Mobile Cardiac Acoustic Monitoring System to Evaluate Left Ventricular Systolic Function in Pacemaker Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Inclusion and Exclusion Criteria
2.3. Mobile Cardiac Acoustic Monitoring System
- (1)
- EMAT: the time interval from the start of the pacing ECG Q wave to S1 peak.
- (2)
- EMAT%: the ratio of EMAT to the RR interval, which is the proportion of the cardiac cycle occupied by EMAT.
- (3)
- Left ventricular systolic time (LVST): the time from S1 peak to S2 peak.
- (4)
- LVST%: the ratio of LVST to the RR interval.
2.4. Echocardiography
2.5. Standard 12 Lead ECG Measurements and Interval Definitions
2.6. Statistical Analysis
3. Results
3.1. Comparison of Baseline Clinical Characteristics, ECG Pattern, and Cardiac Acoustic Biomarkers of Patients with RVAP and LBBP
3.2. Correlation between LVEF and Cardiac Acoustic Biomarkers
3.3. Performance of Cardiac Acoustic Biomarkers (EMAT Cutoff)
4. Discussion
4.1. The Mobile Cardiac Acoustic Monitoring System Is Convenient, Especially Suitable for Contact-Less Monitoring during COVID-19
4.2. EMAT Was Reliable and Effective in Assisting the Diagnosis of LVSD in Pacemaker Patients
4.3. Different Cutoff Values of EMAT between RVAP and LBBP
4.4. Roles of Other Cardiac Acoustic Biomarkers in the Diagnosis of LVSD
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hussein, A.A.; Wilkoff, B.L. Cardiac Implantable Electronic Device Therapy in Heart Failure. Circ. Res. 2019, 124, 1584–1597. [Google Scholar] [CrossRef] [PubMed]
- Tayal, B.; Fruelund, P.; Sogaard, P.; Riahi, S.; Polcwiartek, C.; Atwater, B.D.; Gislason, G.; Risum, N.; Torp-Pedersen, C.; Kober, L.; et al. Incidence of heart failure after pacemaker implantation: A nationwide Danish Registry-based follow-up study. Eur. Heart J. 2019, 40, 3641–3648. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, X.; Gold, M.R. Left Bundle Branch Pacing: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 74, 3039–3049. [Google Scholar] [CrossRef] [PubMed]
- Cicchitti, V.; Radico, F.; Bianco, F.; Gallina, S.; Tonti, G.; De Caterina, R. Heart failure due to right ventricular apical pacing: The importance of flow patterns. Europace 2016, 18, 1679–1688. [Google Scholar] [CrossRef] [PubMed]
- Goetze, J.P.; Bruneau, B.G.; Ramos, H.R.; Ogawa, T.; de Bold, M.K.; de Bold, A.J. Cardiac natriuretic peptides. Nat. Rev. Cardiol. 2020, 17, 698–717. [Google Scholar] [CrossRef]
- Dillier, R.; Zuber, M.; Arand, P.; Erne, S.; Erne, P. Assessment of systolic and diastolic function in heart failure using ambulatory monitoring with acoustic cardiography. Ann. Med. 2011, 43, 403–411. [Google Scholar] [CrossRef]
- Wang, S.; Fang, F.; Liu, M.; Lam, Y.Y.; Wang, J.; Shang, Q.; Sun, J.P.; Sanderson, J.E.; Yu, C.M. Rapid bedside identification of high-risk population in heart failure with reduced ejection fraction by acoustic cardiography. Int. J. Cardiol. 2013, 168, 1881–1886. [Google Scholar] [CrossRef]
- Wang, S.; Liu, M.; Fang, F.; Shang, Q.; Sun, J.P.; Sanderson, J.E.; Yu, C.M. Prognostic value of acoustic cardiography in patients with chronic heart failure. Int. J. Cardiol. 2016, 219, 121–126. [Google Scholar] [CrossRef]
