Artificial Intelligence in Cardiology—A Narrative Review of Current Status
Abstract
:1. Introduction
2. Terminology
3. AI in Echocardiography
4. AI in Cardiac/Coronary Computer Tomography (CCT)
5. AI in Cardiac MRI
6. AI in Nuclear Cardiac Imaging
7. AI in Heart Failure
8. AI in Arrythmias
9. Voice Technology in Clinical Practice
10. AI and Non-Cardiac Conditions
11. Discussion
12. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef]
- Vardas, P.E.; Asselbergs, F.W.; vanSmeden, M.; Friedman, P. The year in cardiovascular medicine 2021: Digital health and innovation. Eur. Heart J. 2022, 21, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theodoridis, S.; Koutroumbas, K. Pattern Recognition, 4th ed.; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Bengio, Y.; Goodfellow, I.; Courville, A. Deep learning; MIT Press: Cambridge, MA, USA, 2017; Volume 1. [Google Scholar]
- Liu, X.; Wang, H.; Li, Z.; Qin, L. Deep learning in ECG diagnosis: A review. Knowl. Based Syst. 2021, 227, 107187. [Google Scholar] [CrossRef]
- Hernandez, K.A.L.; Rienmüller, T.; Baumgartner, D.; Baumgartner, C. Deep learning in spatiotemporal cardiac imaging: A review of methodologies and clinical usability. Comput. Biol. Med. 2020, 130, 104200. [Google Scholar] [CrossRef]
- Amann, J.; Blasimme, A.; Vayena, E.; Frey, D.; Madai, V.I. Explainability for artificial intelligence in healthcare: A multidisciplinary perspective. BMC Med. Inform. Decis. Mak. 2020, 20, 310. [Google Scholar] [CrossRef]
- Tjoa, E.; Guan, C. A survey on explainable artificial intelligence (xai): Toward medical xai. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4793–4813. [Google Scholar] [CrossRef]
- Maweu, B.M.; Dakshit, S.; Shamsuddin, R.; Prabhakaran, B. CEFEs: A CNN Explainable Framework for ECG Signals. Artif. Intell. Med. 2021, 115, 102059. [Google Scholar] [CrossRef]
- Vasilakakis, M.D.; Iakovidis, D.K.; Koulaouzidis, G. A Constructive Fuzzy Representation Model for Heart Data Classification. In Public Health and Informatics; IOS Press: Amsterdam, The Netherlands, 2021; pp. 13–17. [Google Scholar]
- Vasilakakis, M.; Sovatzidi, G.; Iakovidis, D.K. Explainable Classification of Weakly Annotated Wireless Capsule Endoscopy Images Based on a Fuzzy Bag-of-Colour Features Model and Brain Storm Optimization. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Strasbourg, France, 27 September–1 October 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 488–498. [Google Scholar]
- Knackstedt, C.; Bekkers, S.C.; Schummers, G.; Schreckenberg, M. Fully Automated Versus Stand of Left Ventricular Ejection Fraction and Longitudinal Strain: The FAST-EFs Multicenter Study. J. Am. Coll. Cardiol. 2015, 66, 1456–1466. [Google Scholar] [CrossRef]
- Narula, S.; Shameer, K.; Salem Omar, A.M.; Dudley, J.T.; Sengupta, P.P. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J. Am. Coll. Cardiol. 2016, 68, 2287–2295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gajjala, S.; Agrawal, P.; Tison, G.H.; Hallock, L.A.; Beussink-Nelson, L.; Lassen, M.H.; Fan, E.; Aras, M.A.; Jordan, C.; et al. Fully Automated Echocardiogram Interpretation in Clinical Practice. Circulation 2018, 138, 1623–1635. [Google Scholar] [CrossRef] [PubMed]
