Dynamic of Serum TWEAK Levels in Critically Ill COVID-19 Male Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Considerations
2.2. Participants and Inclusion/Exclusion Criteria
2.3. Clinical and Laboratory Evaluations
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pak, A.; Adegboye, O.A.; Adekunle, A.I.; Rahman, K.M.; McBryde, E.S.; Eisen, D.P. Economic Consequences of the COVID-19 Outbreak: The Need for Epidemic Preparedness. Front. Public Health 2020, 8, 241. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Pritam, M.; Pandey, B.; Yadav, T.P. Microstructure, pathophysiology, and potential therapeutics of COVID-19: A comprehensive review. J. Med. Virol. 2020, 93, 275–299. [Google Scholar] [CrossRef] [PubMed]
- Malik, P.; Patel, U.; Mehta, D.; Patel, N.; Kelkar, R.; Akrmah, M.; Gabrilove, J.L.; Sacks, H. Biomarkers and outcomes of COVID-19 hospitalisations: Systematic review and meta-analysis. BMJ Evid. Based Med. 2020, 26, 107–108. [Google Scholar] [CrossRef]
- Chauhan, A.J.; Wiffen, L.J.; Brown, T.P. COVID-19: A collision of complement, coagulation and inflammatory pathways. J. Thromb. Haemost. 2020, 18, 2110–2117. [Google Scholar] [CrossRef]
- Dorward, D.A.; Russell, C.D.; Um, I.H.; Elshani, M.; Armstrong, S.D.; Penrice-Randal, R.; Millar, T.; Lerpiniere, C.E.B.; Tagliavini, G.; Hartley, C.S.; et al. Tissue-Specific Immunopathology in Fatal COVID-19. Am. J. Respir. Crit. Care Med. 2021, 203, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Kumric, M.; Kurir, T.T.; Martinovic, D.; Zivkovic, P.M.; Bozic, J. Impact of the COVID-19 pandemic on inflammatory bowel disease patients: A review of the current evidence. World J. Gastroenterol. 2021, 27, 3748–3761. [Google Scholar] [CrossRef]
- The Writing Committee for the REMAP-CAP Investigators; Angus, D.C.; Derde, L.; Al-Beidh, F.; Annane, D.; Arabi, Y.; Beane, A.; Van Bentum-Puijk, W.; Berry, L.; Bhimani, Z.; et al. Effect of Hydrocortisone on Mortality and Organ Support in Patients with Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial. JAMA 2020, 324, 1317–1329. [Google Scholar] [CrossRef]
- Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2020, 93, 250–256. [Google Scholar] [CrossRef]
- Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef]
- Liu, F.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X.; Zhou, X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol. 2020, 127, 104370. [Google Scholar] [CrossRef]
- Gaspic, T.K.; Ivelja, M.P.; Kumric, M.; Matetic, A.; Delic, N.; Vrkic, I.; Bozic, J. In-Hospital Mortality of COVID-19 Patients Treated with High-Flow Nasal Oxygen: Evaluation of Biomarkers and Development of the Novel Risk Score Model CROW-65. Life 2021, 11, 735. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Ma, Q.; Li, C.; Liu, R.; Zhao, L.; Wang, W.; Zhang, P.; Liu, X.; Gao, G.; Liu, F.; et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg. Microbes Infect. 2020, 9, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Locksley, R.M.; Killeen, N.; Lenardo, M.J. The TNF and TNF Receptor Superfamilies: Integrating Mammalian Biology. Cell 2001, 104, 487–501. [Google Scholar] [CrossRef] [Green Version]