- Efstratiadis, S.; Michaels, A.D. Computerized acoustic cardiographic electromechanical activation time correlates with invasive and echocardiographic parameters of left ventricular contractility. J. Card. Fail. 2008, 14, 577–582. [Google Scholar] [CrossRef]
- Li, X.-C.; Liu, X.-H.; Liu, L.-B.; Li, S.-M.; Wang, Y.-Q.; Mead, R.H. Evaluation of left ventricular systolic function using synchronized analysis of heart sounds and the electrocardiogram. Heart Rhythm 2020, 17, 876–880. [Google Scholar] [CrossRef]
- Hara, H.; Niwano, S.; Ito, H.; Karakawa, M.; Ako, J. Evaluation of R-wave offset in the left chest leads for estimating the left ventricular activation delay: An evaluation based on coronary sinus electrograms and the 12-lead electrocardiogram. J. Electrocardiol. 2016, 49, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Surawicz, B.; Childers, R.; Deal, B.J.; Gettes, L.S.; Bailey, J.J.; Gorgels, A.; Hancock, E.W.; Josephson, M.; Kligfield, P.; Kors, J.A.; et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: Part III: Intraventricular conduction disturbances: A scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: Endorsed by the International Society for Computerized Electrocardiology. Circulation 2009, 119, e235–e240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillier, R.; Zuber, M.; Arand, P.; Erne, S.; Erne, P. Assessment of systolic and diastolic function in asymptomatic subjects using ambulatory monitoring with acoustic cardiography. Clin. Cardiol. 2011, 34, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Zuber, M.; Toggweiler, S.; Quinn-Tate, L.; Brown, L.; Amkieh, A.; Erne, P. A comparison of acoustic cardiography and echocardiography for optimizing pacemaker settings in cardiac resynchronization therapy. Pacing Clin. Electrophysiol. 2008, 31, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Roos, M.; Toggweiler, S.; Jamshidi, P.; Zuber, M.; Kobza, R.; Meier, R.; Erne, P. Noninvasive detection of left ventricular systolic dysfunction by acoustic cardiography in cardiac failure patients. J. Card. Fail. 2008, 14, 310–319. [Google Scholar] [CrossRef]
- Zuber, M.; Kipfer, P.; Jost, C.A. Systolic dysfunction: Correlation of acoustic cardiography with Doppler echocardiography. Congest. Heart Fail. 2006, 12 (Suppl. 1), 14–18. [Google Scholar] [CrossRef]
- Roos, M.; Toggweiler, S.; Zuber, M.; Jamshidi, P.; Erne, P. Acoustic cardiographic parameters and their relationship to invasive hemodynamic measurements in patients with left ventricular systolic dysfunction. Congest. Heart Fail. 2006, 12 (Suppl. 1), 19–24. [Google Scholar] [CrossRef]
- Zuber, M.; Attenhofer Jost, C.H.; Kipfer, P.; Collins, S.P.; Michota, F.; Peacock, W.F. Acoustic cardiography augments prolonged QRS duration for detecting left ventricular dysfunction. Ann. Noninvasive Electrocardiol. 2007, 12, 316–328. [Google Scholar] [CrossRef]
- Bank, A.J.; Gage, R.M.; Burns, K.V. Right ventricular pacing, mechanical dyssynchrony, and heart failure. J. Cardiovasc. Transl. Res. 2012, 5, 219–231. [Google Scholar] [CrossRef]