- Moghaddasi, H.; Nourian, S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comput. Biol. Med. 2016, 73, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Playford, D.; Bordin, E.; Mohamad, R.; Stewart, S.; Strange, G. Enhanced Diagnosis of Severe Aortic Stenosis Using Artificial Intelligence: A Proof-of-Concept Study of 530,871 Echocardiograms. JACC Cardiovasc. Imaging 2020, 13, 1087–1090. [Google Scholar] [CrossRef]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M.; Detrano, R. Quantifcation of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Wolterink, J.M.; Leiner, T.; de Vos, B.D.; van Hamersvelt, R.W.; Viergever, M.A.; Išgum, I. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med. Image Anal. 2016, 34, 123–136. [Google Scholar] [CrossRef]
- Martin, S.S.; van Assen, M.; Rapaka, S.; Hudson, H.T., Jr.; Fischer, A.M.; Varga-Szemes, A.; Sahbaee, P.; Schwemmer, C.; Gulsun, M.A.; Cimen, S.; et al. Evaluation of a deep learning-based automated CT coronary artery calcium scoring algorithm. JACC Cardiovasc. Imaging 2020, 13, 524–526. [Google Scholar] [CrossRef]
- Cano-Espinosa, C.; Gonzalez, G.; Washko, G.R.; Cazorla, M.; Estepar, R.S.J. Automated Agatston score computation in non-ECG gated CT scans using deep learning. Proc. SPIE Int. Soc. Opt. Eng. 2018, 10574, 673–678. [Google Scholar]
- van Hamersvelt, R.W.; Zreik, M.; Voskuil, M.; Viergever, M.A.; Išgum, I.; Leiner, T. Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis. Eur. Radiol. 2019, 29, 2350–2359. [Google Scholar] [CrossRef] [Green Version]
- Gaur, S.; Øvrehus, K.A.; Dey, D.; Leipsic, J.; Bøtker, H.E.; Jensen, J.M.; Narula, J.; Ahmadi, A.; Achenbach, S.; Ko, B.S.; et al. Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischemia-causing lesions. Eur. Heart J. 2016, 37, 1220–1227. [Google Scholar] [CrossRef]
- Dey, D.; Gaur, S.; Ovrehus, K.A.; Slomka, P.J.; Betancur, J.; Goeller, M.; Hell, M.M.; Gransar, H.; Berman, D.S.; Achenbach, S.; et al. Integrated prediction of lesion-specific ischemia from quantitative coronary CT angiography using machine learning: A multicentre study. Eur. Radiol. 2018, 28, 2655–2664. [Google Scholar] [CrossRef] [PubMed]
- Kelm, B.M.; Mittal, S.; Zheng, Y.; Tsymbal, A.; Bernhardt, D.; Vega-Higuera, F.; Zhou, S.K.; Meer, P.; Comaniciu, D. Detection, grading and classification of coronary stenoses in computed tomography angiography. Med. Image Comput. Comput. Assist. Interv. 2011, 14, 25–32. [Google Scholar] [PubMed] [Green Version]
- Zreik, M.; Van Hamersvelt, R.W.; Wolterink, J.M.; Leiner, T.; Viergever, M.A.; Išgum, I. A Recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans. Med. Imaging 2019, 38, 1588–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Gooya, A.; Dong, B.; Hua, R.; Petersen, S.E.; Medrano-Gracia, P.; Frangi, A.F. Simulation and Synthesis in Medical Imaging; Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 138–145. [Google Scholar]
- Biasiolli, L.; Hann, E.; Lukaschuk, E.; Carapella, V.; Paiva, J.M.; Aung, N.; Rayner, J.J.; Werys, K.; Fung, K.; Puchta, H.; et al. Automated localization and quality control of the aorta in cine CMR can significantly accelerate processing of the UK Biobank population data. PLoS ONE 2019, 14, e0212272. [Google Scholar] [CrossRef]