- Desplat-Jégo, S.; Varriale, S.; Creidy, R.; Terra, R.; Bernard, D.; Khrestchatisky, M.; Izui, S.; Chicheportiche, Y.; Boucraut, J. TWEAK is expressed by glial cells, induces astrocyte proliferation and increases EAE severity. J. Neuroimmunol. 2002, 133, 116–123. [Google Scholar] [CrossRef]
- Zhu, L.X.; Zhang, H.H.; Mei, Y.F.; Zhao, Y.P.; Zhang, Z.Y. Role of tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) axis in rheumatic diseases. Chin. Med. J. 2012, 125, 3898–3904. [Google Scholar] [PubMed]
- Lynch, C.N.; Wang, Y.C.; Lund, J.K.; Chen, Y.-W.; Leal, J.A.; Wiley, S.R. TWEAK Induces Angiogenesis and Proliferation of Endothelial Cells. J. Biol. Chem. 1999, 274, 8455–8459. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.L.; McDonough, W.S.; Savitch, B.A.; Sawyer, T.F.; Winkles, J.A.; Berens, M.E. The Tumor Necrosis Factor-like Weak Inducer of Apoptosis (TWEAK)-Fibroblast Growth Factor-inducible 14 (Fn14) Signaling System Regulates Glioma Cell Survival via NFκB Pathway Activation and BCL-XL/BCL-W Expression. J. Biol. Chem. 2005, 280, 3483–3492. [Google Scholar] [CrossRef] [Green Version]
- Dharmapatni, A.A.; Smith, M.D.; Crotti, T.N.; Holding, C.A.; Vincent, C.; Weedon, H.M.; Zannettino, A.C.; Zheng, T.S.; Findlay, D.M.; Atkins, G.J.; et al. TWEAK and Fn14 expression in the pathogenesis of joint inflammation and bone erosion in rheumatoid arthritis. Arthritis Res. Ther. 2011, 13, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.-L.Y.; Guo, Y.; Factor, V.M.; Thorgeirsson, S.S.; Bell, D.W.; Testa, J.R.; Peifley, K.A.; Winkles, J.A. The Fn14 Immediate-Early Response Gene Is Induced During Liver Regeneration and Highly Expressed in Both Human and Murine Hepatocellular Carcinomas. Am. J. Pathol. 2000, 156, 1253–1261. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Xie, Z.; Xu, J.; Feng, Z. TWEAK/Fn14 axis in respiratory diseases. Clin. Chim. Acta 2020, 509, 139–148. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Faidah, H.; Alexiou, A.; Batiha, G.E.-S. Testosterone in COVID-19: An Adversary Bane or Comrade Boon. Front. Cell. Infect. Microbiol. 2021, 11, 666987. [Google Scholar] [CrossRef] [PubMed]
- Kissling, E.; Hooiveld, M.; Martínez-Baz, I.; Mazagatos, C.; William, N.; Vilcu, A.-M.; Kooijman, M.N.; Ilić, M.; Domegan, L.; Machado, A.; et al. Effectiveness of complete primary vaccination against COVID-19 at primary care and community level during predominant Delta circulation in Europe: Multicentre analysis, I-MOVE-COVID-19 and ECDC networks, July to August 2021. Eurosurveillance 2022, 27, 2101104. [Google Scholar] [CrossRef] [PubMed]
- Borghesi, A.; Maroldi, R. COVID-19 outbreak in Italy: Experimental chest X-ray scoring system for quantifying and monitoring disease progression. Radiol. Med. 2020, 125, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, J.R.; Lemeshow, S.; Saulnier, F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993, 270, 2957–2963, Erratum in JAMA 1994, 271, 1321. [Google Scholar] [CrossRef]
