15 (55.6) | 21 (55.3) | 0.981 |
Age, yr | 67.7 ± 13.9 | 66.1 ± 11.4 | 0.601 |
BMI, kg/m2 | 28.4 ± 7.0 | 29.9 ± 6.0 | 0.419 |
Hypertension, n | 10 (37) | 14 (37) | 0.987 |
Diabetes, n | 5 (19) | 7 (18) | 0.992 |
Pulmonary disease ^, n | 16 (59) | 5 (13) | <0.001 |
Number of comorbidities (>1) | 12 (44) | 14 (39) | 0.658 |
SpO2 on room air in ED, % | 94 [89 to 95] | 93 [90 to 95] | 0.334 |
O2 flow to stabilise in ED, L/min | 0.5 [0 to 3] | 0 [0 to 2] | 0.398 |
Critical care needs, n | 3 (11) | 12 (32) | 0.054 |
Admitted to ICU, n | 0 (0) | 13 (34) | 0.001 |
Mechanical ventilation, n | 0 (0) | 8 (21) | 0.017 |
Duration of ventilation (days) | - | 12 [8 to 20] ** | N/A |
LOS-ICU, days | - | 14 [4 to 21] | N/A |
IMS (score out of 10) | 10 [10 to 10] | 10 [1 to 10] | 0.079 |
Frequency IMS < 2, n | 0 (0) | 10 (29) | 0.003 |
Rest in bed, days | - | 0 [0 to 2] | N/A |
LOS, days | 3 [2 to 5] | 10 [5 to 21] | 0.001 |
Discharge to inpatient rehabilitation, n | 2 (7) | 8 (21) | 0.175 |
Inpatient Rehab (n = 8) | Discharged Home (n = 30) | p-Value # | |
---|---|---|---|
Sex at birth, female, n | 4 (50) | 17 (57) | 0.736 |
Age, yr | 71 [60 to 76] | 68 [61 to 73] | 0.691 |
BMI, kg/m2 | 31.0 ± 9.2 | 29.7 ± 5.4 | 0.648 |
SpO2 on room air in ED, % | 86.4 ± 5.7 | 93.3 ± 3.8 | <0.001 |
O2 flow to stabilise in ED, L/min | 6 [3 to 10] | 0 [0 to 1] | 0.178 |
Duration of ventilation, days (n = 5) | 21 ± 12 | 6 ± 4 | 0.091 |
LOS-ICU, days | 23 [21 to 23] | 5 [3 to 14] | 0.173 |
IMS (score out of 10) | 0 [0 to 1] | 10 [10 to 10] | 0.100 |
Rest in bed, days | 14 [3 to 17] | 0 [0 to 0] | 0.080 |
LOS, days | 30 [23 to 37] | 7 [4 to 13] | 0.005 |
LOS-rehabilitation, days | 16.3 ± 8.3 | - | N/A |
Colour scale % | FACTORS on ADMISSION | LOS >6 | LOS > 9 | LOS > 13 | Critical Care | Mech Vent | Inpatient Rehab | FACTORS during ADMISSION | Inpatient Rehab |
---|---|---|---|---|---|---|---|---|---|
Admitted to WA Hospital | 63 | 53 | 40 | 32 | 21 | 21 | Admitted to WA Hospital | 21 | |
0 | FiO2 ≥ 0.32 (3 L) to stabilise SpO2 in ED | 100 | 100 | 100 | 88 | 75 | 75 | IMS > 8 | 0 |
10 | SpO2 < 90% on RA in ED | 100 | 100 | 100 | 88 | 63 | 75 | >9 days mech vent | 100 |
20 | SpO2 < 93% on RA in ED | 81 | 69 | 63 | 50 | 38 | 38 | >9 days RIB | 83 |
30 | Hypertension | 71 | 64 | 57 | 36 | 21 | 21 | >4 days mech vent or RIB | 71 |
40 | Age > 65 years | 72 | 60 | 44 | 32 | 16 | 20 | IMS < 2 | 70 |
50 | Female | 62 | 52 | 43 | 24 | 19 | 14 | mechanical ventilation | 63 |
60 | Sum of comorbidities (total > 1) | 67 | 53 | 40 | 20 | 13 | 27 | IMS < 9 | 57 |
70 | BMI > 30 kg/m2 | 62 | 54 | 39 | 39 | 15 | 23 | LOS > 13 | 53 |
80 | Diabetes | 50 | 50 | 50 | 38 | 38 | 50 | Critical care requirements | 50 |
90 | BMI > 35 kg/m2 | 50 | 50 | 50 | 50 | 33 | 50 | LOS > 9 | 40 |
100 | Pre-existing pulmonary disease | 40 | 20 | 20 | 0 | 0 | 0 | ICU admission | 39 |
Variable | Value |
---|---|
Sex at birth, female, n | 6 (50) |
Age, yr | 70 [65 to 73] |
BMI, kg/m2 | 32.6 [27.3 to 34.8] |
SpO2 on room air in ED, % | 90.5 [84.5 to 92.0] |
Critical care needs, n | 5 (42) |
ICU admission, n | 4 (33) |
Mechanical ventilation, n | 3 (25) |
LOS-ICU, days | 17.5 [10 to 31] |
LOS, days | 19 [10 to 29] |
Discharge to inpatient rehabilitation, n | 5 (42) |
1STS commenced, days post PCR | 14 [11 to 20] |
1STS occasions, n | 29 |
STS repetitions | 16 [12 to 22] |
In test O2 Flow, L/min | 1.0 [0.0 to 1.9] |
SpO2 nadir, % | 89.0 [84.1 to 94.7] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grove, K.; Edgar, D.W.; Chih, H.; Harrold, M.; Natarajan, V.; Mohd, S.; Hurn, E.; Cavalheri, V. Greater In-Hospital Care and Early Rehabilitation Needs in People with COVID-19 Compared with Those without COVID-19. J. Clin. Med. 2022, 11, 3602. https://doi.org/10.3390/jcm11133602
Grove K, Edgar DW, Chih H, Harrold M, Natarajan V, Mohd S, Hurn E, Cavalheri V. Greater In-Hospital Care and Early Rehabilitation Needs in People with COVID-19 Compared with Those without COVID-19. Journal of Clinical Medicine. 2022; 11(13):3602. https://doi.org/10.3390/jcm11133602
Chicago/Turabian StyleGrove, Kristen, Dale W. Edgar, HuiJun Chih, Meg Harrold, Varsha Natarajan, Sheeraz Mohd, Elizabeth Hurn, and Vinicius Cavalheri. 2022. "Greater In-Hospital Care and Early Rehabilitation Needs in People with COVID-19 Compared with Those without COVID-19" Journal of Clinical Medicine 11, no. 13: 3602. https://doi.org/10.3390/jcm11133602
APA StyleGrove, K., Edgar, D. W., Chih, H., Harrold, M., Natarajan, V., Mohd, S., Hurn, E., & Cavalheri, V. (2022). Greater In-Hospital Care and Early Rehabilitation Needs in People with COVID-19 Compared with Those without COVID-19. Journal of Clinical Medicine, 11(13), 3602. https://doi.org/10.3390/jcm11133602