- Tarroni, G.; Oktay, O.; Bai, W.; Schuh, A.; Suzuki, H.; Passerat-Palmbach, J.; De Marvao, A.; O’Regan, D.P.; Cook, S.; Glocker, B.; et al. Learning-based quality control for cardiac MR images. IEEE Trans. Med. Imaging 2019, 38, 1127–1138. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Gooya, A.; Pereanez, M.; Dong, B.; Piechnik, S.K.; Neubauer, S.; Petersen, S.E.; Frangi, A.F. Automatic assessment of full left ventricular coverage in cardiac cine magnetic resonance imaging with fisher discriminative 3D CNN. IEEE Trans. Biomed. Eng. 2018, 66, 1975–1986. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Tseng, E.; Knott, K.D.; Kotecha, T.; Brown, L.; Plein, S.; Fontana, M.; Moon, J.C.; Kellman, P. Automated detection of left ventricle in arterial input function images for inline perfusion mapping using deep learning: A study of 15,000 patients. Magn. Reson. Med. 2020, 84, 2788–2800. [Google Scholar] [CrossRef]
- Tan, L.K.; McLaughlin, R.A.; Lim, E.; Abdul Aziz, Y.F.; Liew, Y.M. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression. J. Magn. Reson. Imaging 2018, 48, 140–152. [Google Scholar] [CrossRef]
- Du, X.; Zhang, W.; Zhang, H.; Chen, J.; Zhang, Y.; Warrington, J.C.; Brahm, G.; Li, S. Deep regression segmentation for cardiac bi-ventricle MR images. IEEE Access 2018, 6, 3828–3838. [Google Scholar] [CrossRef]
- Bernard, O.; Lalande, A.; Zotti, C.; Cervenansky, F.; Yang, X.; Heng, P.A.; Cetin, I.; Lekadir, K.; Camara, O.; Ballester, M.A.G.; et al. Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? IEEE Trans. Med. Imaging 2018, 37, 2514–2525. [Google Scholar] [CrossRef]
- Fahmy, A.S.; Rausch, J.; Neisius, U.; Chan, R.H.; Maron, M.S.; Appelbaum, E.; Menze, B.; Nezafat, R. Automated cardiac MR scar quantification in hypertrophic cardiomyopathy using deep convolutional neural networks. JACC Cardiovasc. Imaging 2018, 11, 1917–1918. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures. Are Data Radiol. 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baessler, B.; Luecke, C.; Lurz, J.; Klingel, K.; Das, A.; von Roeder, M.; de Waha-Thiele, S.; Besler, C.; Rommel, K.P.; Maintz, D.; et al. Cardiac MRI and Texture Analysis of Myocardial T1 and T2 Maps in Myocarditis with Acute versus Chronic Symptoms of Heart Failure. Radiology 2019, 292, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Arsanjani, R.; Dey, D.; Khachatryan, T.; Shalev, A.; Hayes, S.W.; Fish, M.; Nakanishi, R.; Germano, G.; Berman, D.S.; Slomka, P. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J. Nucl. Cardiol. 2015, 22, 877–884. [Google Scholar] [CrossRef]
- Betancur, J.; Commandeur, F.; Motlagh, M.; Sharir, T.; Einstein, A.J.; Bokhari, S.; Fish, M.B.; Ruddy, T.D.; Kaufmann, P.; Sinusas, A.J.; et al. Deep Learning for Prediction of Obstructive Disease from Fast Myocardial Perfusion SPECT. JACC Cardiovasc. Imaging 2018, 11, 1654–1663. [Google Scholar] [CrossRef]
- Nakajima, K.; Kudo, T.; Nakata, T.; Kiso, K.; Kasai, T.; Taniguchi, Y.; Matsuo, S.; Momose, M.; Nakagawa, M.; Sarai, M.; et al. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: A Japanese multicenter study. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 2280–2289. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Martinez, S.; Duchateau, N.; Erdei, T.; Kunszt, G.; Aakhus, S.; Degiovanni, A.; Marino, P.; Carluccio, E.; Piella, G.; Fraser, A.G.; et al. Machine Learning Analysis of Left Ventricular Function to Characterize Heart Failure with Preserved Ejection Fraction. Circ. Cardiovasc. Imaging 2018, 11, e007138. [Google Scholar] [CrossRef] [Green Version]
- Inan, O.T.; Baran Pouyan, M.; Javaid, A.Q.; Dowling, S.; Etemadi, M.; Dorier, A.; Heller, J.A.; Bicen, A.O.; Roy, S.; De Marco, T.; et al. Novel Wearable Seismocardiography and Machine Learning Algorithms Can Assess Clinical Status of Heart Failure Patients. Circ. Heart Fail. 2018, 11, e004313. [Google Scholar] [CrossRef]