- Scherer, C.; Lüsebrink, E.; Joskowiak, D.; Feuchtgruber, V.; Petzold, T.; Hausleiter, J.; Peterss, S.; Massberg, S.; Hagl, C.; Orban, M. Mortality in Cardiogenic Shock Patients Is Predicted by Pao 2/Fio 2 (Horowitz Index) Measured on ICU After Venoarterial Extracorporeal Membrane Oxygenation Implantation. Crit. Care Explor. 2021, 3, e0540. [Google Scholar] [CrossRef]
- Schmidt, M.; Guidet, B.; Demoule, A.; Ponnaiah, M.; Fartoukh, M.; Puybasset, L.; Combes, A.; Hajage, D.; Mercat, A.; Asfar, P.; et al. Predicting 90-day survival of patients with COVID-19: Survival of Severely Ill COVID (SOSIC) scores. Ann. Intensive Care 2021, 11, 170. [Google Scholar] [CrossRef]
- de Roquetaillade, C.; Bredin, S.; Lascarrou, J.-B.; Soumagne, T.; Cojocaru, M.; Chousterman, B.G.; Leclerc, M.; Gouhier, A.; Piton, G.; Pène, F.; et al. Timing and causes of death in severe COVID-19 patients. Crit. Care 2021, 25, 224. [Google Scholar] [CrossRef]
- Khanmohammadi, S.; Rezaei, N. Role of Toll-like receptors in the pathogenesis of COVID-19. J. Med. Virol. 2021, 93, 2735–2739. [Google Scholar] [CrossRef]
- Trasino, S.E. A role for retinoids in the treatment of COVID-19? Clin. Exp. Pharmacol. Physiol. 2020, 47, 1765–1767. [Google Scholar] [CrossRef]
- Mangalmurti, N.; Hunter, C.A. Cytokine Storms: Understanding COVID-19. Immunity 2020, 53, 19–25. [Google Scholar] [CrossRef]
- Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.-C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020, 181, 1036–1045.e9. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, C.C.; Altice, F.L.; Shyr, Y.; Koff, A.; Pischel, L.; Goshua, G.; Azar, M.M.; Mcmanus, D.; Chen, S.-C.; Gleeson, S.E.; et al. Tocilizumab Treatment for Cytokine Release Syndrome in Hospitalized Patients with Coronavirus Disease 2019. Chest 2020, 158, 1397–1408. [Google Scholar] [CrossRef]
- Herold, T.; Jurinovic, V.; Arnreich, C.; Lipworth, B.J.; Hellmuth, J.C.; von Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J. Allergy Clin. Immunol. 2020, 146, 128–136.e4. [Google Scholar] [CrossRef]
- Chen, J.-J.; Zhang, L.-N.; Hou, H.; Xu, L.; Ji, K. Interleukin-6 signaling blockade treatment for cytokine release syndrome in COVID-19 (Review). Exp. Ther. Med. 2020, 21, 24. [Google Scholar] [CrossRef] [PubMed]
- Perrone, F.; Piccirillo, M.C.; Ascierto, P.A.; Salvarani, C.; Parrella, R.; Marata, A.M.; Popoli, P.; Ferraris, L.; Marrocco-Trischitta, M.M.; Ripamonti, D.; et al. Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial. J. Transl. Med. 2020, 18, 405, Erratum in J. Transl. Med. 2021, 19, 442. [Google Scholar] [CrossRef] [PubMed]
- Rusic, D.; Vilovic, M.; Bukic, J.; Leskur, D.; Perisin, A.S.; Kumric, M.; Martinovic, D.; Petric, A.; Modun, D.; Bozic, J. Implications of COVID-19 Pandemic on the Emergence of Antimicrobial Resistance: Adjusting the Response to Future Outbreaks. Life 2021, 11, 220. [Google Scholar] [CrossRef]
