Tooth Loss and Carotid Intima-Media Thickness in Relation to Functional Atherosclerosis: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection and Laboratory Measurement
2.2.1. Measurement of Carotid Intima-Media Thickness (CIMT)
2.2.2. Measurement of Cardio-Ankle Vascular Index (CAVI)
2.2.3. Oral Examination
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population by Functional Atherosclerosis Status
3.2. Association between CIMT and Tooth Loss among All Study Participants
3.3. Association between CIMT and Tooth Loss by Functional Atherosclerosis Status
3.4. Effect of The Relationship between CIMT and Functional Atherosclerosis on Tooth Loss
3.5. Correlation between CIMT and CAVI by Functional Atherosclerosis Status
3.6. Sex-Specific Analysis of The Association between CIMT and Tooth Loss by Functional Atherosclero Sis Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kadota, K.; Takamura, N.; Aoyagi, K.; Yamasaki, H.; Usa, T.; Nakazato, M.; Maeda, T.; Wada, M.; Nakashima, K.; Abe, K.; et al. Availability of cardio-ankle vascular index (CAVI) as a screening tool for atherosclerosis. Circ. J. 2008, 72, 304–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, Y.; Maeda, T. Influence of height on endothelial maintenance activity: A narrative review. Environ. Health Prev. Med. 2021, 26, 19. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y. Comment on “Dose body height affect vascular function?”. Hypertens. Res. 2022, 45, 1091–1092. [Google Scholar] [CrossRef] [PubMed]
- Stellos, K.; Langer, H.; Daub, K.; Schoenberger, T.; Gauss, A.; Geisler, T.; Bigalke, B.; Mueller, I.; Schumm, M.; Schaefer, I.; et al. Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation 2008, 117, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Stellos, K.; Seizer, P.; Bigalke, B.; Daub, K.; Geisler, T.; Gawaz, M. Platelet aggregates-induced human CD34+ progenitor cell proliferation and differentiation to macrophages and foam cells is mediated by stromal cell derived factor 1 in vitro. Semin. Thromb. Hemost. 2010, 36, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I.; Bornfeldt, K.E. Macrophage phenotype and function in different stages of atherosclerosis. Circ. Res. 2016, 118, 653–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maquire, E.M.; Pearce, S.W.A.; Xia, Q. Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. Vascul. Pharmacol. 2019, 112, 54–71. [Google Scholar] [CrossRef]
- Shimizu, Y.; Kawashiri, S.Y.; Kiyoura, K.; Koyamatsu, J.; Fukui, S.; Tamai, M.; Nobusue, K.; Yamanashi, H.; Nagata, Y.; Maeda, T. Circulating CD34+ cells and active arterial wall thickening among elderly men: A prospective study. Sci. Rep. 2020, 10, 4656. [Google Scholar] [CrossRef]
- Shimizu, Y.; Yamanashi, H.; Noguchi, Y.; Koyamatsu, J.; Nagayoshi, M.; Kiyoura, K.; Fukui, S.; Tamai, M.; Kawashiri, S.Y.; Kondo, H.; et al. Cardio-ankle vascular index and circulating CD34-positive cell levels as indicators of endothelial repair activity in older Japanese men. Geriatr. Gerontol. Int. 2019, 19, 557–562. [Google Scholar] [CrossRef]
- Kurushima, Y.; Ikebe, K.; Matsuda, K.; Enoki, K.; Ogata, S.; Yamashita, M.; Murakami, S.; Maeda, Y. Osaka Twin Research Group. Examination of the relationship between oral health and arterial sclerosis without genetic confounding through the study of older Japanese Twins. PLoS ONE 2015, 10, e0127642. [Google Scholar] [CrossRef] [Green Version]