- Ebrille, E.; DeSimone, C.V.; Vaidya, V.R.; Chahal, A.A.; Nkomo, V.T.; Asirvatham, S.J. Ventricular pacing—Electromechanical consequences and valvular function. Indian Pacing Electrophysiol. J. 2016, 16, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Sharma, P.S.; Huang, W. Novel left ventricular cardiac synchronization: Left ventricular septal pacing or left bundle branch pacing? Europace 2020, 22, ii10–ii18. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Wang, S.; Wu, S.; Xu, L.; Huang, Z.; Chen, X.; Zheng, R.; Jiang, L.; Ellenbogen, K.A.; Whinnett, Z.I.; et al. Long-term Safety and Feasibility of Left Bundle Branch Pacing in A Large Single Center Study. Circ. Arrhythm. Electrophysiol. 2021, 14, e009261. [Google Scholar] [CrossRef] [PubMed]
- Kamran, H.; Salciccioli, L.; Pushilin, S.; Kumar, P.; Carter, J.; Kuo, J.; Novotney, C.; Lazar, J.M. Characterization of cardiac time intervals in healthy bonnet macaques (Macaca radiata) by using an electronic stethoscope. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 238–243. [Google Scholar] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
RVAP (n = 58) | LBBP (n = 47) | p | |
---|---|---|---|
Male (n (%)) | 34(58.62) | 34(72.34) | 0.143 |
Age (years) | 72.0 ± 12.45 | 66.47 ± 11.05 | 0.019 |
Indications for implantation | <0.001 | ||
AVB | 32 | 13 | |
AF with slow ventricular rate | 26 | 13 | |
HFrEF with CLBBB | 0 | 21 | |
Pacemaker mode | <0.001 | ||
Dual chamber pacemaker | 30 | 13 | |
Single chamber pacemaker | 28 | 13 | |
CRT | 0 | 21 | |
Days after implantation | 89.83 ± 20.38 | 86.91 ± 27.13 | 0.268 |
Heart rate (bpm) | 68.45 ± 15.45 | 71.68 ± 14.53 | 0.276 |
MAP (mmHg) | 91.03 ± 13.17 | 90.48 ± 9.71 | 0.811 |
Paced QRSd (ms) | 172.60 ± 35.48 | 145.32 ± 34.48 | <0.001 |
QTc (ms) | 498.97 ± 70.49 | 475.60 ± 48.74 | 0.056 |
QR interval in V5 (ms) | 53.45 ± 18.43 | 46.28 ± 17.52 | 0.045 |
QRS axis, n (%) | <0.001 | ||
Normal | 11 | 20 | |
Left axis deviation | 33 | 18 | |
Right axis deviation | 12 | 9 | |
LVEF (%) at follow-up | 50.09 ± 16.39 | 50.21 ± 15.63 | 0.968 |
NYHA class, n (%) | 0.302 | ||
II | 32 | 24 | |
III | 22 | 12 | |
IV | 4 | 1 | |
EMAT (ms) | 150.95 ± 19.46 | 108.23 ± 12.26 | <0.001 |
EMAT% (%) | 17.41 ± 3.90 | 12.53 ± 3.05 | <0.001 |
LVST (ms) | 309.41 ± 79.83 | 312.34 ± 30.00 | 0.812 |
LVST% (%) | 34.05 ± 4.82 | 36.48 ± 4.18 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Zhang, W.; Pan, C.; Zhu, S.; Mead, R.H.; Li, R.; He, B. Mobile Cardiac Acoustic Monitoring System to Evaluate Left Ventricular Systolic Function in Pacemaker Patients. J. Clin. Med. 2022, 11, 3862. https://doi.org/10.3390/jcm11133862
Huang J, Zhang W, Pan C, Zhu S, Mead RH, Li R, He B. Mobile Cardiac Acoustic Monitoring System to Evaluate Left Ventricular Systolic Function in Pacemaker Patients. Journal of Clinical Medicine. 2022; 11(13):3862. https://doi.org/10.3390/jcm11133862
Chicago/Turabian StyleHuang, Jingjuan, Weiwei Zhang, Changqing Pan, Shiwei Zhu, Robert Hardwin Mead, Ruogu Li, and Ben He. 2022. "Mobile Cardiac Acoustic Monitoring System to Evaluate Left Ventricular Systolic Function in Pacemaker Patients" Journal of Clinical Medicine 11, no. 13: 3862. https://doi.org/10.3390/jcm11133862
APA StyleHuang, J., Zhang, W., Pan, C., Zhu, S., Mead, R. H., Li, R., & He, B. (2022). Mobile Cardiac Acoustic Monitoring System to Evaluate Left Ventricular Systolic Function in Pacemaker Patients. Journal of Clinical Medicine, 11(13), 3862. https://doi.org/10.3390/jcm11133862