- Nathan, C. Points of control in inflammation. Nature 2002, 420, 846–852. [Google Scholar] [CrossRef]
- Luster, A.D.; Alon, R.; Von Andrian, U.H. Immune cell migration in inflammation: Present and future therapeutic targets. Nat. Immunol. 2005, 6, 1182–1190. [Google Scholar] [CrossRef]
- Tran, N.L.; McDonough, W.S.; Savitch, B.A.; Fortin, S.P.; Winkles, J.A.; Symons, M.; Nakada, M.; Cunliffe, H.E.; Hostetter, G.; Hoelzinger, D.B.; et al. Increased Fibroblast Growth Factor-Inducible 14 Expression Levels Promote Glioma Cell Invasion via Rac1 and Nuclear Factor-κB and Correlate with Poor Patient Outcome. Cancer Res. 2006, 66, 9535–9542. [Google Scholar] [CrossRef] [Green Version]
- Girgenrath, M.; Weng, S.; Kostek, C.A.; Browning, B.; Wang, M.; Brown, S.A.N.; A. Winkles, J.; Michaelson, J.S.; Allaire, N.; Schneider, P.; et al. TWEAK, via its receptor Fn14, is a novel regulator of mesenchymal progenitor cells and skeletal muscle regeneration. EMBO J. 2006, 25, 5826–5839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Wang, S.; Li, L.; Wang, X.; Liu, C.; Lu, M.; Xia, Y.; Liu, Y. Involvement of the cytokine TWEAK in the pathogenesis of psoriasis vulgaris, pustular psoriasis, and erythrodermic psoriasis. Cytokine 2021, 138, 155391. [Google Scholar] [CrossRef] [PubMed]
- Perper, S.J.; Browning, B.; Burkly, L.C.; Weng, S.; Gao, C.; Giza, K.; Su, L.; Tarilonte, L.; Crowell, T.; Rajman, L.; et al. TWEAK Is a Novel Arthritogenic Mediator. J. Immunol. 2006, 177, 2610–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamata, K.; Kamijo, S.; Nakajima, A.; Koyanagi, A.; Kurosawa, H.; Yagita, H.; Okumura, K. Involvement of TNF-Like Weak Inducer of Apoptosis in the Pathogenesis of Collagen-Induced Arthritis. J. Immunol. 2006, 177, 6433–6439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desplat-Jégo, S.; Creidy, R.; Varriale, S.; Allaire, N.; Luo, Y.; Bernard, D.; Hahm, K.; Burkly, L.; Boucraut, J. Anti-TWEAK monoclonal antibodies reduce immune cell infiltration in the central nervous system and severity of experimental autoimmune encephalomyelitis. Clin. Immunol. 2005, 117, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Kehribar, D.Y.; Cihangiroğlu, M.; Sehmen, E.; Avci, B.; Çapraz, M.; Boran, M.; Günaydin, C.; Özgen, M. The assessment of the serum levels of TWEAK and prostaglandin F2α in COVID-19. Turk. J. Med. Sci. 2020, 50, 1786–1791. [Google Scholar] [CrossRef] [PubMed]
- Touzot, M.; Lefebvre, T.; Maheas, C.; Peoc’H, K.; Ureña-Torres, P.; Ridel, C.; Puy, H.; Karim, Z. Kinetics of serum hepcidin and interleukin-6 levels following COVID-19 infection in hemodialysis patients. Clin. Kidney J. 2021, 15, 582–583. [Google Scholar] [CrossRef]
- Liu, B.; Li, M.; Zhou, Z.; Guan, X.; Xiang, Y. Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? J. Autoimmun. 2020, 111, 102452. [Google Scholar] [CrossRef]