- Asai, K.; Yamori, M.; Yamazaki, T.; Yamaguchi, A.; Takahashi, K.; Sekine, A.; Kosugi, S.; Matsuda, F.; Nakayama, T.; Bessho, K. Nagahama Study Group. Tooth loss and atherosclerosis: The Nagahama Study. J. Dent. Res. 2015, 94, 52S–58S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, T.; Takamura, N.; Akashi, S.; Nakazato, M.; Maeda, T.; Wada, M.; Nakashima, K.; Abe, Y.; Kusano, Y.; Aoyagi, K. Evaluation of clinical markers of atherosclerosis in young and elderly Japanese adults. Clin. Chem. Lab. Med. 2006, 44, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Nakazato, M.; Sekita, T.; Kadota, K.; Yamasaki, H.; Takamura, N.; Aoyagi, K.; Maeda, T. Association of arterial stiffness and diabetes with triglycerides-to-HDL cholesterol ratio for Japanese men: The Nagasaki Islands Study. Atherosclerosis 2013, 228, 491–495. [Google Scholar] [CrossRef] [Green Version]
- Yambe, T.; Yoshizawa, M.; Saijo, Y.; Yamaguchi, T.; Shibata, M.; Konno, S.; Nitta, S.; Kuwayama, T. Brachio-ankle pulse wave velocity and cardio-ankle vascular index (CAVI). Biomed. Pharmacother. 2004, 58, S95–S98. [Google Scholar] [CrossRef]
- Yamashina, A.; Tomiyama, H.; Arai, T.; Koji, Y.; Yambe, M.; Motobe, H.; Glunizia, Z.; Yamamoto, Y.; Hori, S. Nomogram of the relation of brachial-ankle pulse wave velocity with blood pressure. Hypertens. Res. 2003, 26, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Shirai, K.; Utino, J.; Otsuka, K.; Takata, M. A novel blood pressure-independent arterial wall stiffness parameter; cardio-ankle vascular index (CAVI). J. Atheroscler. Thromb. 2006, 13, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Brown, L.J.; Brunelle, J.A.; Kingman, A. Periodontal status in the United States, 1988–1991: Prevalence, extent, and demographic variation. J. Dent. Res. 1996, 75, 672–683. [Google Scholar] [CrossRef]
- Shiba, T.; Takahashi, M.; Matsumoto, T.; Shirai, K.; Hori, Y. Arterial stiffness shown by the cardio-ankle vascular index is an important contributor to optic nerve head microcirculation. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 99–105. [Google Scholar] [CrossRef] [Green Version]
- LeBlanc, A.J.; Krishnan, L.; Sullivan, C.J.; Williams, S.K.; Hoying, J.B. Microvascular repair: Post-angiogenesis vascular dynamics. Microcirculation 2012, 19, 676–695. [Google Scholar] [CrossRef] [Green Version]
- Torsney, E.; Mandal, K.; Halliday, A.; Jahangiri, M.; Xu, Q. Characterisation of progenitor cells in human atherosclerotic vessels. Atherosclerosis 2007, 191, 259–264. [Google Scholar] [CrossRef]
- Moreno, P.R.; Purushothaman, K.R.; Fuster, V.; Echeverri, D.; Truszczynska, H.; Sharma, S.K.; Badimon, J.J.; O’Connor, W.N. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human aorta: Implications for plaque vulnerability. Circulation 2004, 110, 2032–2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, G.W. Effect of inflammation on the aging microcirculation: Impact on skeletal muscle blood flow control. Microcirculation 2006, 13, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Yakabe, M.; Akishita, M. Age-related sarcopenia and its pathophysiological bases. Inflamm. Regen. 2016, 36, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, Y.; Sato, S.; Koyamatsu, J.; Yamanashi, H.; Nagayoshi, M.; Kadota, K.; Kawashiri, S.Y.; Inoue, K.; Nagata, Y.; Maeda, T. Handgrip strength and subclinical carotid atherosclerosis in relation to platelet levels among hypertensive elderly Japanese. Oncotarget 2017, 8, 69362–69369. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.; Sato, S.; Noguchi, Y.; Koyamatsu, J.; Yamanashi, H.; Higashi, M.; Nagayoshi, M.; Kawashiri, S.Y.; Nagata, Y.; Takamura, N.; et al. Association between tongue pressure and subclinical carotid atherosclerosis in relation to platelet levels in hypertensive elderly men: A cross-sectional study. Environ. Health Prev. Med. 2018, 23, 31. [Google Scholar] [CrossRef]
- Tsioufis, C.; Dimitriadis, K.; Katsiki, N.; Tousoulis, D. Microcirculation in hypertension: An update on clinical significance and therapy. Curr. Vasc. Pharmacol. 2015, 13, 413–417. [Google Scholar] [CrossRef]
- Shimizu, Y.; Sato, S.; Koyamatsu, J.; Yamanashi, H.; Nagayoshi, M.; Kadota, K.; Kawashiri, S.Y.; Inoue, K.; Nagata, Y.; Maeda, T. Platelets and circulating CD34-positive cells as an indicator of the activity of the vicious cycle between hypertension and endothelial dysfunction in elderly Japanese men. Atherosclerosis 2017, 259, 26–31. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Tohara, H.; Hara, K.; Nakane, A.; Kajisa, E.; Yoshimi, K.; Minakuchi, S. Relationship of aging, skeletal muscle mass, and tooth loss with masseter muscle thickness. BMC Geriatr. 2018, 18, 67. [Google Scholar] [CrossRef]
- Jain, S.; Khera, R.; Corrales-Medina, V.F.; Townsend, R.R.; Chirinos, J.A. Inflammation and arterial stiffness in humans. Atherosclerosis 2014, 237, 381–390. [Google Scholar] [CrossRef]
- Samietz, S.; Jürgens, C.; Ittermann, T.; Holtfreter, B.; Pink, C.; Schipf, S.; Biffar, R.; Völzke, H.; Kocher, T.; Tost, F. Cross-sectional association between oral health and retinal microcirculation. J. Clin. Periodontol. 2018, 45, 404–412. [Google Scholar] [CrossRef]
- Plestina-Borjan, I.; Katusic, D.; Medvidovic-Grubisic, M.; Supe-Domic, D.; Bucan, K.; Tandara, L.; Rogosic, V. Association of age-related macular degeneration with erythrocyte antioxidant enzymes activity and serum total antioxidant status. Oxid. Med. Cell. Longev. 2015, 2015, 804054. [Google Scholar] [CrossRef] [PubMed]
- Raptis, V.; Bakogiannis, C.; Loutradis, C.; Boutou, A.K.; Lampropoulou, I.; Intzevidou, E.; Sioulis, A.; Balaskas, E.; Sarafidis, P.A. Levels of endocan, angiopoietin-2, and hypoxia-inducible factor-1a in patients with autosomal dominant polycystic kidney disease and different levels of renal function. Am. J. Nephrol. 2018, 47, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Daub, K.; Langer, H.; Seizer, P.; Stellos, K.; May, A.E.; Goyal, P.; Bigalke, B.; Schönberger, T.; Geisler, T.; Siegel-Axel, D.; et al. Platelets induce differentiation of human CD34+ progenitor cells into foam cells and endothelial cells. FASEB J. 2006, 20, 2559–2561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Functional Atherosclerosis | |||
---|---|---|---|
(−) | (+) | p | |
Number of participants | 846 | 389 | |
Men, % | 33.4 | 52.1 | <0.001 |
Age, years | 65.2 ± 10.0 | 74.8 ± 7.2 | <0.001 |
SBP, mmHg | 135 ± 19 | 144 ± 19 | <0.001 |
DBP, mmHg | 82 ± 11 | 83 ± 12 | 0.042 |
BMI, kg/m2 | 22.9 ± 3.5 | 23.2 ± 3.0 | 0.134 |
Current smoker, % | 8.7 | 6.9 | 0.282 |
Serum γ-GTP, U/L | 30 ± 31 | 30 ± 44 | 0.864 |
Serum TG, mg/dL | 101 ± 61 | 104 ± 50 | 0.436 |
Serum HDLc, mg/dL | 64 ± 15 | 59 ± 14 | <0.001 |
