Effect of the Application of Virtual Reality on Pain Reduction and Cerebral Blood Flow in Robot-Assisted Gait Training in Burn Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Padilla-Castaneda, M.A.; Sotgiu, E.; Frisoli, A.; Bergamasco, M. A robotic & virtual reality orthopedic rehabilitation system for the forearm. Stud. Health Technol. Inform. 2012, 181, 324–328. [Google Scholar] [PubMed]
- Joo, S.Y.; Lee, S.Y.; Cho, Y.S.; Lee, K.J.; Kim, S.H.; Seo, C.H. Effectiveness of robot-assisted gait training on patients with burns: A preliminary study. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 888–893. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.Y.; Cho, Y.S.; Lee, S.Y.; Seok, H.; Seo, C.H. Effects of Virtual Reality-Based Rehabilitation on Burned Hands: A Prospective, Randomized, Single-Blind Study. J. Clin. Med. 2020, 9, 731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, S.Y.; Lee, S.Y.; Cho, Y.S.; Lee, K.J.; Seo, C.H. Effects of Robot-Assisted Gait Training in Patients with Burn Injury on Lower Extremity: A Single-Blind, Randomized Controlled Trial. J. Clin. Med. 2020, 9, 2813. [Google Scholar] [CrossRef] [PubMed]
- Patterson, D.R. Non-opioid-based approaches to burn pain. J. Burn. Care Rehabil. 1995, 16, 372–376. [Google Scholar] [CrossRef]
- Miller, A.C.; Hickman, L.C.; Lemasters, G.K. A distraction technique for control of burn pain. J. Burn. Care Rehabil. 1992, 13, 576–580. [Google Scholar] [CrossRef]
- Hoffman, H.G.; Patterson, D.R.; Carrougher, G.J. Use of virtual reality for adjunctive treatment of adult burn pain during physical therapy: A controlled study. Clin. J. Pain 2000, 16, 244–250. [Google Scholar] [CrossRef]
- Carrougher, G.J.; Hoffman, H.G.; Nakamura, D.; Lezotte, D.; Soltani, M.; Leahy, L.; Engrav, L.H.; Patterson, D.R. The effect of virtual reality on pain and range of motion in adults with burn injuries. J. Burn. Care Res. 2009, 30, 785–791. [Google Scholar] [CrossRef]
- Maani, C.V.; Hoffman, H.G.; Morrow, M.; Maiers, A.; Gaylord, K.; McGhee, L.L.; DeSocio, P.A. Virtual reality pain control during burn wound debridement of combat-related burn injuries using robot-like arm mounted VR goggles. J. Trauma 2011, 71, S125–S130. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Lin, J.; Han, R.; Peng, C.; Huang, A. Using Virtual Reality Exposure Therapy in Pain Management: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Value Health 2022, 25, 288–301. [Google Scholar] [CrossRef]
- Czech, O.; Wrzeciono, A.; Batalík, L.; Szczepańska-Gieracha, J.; Malicka, I.; Rutkowski, S. Virtual reality intervention as a support method during wound care and rehabilitation after burns: A systematic review and meta-analysis. Complementary Ther. Med. 2022, 68, 102837. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, H.G.; Richards, T.L.; Van Oostrom, T.; Coda, B.A.; Jensen, M.P.; Blough, D.K.; Sharar, S.R. The analgesic effects of opioids and immersive virtual reality distraction: Evidence from subjective and functional brain imaging assessments. Anesth. Analg. 2007, 105, 1776–1783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bantick, S.J.; Wise, R.G.; Ploghaus, A.; Clare, S.; Smith, S.M.; Tracey, I. Imaging how attention modulates pain in humans using functional MRI. Brain A J. Neurol. 2002, 125, 310–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, H.G.; Richards, T.L.; Coda, B.; Bills, A.R.; Blough, D.; Richards, A.L.; Sharar, S.R. Modulation of thermal pain-related brain activity with virtual reality: Evidence from fMRI. Neuroreport 2004, 15, 1245–1248. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.Y.; Cho, Y.S.; Lee, K.J.; Lee, S.Y.; Seo, C.H. Frontal lobe oxyhemoglobin levels in patients with lower extremity burns assessed using a functional near-Infrared spectroscopy device during usual walking: A pilot study. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 115–121. [Google Scholar] [CrossRef]
- Chou, P.H.; Tang, K.T.; Chen, Y.H.; Sun, C.W.; Huang, C.M.; Chen, D.Y. Reduced frontal activity during a verbal fluency test in fibromyalgia: A near-infrared spectroscopy study. J. Clin. Neurosci. 2018, 50, 35–40. [Google Scholar] [CrossRef]