- Galván-Román, J.M.; Rodríguez-García, S.C.; Roy-Vallejo, E.; Marcos-Jiménez, A.; Sánchez-Alonso, S.; Fernández-Díaz, C.; Alcaraz-Serna, A.; Mateu-Albero, T.; Rodríguez-Cortes, P.; Sánchez-Cerrillo, I.; et al. IL-6 serum levels predict severity and response to tocilizumab in COVID-19: An observational study. J. Allergy Clin. Immunol. 2020, 147, 72–80.e8, Erratum in J. Allergy Clin. Immunol. 2021, 148, 281. [Google Scholar] [CrossRef]
- Mojtabavi, H.; Saghazadeh, A.; Rezaei, N. Interleukin-6 and severe COVID-19: A systematic review and meta-analysis. Eur. Cytokine Netw. 2020, 31, 44–49. [Google Scholar] [CrossRef]
- Chen, L.; Liu, H.G.; Liu, W.; Liu, J.; Liu, K.; Shang, J.; Deng, Y.; Wei, S. Analysis of clinical features of 29 patients with 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi 2020, 43, 203–208. (In Chinese) [Google Scholar] [CrossRef]
- Kerget, B.; Kerget, F.; Koçak, A.O.; Kızıltunç, A.; Araz, Ö.; Uçar, E.Y.; Akgün, M. Are Serum Interleukin 6 and Surfactant Protein D Levels Associated with the Clinical Course of COVID-19? Lung 2020, 198, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Plasencia-Martínez, J.M.; Carrillo-Alcaraz, A.; Martín-Cascón, M.; Pérez-Costa, R.; Ballesta-Ruiz, M.; Blanco-Barrio, A.; Herves-Escobedo, I.; Gómez-Verdú, J.-M.; Alcaraz-Martínez, J.; Alemán-Belando, S.; et al. Early radiological worsening of SARS-CoV-2 pneumonia predicts the need for ventilatory support. Eur. Radiol. 2022, 32, 3490–3500. [Google Scholar] [CrossRef] [PubMed]
- Brem, F.L.; Chaymae, M.; Rasras, H.; Merbouh, M.; Bouazzaoui, M.-A.; Bkiyar, H.; Abda, N.; Zakaria, B.; Ismaili, N.; Housni, B.; et al. Acute Myocardial Injury Assessed by High-Sensitive Cardiac Troponin Predicting Severe Outcomes and Death in Hospitalized Patients with COVID-19 Infection. Clin. Appl. Thromb. Hemost. 2022, 28, 227. [Google Scholar] [CrossRef]
- Velavan, T.P.; Meyer, C.G. Mild versus severe COVID-19: Laboratory markers. Int. J. Infect. Dis. 2020, 95, 304–307. [Google Scholar] [CrossRef]
- He, C.W.; Tang, X.; Sun, B.; Li, X.Y.; Wang, R.; Li, Y.; Chu, H.W.; Wang, L.; Tong, Z.H. Severe community-acquired pneumonia caused by Legionella pneumophila with acute respiratory failure: Clinical characteristics and prognosis of 34 cases. Zhonghua Jie He He Hu Xi Za Zhi 2020, 43, 557–563. (In Chinese) [Google Scholar]
- Lippi, G.; Lavie, C.J.; Sanchis-Gomar, F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Prog. Cardiovasc. Dis. 2020, 63, 390–391. [Google Scholar] [CrossRef]
- Corona, G.; Vena, W.; Pizzocaro, A.; Pallotti, F.; Paoli, D.; Rastrelli, G.; Baldi, E.; Cilloni, N.; Gacci, M.; Semeraro, F.; et al. Andrological effects of SARS-Cov-2 infection: A systematic review and meta-analysis. J. Endocrinol. Investig. 2022, 1–13. [Google Scholar] [CrossRef]
- Rastrelli, G.; Di Stasi, V.; Inglese, F.; Beccaria, M.; Garuti, M.; Di Costanzo, D.; Spreafico, F.; Greco, G.F.; Cervi, G.; Pecoriello, A.; et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology 2020, 9, 88–98. [Google Scholar] [CrossRef]
- Sun, X.; Wang, T.; Cai, D.; Hu, Z.; Chen, J.; Liao, H.; Zhi, L.; Wei, H.; Zhang, Z.; Qiu, Y.; et al. Cytokine storm intervention in the early stages of COVID-19 pneumonia. Cytokine Growth Factor Rev. 2020, 53, 38–42. [Google Scholar] [CrossRef]