HbA1c, % | 5.7 ± 0.5 | 5.9 ± 0.6 | <0.001 |
Participants with decayed teeth, % | 59.1 | 63.2 | 0.637 |
Participants with Periodontitis, % | 47.5 | 56.0 | 0.005 |
CIMT, mm | 0.67 ± 0.13 | 0.74 ± 0.13 | <0.001 |
Number of remaining teeth | 22 ± 7 | 19 ± 9 | <0.001 |
Carotid Intima-Media Thickness (CIMT) Quartile | p for Trend (Quartile) | 1 SD Increment in CIMT | ||||
---|---|---|---|---|---|---|
Q1 (Low) | Q2 | Q3 | Q4 (High) | |||
Total | ||||||
Number of participants | 305 | 316 | 310 | 304 | ||
Number of tooth loss (%) | 55 (18.0) | 90 (28.5) | 120 (38.7) | 141 (46.4) | ||
Sex- and age-adjusted OR | 1.00 | 1.08 (0.72, 1.64) | 1.24 (0.82, 1.87) | 1.27 (0.83, 1.95) | 0.215 | 1.16 (1.01, 1.34) |
Multivariable OR | 1.00 | 1.15 (0.76, 1.76) | 1.23 (0.80, 1.88) | 1.26 (0.81, 1.95) | 0.312 | 1.14 (0.98, 1.32) |
Carotid Intima-Media Thickness (CIMT) Quartile | p for Trend (Quartile) | 1 SD Increment in CIMT | ||||
---|---|---|---|---|---|---|
Q1 (Low) | Q2 | Q3 | Q4 (High) | |||
Participants without functional atherosclerosis | ||||||
Number of participants | 257 | 235 | 196 | 158 | ||
Number of tooth loss (%) | 38 (14.8) | 56 (23.8) | 69 (35.2) | 77 (48.7) | ||
Sex and age-adjusted OR | 1.00 | 1.02 (0.62, 1.67) | 1.31 (0.79, 2.17) | 1.76 (1.04, 3.00) | 0.017 | 1.29 (1.07, 1.55) |
Multivariable OR | 1.00 | 1.13 (0.68, 1.88) | 1.40 (0.83, 2.36) | 1.81 (1.05, 3.12) | 0.021 | 1.27 (1.04, 1.55) |
Participants with functional atherosclerosis | ||||||
Number of participants | 48 | 81 | 114 | 146 | ||
Number of tooth loss (%) | 17 (35.4) | 34 (42.0) | 51 (44.7) | 64 (43.8) | ||
Sex- and age-adjusted OR | 1.00 | 1.15 (0.53, 2.51) | 1.02 (0.48, 2.15) | 0.80 (0.38, 1.68) | 0.312 | 1.00 (0.79, 1.26) |
Multivariable OR | 1.00 | 1.16 (0.52, 2.60) | 0.91 (0.42, 1.98) | 0.73 (0.34, 1.58) | 0.212 | 0.99 (0.77, 1.26) |
Functional Atherosclerosis | ||||
---|---|---|---|---|
(−) | (+) | |||
r | p | r | p | |
CAVI | CAVI | |||
Number of participants | 846 | 389 | ||
CIMT | 0.27 | <0.001 | 0.01 | 0.784 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimizu, Y.; Yamanashi, H.; Kitamura, M.; Miyata, J.; Nonaka, F.; Nakamichi, S.; Saito, T.; Nagata, Y.; Maeda, T. Tooth Loss and Carotid Intima-Media Thickness in Relation to Functional Atherosclerosis: A Cross-Sectional Study. J. Clin. Med. 2022, 11, 3993. https://doi.org/10.3390/jcm11143993
Shimizu Y, Yamanashi H, Kitamura M, Miyata J, Nonaka F, Nakamichi S, Saito T, Nagata Y, Maeda T. Tooth Loss and Carotid Intima-Media Thickness in Relation to Functional Atherosclerosis: A Cross-Sectional Study. Journal of Clinical Medicine. 2022; 11(14):3993. https://doi.org/10.3390/jcm11143993
Chicago/Turabian StyleShimizu, Yuji, Hirotomo Yamanashi, Masayasu Kitamura, Jun Miyata, Fumiaki Nonaka, Seiko Nakamichi, Toshiyuki Saito, Yasuhiro Nagata, and Takahiro Maeda. 2022. "Tooth Loss and Carotid Intima-Media Thickness in Relation to Functional Atherosclerosis: A Cross-Sectional Study" Journal of Clinical Medicine 11, no. 14: 3993. https://doi.org/10.3390/jcm11143993
APA StyleShimizu, Y., Yamanashi, H., Kitamura, M., Miyata, J., Nonaka, F., Nakamichi, S., Saito, T., Nagata, Y., & Maeda, T. (2022). Tooth Loss and Carotid Intima-Media Thickness in Relation to Functional Atherosclerosis: A Cross-Sectional Study. Journal of Clinical Medicine, 11(14), 3993. https://doi.org/10.3390/jcm11143993