- Peng, K.; Yücel, M.A.; Aasted, C.M.; Steele, S.C.; Boas, D.A.; Borsook, D.; Becerra, L. Using prerecorded hemodynamic response functions in detecting prefrontal pain response: A functional near-infrared spectroscopy study. Neurophotonics 2018, 5, 011018. [Google Scholar] [CrossRef]
- Iannetti, G.D.; Zambreanu, L.; Wise, R.G.; Buchanan, T.J.; Huggins, J.P.; Smart, T.S.; Vennart, W.; Tracey, I. Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proc. Natl. Acad. Sci. USA 2005, 102, 18195–18200. [Google Scholar] [CrossRef] [Green Version]
- Sakuma, S.; Inamoto, K.; Yamaguchi, Y.; Takagi, S.; Higuchi, N. Changes in prefrontal cerebral hemodynamics during intermittent pain stimulation to gingiva: Preliminary study using functional near infrared spectroscopy. J. Dent. Sci. 2021, 16, 980–986. [Google Scholar] [CrossRef]
- Joo, S.Y.; Park, C.H.; Cho, Y.S.; Seo, C.H.; Ohn, S.H. Plastic Changes in Pain and Motor Network Induced by Chronic Burn Pain. J. Clin. Med. 2021, 10, 2592. [Google Scholar] [CrossRef]
- Kipping, B.; Rodger, S.; Miller, K.; Kimble, R.M. Virtual reality for acute pain reduction in adolescents undergoing burn wound care: A prospective randomized controlled trial. Burn 2012, 38, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Mott, J.; Bucolo, S.; Cuttle, L.; Mill, J.; Hilder, M.; Miller, K.; Kimble, R.M. The efficacy of an augmented virtual reality system to alleviate pain in children undergoing burns dressing changes: A randomised controlled trial. Burn 2008, 34, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, H.G.; Seibel, E.J.; Richards, T.L.; Furness, T.A.; Patterson, D.R.; Sharar, S.R. Virtual reality helmet display quality influences the magnitude of virtual reality analgesia. J. Pain 2006, 7, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Diers, M. Neuroimaging the pain network-Implications for treatment. Best Pract. Res. Clin. Rheumatol. 2019, 33, 101418. [Google Scholar] [CrossRef]
- Jones, T.; Moore, T.; Choo, J. The Impact of Virtual Reality on Chronic Pain. PLoS ONE 2016, 11, e0167523. [Google Scholar] [CrossRef]
- Pourmand, A.; Davis, S.; Marchak, A.; Whiteside, T.; Sikka, N. Virtual Reality as a Clinical Tool for Pain Management. Curr. Pain Headache Rep. 2018, 22, 53. [Google Scholar] [CrossRef]
- Ford, C.G.; Manegold, E.M.; Randall, C.L.; Aballay, A.M.; Duncan, C.L. Assessing the feasibility of implementing low-cost virtual reality therapy during routine burn care. Burns 2018, 44, 886–895. [Google Scholar] [CrossRef]
- Pekyavas, N.O.; Ergun, N. Comparison of virtual reality exergaming and home exercise programs in patients with subacromial impingement syndrome and scapular dyskinesis: Short term effect. Acta Orthop. Traumatol. Turc. 2017, 51, 238–242. [Google Scholar] [CrossRef]
- Soler, M.D.; Kumru, H.; Pelayo, R.; Vidal, J.; Tormos, J.M.; Fregni, F.; Navarro, X.; Pascual-Leone, A. Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury. Brain 2010, 133, 2565–2577. [Google Scholar] [CrossRef]
- Chi, B.; Chau, B.; Yeo, E.; Ta, P. Virtual reality for spinal cord injury-associated neuropathic pain: Systematic review. Ann. Phys. Rehabil. Med. 2019, 62, 49–57. [Google Scholar] [CrossRef]
- Saita, K.; Morishita, T.; Arima, H.; Hyakutake, K.; Ogata, T.; Yagi, K.; Shiota, E.; Inoue, T. Biofeedback effect of hybrid assistive limb in stroke rehabilitation: A proof of concept study using functional near infrared spectroscopy. PLoS ONE 2018, 13, e0191361. [Google Scholar] [CrossRef] [PubMed]