- Çayan, S.; Uğuz, M.; Saylam, B.; Akbay, E. Effect of serum total testosterone and its relationship with other laboratory parameters on the prognosis of coronavirus disease 2019 (COVID-19) in SARS-CoV-2 infected male patients: A cohort study. Aging Male 2020, 23, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, V.E. The Anti-Inflammatory Effects of Testosterone. J. Endocr. Soc. 2018, 3, 91–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantzourani, C.; Vasilakaki, S.; Gerogianni, V.-E.; Kokotos, G. The discovery and development of transmembrane serine protease 2 (TMPRSS2) inhibitors as candidate drugs for the treatment of COVID-19. Expert Opin. Drug Discov. 2022, 17, 231–246. [Google Scholar] [CrossRef] [PubMed]
Variables | Death Event | Total (n = 66) | p * | |
---|---|---|---|---|
No (n = 53) | Yes (n = 13) | |||
Age (years) | 54.2 ± 7.9 | 58.9 ± 6.0 | 55.1 ± 7.7 | 0.047 |
BMI (kg/m2) | 28.6 ± 3.9 | 28.2 ± 2.7 | 28.5 ± 3.7 | 0.771 |
Disease duration at admission to hospital (days) | 9.0 ± 2.6 | 8.6 ± 3.4 | 8.9 ± 2.8 | 0.690 |
Disease duration at admission to ICU (days) | 11.1 ± 3.2 | 10.5 ± 5.3 | 11.0 ± 3.7 | 0.607 |
Duration of hospitalization (days) | 16 (14–20) | 23 (15–35) | 17 (14–23) | 0.199 |
ICU length of stay (days) | 11.5 ± 6.7 | 20.3 ± 8.5 | 13.2 ± 7.9 | <0.001 |
Duration of mechanical ventilation (days) | 7.0 ± 4.8 | 19.2 ± 8.6 | 9.4 ± 7.5 | <0.001 |
Nosocomial infection (n, %) | 18 (34%) | 10 (77%) | 28 (42%) | <0.001 |
Fully vaccinated (n, %) | 10 (19%) | 2 (15%) | 12 (18%) | 0.772 |
Comorbidities | ||||
Active smoking (n, %) | 4 (7.6%) | 1 (7.7%) | 5 (7.6%) | 0.852 |
Arterial hypertension (n, %) | 14 (26.4%) | 5 (38.5%) | 19 (28.8%) | 0.004 |
Diabetes mellitus (n, %) | 2 (3.8%) | 2 (15.4%) | 4 (6.1%) | <0.001 |
Dyslipidemia (n, %) | 33 (63%) | 12 (54%) | 45 (68%) | 0.667 |
Hypothyroidism (n, %) | 2 (3.8%) | 1 (7.8%) | 3 (4.5%) | N/A |
Laboratory parameters | ||||
SaO2 (%) | 93.0 (90.4–96) | 94.0 (86.6–96.0) | 91.9 (90.3–96.0) | 0.472 |
pH (units) | 7.35 ± 0.07 | 7.34 ± 0.06 | 7.35 ± 0.07 | 0.475 |
pO2 (kPa) | 5.8 ± 1.1 | 6.0 ± 0.7 | 5.8 ± 1.0 | 0.507 |
pCO2 (kPa) | 9.8 ± 2.6 | 9.6 ± 2.1 | 9.8 ± 2.5 | 0.858 |
HCO3− (mmol/L) | 25.9 ± 2.4 | 25.5 ± 2.1 | 25.8 ± 2.3 | 0.629 |
Hemoglobin (g/L) | 133.9 ± 12.0 | 131.9 ± 12.3 | 133.5 ± 12.0 | 0.591 |
Platelets (×109/L) | 264.1 ± 84.6 | 217.3 ± 87.1 | 254.9 ± 86.7 | 0.081 |
WBC (×109/L) | 10.0 ± 3.4 | 9.1 ± 4.6 | 9.8 ± 3.6 | 0.413 |
Neutrophiles (%) | 88.9 ± 3.9 | 87.2 ± 5.0 | 88.6 ± 4.2 | 0.161 |
Lymphocytes (%) | 6.8 ± 2.9 | 8.7 ± 4.4 | 7.2 ± 3.3 | 0.070 |
Monocytes (%) | 3.51 ± 1.76 | 3.69 ± 1.72 | 3.5 ± 1.7 | 0.735 |
Eosinophiles (%) | 0.37 ± 0.24 | 0.35 ± 0.22 | 0.36 ± 0.23 | 0.832 |
CRP (mmol/L) | 87.2 ± 66.9 | 84.9 ± 35.2 | 86.5 ± 61.7 | 0.868 |
LDH (umol/L) | 445.8 ± 221.8 | 605.1 ± 225.9 | 477.2 ± 222.9 | 0.024 |
D-dimers (mg/L) | 2.17 (1.51–4.01) | 3.08 (1.77–6.65) | 2.34 (1.63–4.19) | 0.305 |