- Ahmad, T.; Lund, L.H.; Rao, P.; Ghosh, R.; Warier, P.; Vaccaro, B.; Dahlström, U.; O’Connor, C.M.; Felker, G.M.; Desai, N.R. Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients. J. Am. Heart Assoc. 2018, 7, e008081. [Google Scholar] [CrossRef]
- Koulaouzidis, G.; Iakovidis, D.K.; Clark, A.L. Telemonitoring predicts in advance heart failure admissions. Int. J. Cardiol. 2016, 216, 78–84. [Google Scholar] [CrossRef]
- Katz, D.H.; Deo, R.C.; Aguilar, F.G.; Selvaraj, S.; Martinez, E.E.; Beussink-Nelson, L.; Kim, K.Y.A.; Peng, J.; Irvin, M.R.; Tiwari, H.; et al. Phenomapping for the Identification of Hypertensive Patients with the Myocardial Substrate for Heart Failure with Preserved Ejection Fraction. J. Cardiovasc. Transl. Res. 2017, 10, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, E.; Kalantari, M.; Joulani, M.; Shahraki, R.S.; Fayaz, F.; Ahmadi, F. Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal. Comput. Methods Programs Biomed. 2018, 165, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Budzianowski, J.; Hiczkiewicz, J.; Burchardt, P.; Pieszko, K.; Rzeźniczak, J.; Budzianowski, P.; Korybalska, K. Predictors of atrial fibrillation early recurrence following cryoballoon ablation of pulmonary veins using statistical assessment and machine learning algorithms. Heart Vessel. 2019, 34, 352–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Attia, Z.I.; Kapa, S.; Lopez-Jimenez, F.; McKie, P.M.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Enriquez-Sarano, M.; Noseworthy, P.A.; Munger, T.M.; et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat. Med. 2019, 25, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.Y.; Siontis, K.C.; Attia, Z.I.; Carter, R.E.; Kapa, S.; Ommen, S.R.; Demuth, S.J.; Ackerman, M.J.; Gersh, B.J.; Arruda-Olson, A.M.; et al. Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled electrocardiogram. J. Am. Coll. Cardiol. 2020, 75, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Siontis, K.C.; Liu, K.; Bos, J.M.; Attia, Z.I.; Cohen-Shelly, M.; Arruda-Olson, A.M.; Farahani, N.Z.; Friedman, P.A.; Noseworthy, P.A.; Ackerman, M.J. Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents. Int. J. Cardiol. 2021, 340, 42–47. [Google Scholar] [CrossRef]
- Koulaouzidis, G.; Das, S.; Cappiello, G.; Mazomenos, E.B.; Maharatna, K.; Puddu, P.E.; Morgan, J. Prompt and accurate diagnosis of ventricular arrhythmias with a novel index based on phase space reconstruction of ECG. Int. J. Cardiol. 2015, 182, 38–43. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Health and Human Services. Food and Drug Administration Center for Devices and Radiological Health. Software as a Medical Device (SAMD): Clinical Evaluation Guidance for Industry and Food and Drug Administration Staff. 2017. Available online: https://www.fda.gov/media/100714/download (accessed on 21 November 2021).
- U.S. Department of Health and Human Services. Summary of the Hipaa Privacy Rule. 2003. Available online: https://www.hhs.gov/sites/default/files/privacysummary.pdf (accessed on 21 November 2021).
- The European Parliment and the Council of the European Union. Directive 95/46/EC (General Data Protection Regulation). 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679 (accessed on 21 November 2021).
- Mayo Clinic First Aid. Amazon. Available online: https://www.amazon.com/mayo-clinic-first-aid/dp/b0744ljcv2 (accessed on 21 November 2021).