- Barati, Z.; Shewokis, P.A.; Izzetoglu, M.; Polikar, R.; Mychaskiw, G.; Pourrezaei, K. Hemodynamic response to repeated noxious cold pressor tests measured by functional near infrared spectroscopy on forehead. Ann. Biomed. Eng. 2013, 41, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.; Kidgell, D.; Perraton, L.; Morrissey, J.; Jaberzadeh, S. Pain Induced Changes in Brain Oxyhemoglobin: A Systematic Review and Meta-Analysis of Functional NIRS Studies. Pain Med. 2021, 22, 1399–1410. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.S.; Bhutta, M.R.; Liu, X.; Shin, Y.I. Classification of somatosensory cortex activities using fNIRS. Behav. Brain Res. 2017, 333, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Wriessnegger, S.C.; Bauernfeind, G.; Kurz, E.M.; Raggam, P.; Müller-Putz, G.R. Imagine squeezing a cactus: Cortical activation during affective motor imagery measured by functional near-infrared spectroscopy. Brain Cogn. 2018, 126, 13–22. [Google Scholar] [CrossRef]
- Yücel, M.A.; Aasted, C.M.; Petkov, M.P.; Borsook, D.; Boas, D.A.; Becerra, L. Specificity of hemodynamic brain responses to painful stimuli: A functional near-infrared spectroscopy study. Sci. Rep. 2015, 5, 9469. [Google Scholar] [CrossRef]
- St George, R.J.; Jayakody, O.; Healey, R.; Breslin, M.; Hinder, M.R.; Callisaya, M.L. Cognitive inhibition tasks interfere with dual-task walking and increase prefrontal cortical activity more than working memory tasks in young and older adultsi. Gait Posture 2022, 95, 186–191. [Google Scholar] [CrossRef]
- Kim, J.; Lee, G.; Lee, J.; Kim, Y.H. Changes in Cortical Activity during Preferred and Fast Speed Walking under Single- and Dual-Tasks in the Young-Old and Old-Old Elderly. Brain Sci. 2021, 11, 1551. [Google Scholar] [CrossRef]
Participants (n = 33) | |
---|---|
Male:female | 27:6 |
Mean age (years) | 57.55 ± 7.55 |
TBSA (%) | |
Duration from burn to oxyhemoglobin level measurement (days) | 106.82 ± 72.68 |
Mechanism of burn, n FB:EB:SB:CB | 15:6:3:9 |
VAS | 8.09 ± 1.01 |
Day 1 | Day 5 | Day 10 | |||||||
---|---|---|---|---|---|---|---|---|---|
Control | VR | p | Control | VR | p | Control | VR | p | |
Time spent thinking about pain | 8.00 ± 1.79 | 6.09 ± 1.65 | <0.001 * | 7.45 ± 1.64 | 5.55 ± 1.75 | <0.001 * | 7.64 ± 1.39 | 4.91 ± 1.40 | <0.001 * |
Unpleasantness | 8.00 ± 1.37 | 4.73 ± 1.89 | <0.001 * | 7.82 ± 1.42 | 4.55 ± 1.52 | <0.001 * | 7.36 ± 1.17 | 4.64 ± 1.69 | <0.001 * |
Botheration | 8.09 ± 1.01 | 7.64 ± 1.39 | 0.12 | 7.82 ± 0.85 | 6.00 ± 1.37 | <0.001 * | 7.73 ± 1.07 | 4.82 ± 1.13 | <0.001 * |
Worst pain | 8.64 ± 0.90 | 6.27 ± 1.63 | <0.001 * | 8.64 ± 0.90 | 6.18 ± 1.61 | <0.001 * | 8.10 ± 1.10 | 4.82 ± 1.36 | <0.001 * |
Average pain | 8.00 ± 0.87 | 4.64 ± 1.75 | <0.001 * | 7.64 ± 0.49 | 4.36 ± 1.39 | <0.001 * | 7.73 ± 1.07 | 4.45 ± 1.58 | <0.001 * |
Day 1 | Day 5 | Day 10 | |||||||
---|---|---|---|---|---|---|---|---|---|
Control | VR | p | Control | VR | p | Control | VR | p | |
HbO2 | 0.00026 ± 0.00049 | 0.00055 ± 0.00071 | 0.03 * | 0.00000 ± 0.00050 | 0.00043 ± 0.00072 | 0.03 | −0.00020 ± 0.00067 | 0.00014 ± 0.00044 | 0.02 * |
HbR | −0.00014 ± 0.00034 | −0.00013 ± 0.00046 | 0.45 | −0.00007 ± 0.00025 | −0.00014 ± 0.00039 | 0.77 | −0.0007 ± 0.00028 | 0.00003 ± 0.00026 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.Y.; Cha, J.Y.; Yoo, J.W.; Nazareno, M.; Cho, Y.S.; Joo, S.Y.; Seo, C.H. Effect of the Application of Virtual Reality on Pain Reduction and Cerebral Blood Flow in Robot-Assisted Gait Training in Burn Patients. J. Clin. Med. 2022, 11, 3762. https://doi.org/10.3390/jcm11133762
Lee SY, Cha JY, Yoo JW, Nazareno M, Cho YS, Joo SY, Seo CH. Effect of the Application of Virtual Reality on Pain Reduction and Cerebral Blood Flow in Robot-Assisted Gait Training in Burn Patients. Journal of Clinical Medicine. 2022; 11(13):3762. https://doi.org/10.3390/jcm11133762
Chicago/Turabian StyleLee, Seung Yeol, Jeong Yeon Cha, Ji Won Yoo, Matheu Nazareno, Yoon Soo Cho, So Young Joo, and Cheong Hoon Seo. 2022. "Effect of the Application of Virtual Reality on Pain Reduction and Cerebral Blood Flow in Robot-Assisted Gait Training in Burn Patients" Journal of Clinical Medicine 11, no. 13: 3762. https://doi.org/10.3390/jcm11133762
APA StyleLee, S. Y., Cha, J. Y., Yoo, J. W., Nazareno, M., Cho, Y. S., Joo, S. Y., & Seo, C. H. (2022). Effect of the Application of Virtual Reality on Pain Reduction and Cerebral Blood Flow in Robot-Assisted Gait Training in Burn Patients. Journal of Clinical Medicine, 11(13), 3762. https://doi.org/10.3390/jcm11133762