Fibrinogen (g/L) | 6.7 ± 1.3 | 6.5 ± 1.3 | 6.6 ± 1.4 | 0.507 |
INR | 0.96 ± 0.06 | 0.99 ± 0.11 | 0.96 ± 0.07 | 0.199 |
aPTT (s) | 22.2 ± 3.4 | 22.6 ± 3.2 | 22.3 ± 3.3 | 0.647 |
hsTnI (ng/L) | 9.1 (5.9–13.7) | 18.2 (9.9–32.8) | 9.9 (6.2–16.3) | 0.002 |
Blood glucose (mmol/L) | 9.5 ± 2.6 | 10.8 ± 5.2 | 9.8 ± 3.3 | 0.206 |
Lactate (mmol/L) | 1.5 (1.1–2.0) | 1.4 (1.08–1.55) | 1.5 (1.1–2.0) | 0.235 |
Urea (mmol/L) | 7.9 ± 2.1 | 8.8 ± 4.4 | 8.1 ± 2.7 | 0.289 |
Creatinine (mmol/L) | 75.6 ± 15.4 | 84.2 ± 28.4 | 77.3 ± 18.7 | 0.142 |
Testosterone (nmol/L) | 0.74 (0.44–1.49) | 0.85 (0.60–1.50) | 0.77 (0.44–1.49) | 0.723 |
TSH (mIU/L) | 0.34 (0.19–0.64) | 0.25 (0.17–0.62) | (0.18–0.63) | 0.699 |
fT3 (pmol/L) | 2.37 ± 0.42 | 2.53 ± 0.90 | 2.41 ± 0.54 | 0.353 |
fT4 (pmol/L) | 15.69 ± 3.55 | 12.04 ± 3.11 | 15.52 3.33 | 0.478 |
Vitamin D (nmol/L) | 40.0 ± 18.6 | 27.4 ± 17.0 | 37.7 ± 18.8 | 0.040 |
Variables | Death Event | Total (n = 66) | p | |
---|---|---|---|---|
No (n = 53) | Yes (n = 13) | |||
Horowitz index | 91.1 ± 30.9 | 84.1 ± 24.9 | 89.7 ± 29.7 | 0.449 † |
SAPS II | 29 (27–32.5) | 32 (29–34) | 29 (27–34) | 0.168 * |
SOSIC-1 | 27.6 (21.1–36.0) | 35.4 (31.7–41.9) | 30.3 (22.9–36.4) | 0.013 * |
SOSIC-7 | 6.4 (3.2–25.8) | 38.5 (31.1–43.4) | 12.9 (3.9–33.1) | <0.001 * |
SOSIC-14 | 4.4 (2.0–11.9) | 48.9 (46.0–55.4) | 27.6 (2.8–48.0) | <0.001 * |
Brixia score | 11.5 ± 3.8 | 14.9 ± 2.7 | 12.2 ± 3.9 | 0.004 † |
Variable | r * | p |
---|---|---|
CRP (mmol/L) | 0.410 | 0.002 |
hs-TnI (ng/L) | 0.463 | 0.001 |
Testosterone (nmol/L) | −0.310 | 0.036 |
SAPS-II | 0.233 | 0.064 |
SOSIC-1 | −0.072 | 0.574 |
SOSIC-7 | 0.115 | 0.387 |
SOSIC-14 | 0.440 | 0.054 |
TSH (mIU/L) | −0.125 | 0.326 |
Vitamin D (nmol/L) | −0.012 | 0.928 |
Horowitz index | −0.122 | 0.335 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikacic, M.; Kumric, M.; Baricevic, M.; Tokic, D.; Stojanovic Stipic, S.; Cvitkovic, I.; Supe Domic, D.; Ticinovic Kurir, T.; Bozic, J. Dynamic of Serum TWEAK Levels in Critically Ill COVID-19 Male Patients. J. Clin. Med. 2022, 11, 3699. https://doi.org/10.3390/jcm11133699
Mikacic M, Kumric M, Baricevic M, Tokic D, Stojanovic Stipic S, Cvitkovic I, Supe Domic D, Ticinovic Kurir T, Bozic J. Dynamic of Serum TWEAK Levels in Critically Ill COVID-19 Male Patients. Journal of Clinical Medicine. 2022; 11(13):3699. https://doi.org/10.3390/jcm11133699
Chicago/Turabian StyleMikacic, Marijana, Marko Kumric, Martina Baricevic, Daria Tokic, Sanda Stojanovic Stipic, Ivan Cvitkovic, Daniela Supe Domic, Tina Ticinovic Kurir, and Josko Bozic. 2022. "Dynamic of Serum TWEAK Levels in Critically Ill COVID-19 Male Patients" Journal of Clinical Medicine 11, no. 13: 3699. https://doi.org/10.3390/jcm11133699
APA StyleMikacic, M., Kumric, M., Baricevic, M., Tokic, D., Stojanovic Stipic, S., Cvitkovic, I., Supe Domic, D., Ticinovic Kurir, T., & Bozic, J. (2022). Dynamic of Serum TWEAK Levels in Critically Ill COVID-19 Male Patients. Journal of Clinical Medicine, 11(13), 3699. https://doi.org/10.3390/jcm11133699