- Mayo Clinic Answers on COVID-19. Amazon. Available online: https://alexa-skills.amazon.com/apis/custom/skills/amzn1.ask.skill.aa97750d-187a-4ad8-b51c-8f349b506033/launch (accessed on 21 November 2021).
- Giant Eagle Pharmacy. Amazon. Available online: https://www.amazon.com/Omnicell-Inc-Giant-Eagle-Pharmacy/dp/B08164DYJ7 (accessed on 21 November 2021).
- Swedish Health Connect: Alexa Skills. Amazon. Available online: https://www.amazon.com/gp/product/B07PGJYYF6 (accessed on 21 November 2021).
- Aiva Health. Available online: https://www.aivahealth.com/ (accessed on 21 November 2021).
- Vocera Engage. Available online: https://www.mobihealthnews.com/news/amazon-vocera-team-new-alexa-skill-patients-hospitals (accessed on 21 November 2021).
- Jadczyk, T.; Kiwic, O.; Khandwalla, R.M.; Grabowski, K.; Rudawski, S.; Magaczewski, P.; Benyahia, H.; Wojakowski, W.; Henry, T.D. Feasibility of a voice-enabled automated platform for medical data collection: CardioCube. Int. J. Med. Inform. 2019, 129, 388–393. [Google Scholar] [CrossRef]
- The VOICE-COVID-19. ClinicalTrials.gov. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04508972 (accessed on 21 November 2021).
- US Food and Drug Administration. Medical Device Data Systems. Available online: www.fda.gov/medical-devices/general-hospital-devices-and-supplies/medical-device-data-systems (accessed on 21 November 2021).
- Jensen, H.K.; Brabrand, M.; Vinholt, P.J.; Hallas, J.; Lassen, A.T. Hypokalemia in acute medical patients: Risk factors and prognosis. Am. J. Med. 2015, 128, 60–67.e1. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Matsushita, K.; Sang, Y.; Brunskill, N.J.; Carrero, J.J.; Chodick, G.; Hasegawa, T.; Heerspink, H.L.; Hirayama, A.; Landman, G.W.; et al. Serum potassium and adverse outcomes across the range of kidney function: A CKD Prognosis Consortium meta-analysis. Eur. Heart J. 2018, 39, 1535–1542. [Google Scholar] [CrossRef] [Green Version]
- Conway, R.; Creagh, D.; Byrne, D.G.; O’Riordan, D.; Silke, B. Serum potassium levels as an outcome determinant in acute medical admissions. Clin. Med. 2015, 15, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.S.; Lin, C.; Fang, W.H.; Hsu, C.J.; Chen, S.J.; Huang, K.H.; Lin, W.S.; Tsai, C.S.; Kuo, C.C.; Chau, T. A Deep-Learning Algorithm (ECG12Net) for Detecting Hypokalemia and Hyperkalemia by Electrocardiography: Algorithm Development. JMIR Med. Inform. 2020, 8, e15931. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://shop.lww.com/Marriott-s-Practical-Electrocardiography/p/9781496397454 (accessed on 21 November 2021).
- El-Sherif, N.; Turitto, G. Electrolyte disorders and arrhythmogenesis. Cardiol. J. 2011, 18, 233–245. [Google Scholar] [PubMed]
- Lin, C.; Chau, T.; Lin, C.S.; Shang, H.S.; Fang, W.H.; Lee, D.J.; Lee, C.C.; Tsai, S.H.; Wang, C.H.; Lin, S.H. Point-of-care artificial intelligence-enabled ECG for dyskalemia: A retrospective cohort analysis for accuracy and outcome prediction. NPJ Digit. Med. 2022, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.M.; Jung, M.S.; Kim, K.H.; Jo, Y.Y.; Shin, J.H.; Cho, Y.H.; Lee, Y.J.; Ban, J.H.; Jeon, K.H.; Lee, S.Y.; et al. Artificial intelligence for detecting electrolyte imbalance using electrocardiography. Ann. Noninvasive Electrocardiol. 2021, 26, e12839. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://academic.oup.com/ehjdh/advance-article/doi/10.1093/ehjdh/ztac013/6571078 (accessed on 21 November 2021).
- Okosieme, O.E.; Taylor, P.N.; Evans, C.; Thayer, D.; Chai, A.; Khan, I.; Draman, M.S.; Tennant, B.; Geen, J.; Sayers, A.; et al. Primary therapy of Graves’ disease and cardiovascular morbidity and mortality: A linked-record cohort study. Lancet Diabetes Endocrinol. 2019, 7, 278–287. [Google Scholar] [CrossRef]
- Danzi, S.; Klein, I. Thyroid hormone and the cardiovascular system. Med. Clin. N. Am. 2012, 96, 257–268. [Google Scholar] [CrossRef]
HART Summary | |||||
Negative | Positive/Mild | Positive/Abnormal | Sum | ||
ECHO ground truth | Normal | 1916 | 974 | 60 | 2950 |
Mild | 632 | 1426 | 386 | 3444 | |
Abnormal | 68 | 1288 | 2010 | 3366 | |
9760 | |||||
ECG summary | |||||
Normal | Borderline | Abnormal | Sum | ||
ECHO ground truth | Normal | 1654 | 670 | 626 | 2950 |
Mild | 1282 | 1074 | 1088 | 3444 | |
Abnormal | 426 | 534 | 2406 | 3366 | |
9760 |
Outcome | by HART Summary | by ECG Summary |
---|---|---|
Negative | Patient predicted as negative by HART is not abnormal in 97.4% probability (NPV = 97.4%) | Patient predicted as normal by ECG is not abnormal with 87.3% probability (NPV = 87.3%) |
Patient predicted as negative by HART is mild with 24.1% probability | Patient predicted as normal by ECG is mild with 38.1% probability | |
Patient predicted as negative by HART is abnormal only with 2.6% probability (100%-NPV) | Patient predicted as normal by ECG is abnormal only with 12.7% probability (100%-NPV) | |
Mild | Patient predicted as positive/mild by HART is mild with 52% probability | Patient predicted as borderline by ECG is mild with 47% probability |
Positive | Patient predicted as positive/abnormal by HART is not Normal with 97.6% probability (PPV = 97.6%) | Patient predicted as abnormal by ECG is not normal with 84.8% probability (PPV = 84.8%) |
Patient predicted as positive/abnormal by HART is mild with 15.7% probability | Patient predicted as abnormal by ECG is mild with 26.4% probability | |
Patient predicted as positive/abnormal by HART is normal only with 2.4% probability (100%-PPV) | Patient predicted as abnormal by ECG is normal with 15.2% probability (100%-PPV) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koulaouzidis, G.; Jadczyk, T.; Iakovidis, D.K.; Koulaouzidis, A.; Bisnaire, M.; Charisopoulou, D. Artificial Intelligence in Cardiology—A Narrative Review of Current Status. J. Clin. Med. 2022, 11, 3910. https://doi.org/10.3390/jcm11133910
Koulaouzidis G, Jadczyk T, Iakovidis DK, Koulaouzidis A, Bisnaire M, Charisopoulou D. Artificial Intelligence in Cardiology—A Narrative Review of Current Status. Journal of Clinical Medicine. 2022; 11(13):3910. https://doi.org/10.3390/jcm11133910
Chicago/Turabian StyleKoulaouzidis, George, Tomasz Jadczyk, Dimitris K. Iakovidis, Anastasios Koulaouzidis, Marc Bisnaire, and Dafni Charisopoulou. 2022. "Artificial Intelligence in Cardiology—A Narrative Review of Current Status" Journal of Clinical Medicine 11, no. 13: 3910. https://doi.org/10.3390/jcm11133910
APA StyleKoulaouzidis, G., Jadczyk, T., Iakovidis, D. K., Koulaouzidis, A., Bisnaire, M., & Charisopoulou, D. (2022). Artificial Intelligence in Cardiology—A Narrative Review of Current Status. Journal of Clinical Medicine, 11(13), 3910. https://doi.org/10.3390/jcm11133910