Impact of Cryopreservation of Peripheral Blood Stem Cells (PBSC) in Transplantation from Matched Unrelated Donor (MUD)
Abstract
:1. Introduction
2. Methods
2.1. Study Cohort
2.2. Cryopreservation Procedure
2.3. Definitions
2.4. Study Endpoints and Statistical Analysis
3. Results
3.1. Baseline Characteristics of Patients, Donors, and Grafts
3.2. Clinical Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Frey, N.V.; Lazarus, H.M.; Goldstein, S.C. Has allogeneic stem cell cryopreservation been given the “cold shoulder”? An analysis of the pros and cons of using frozen versus fresh stem cell products in allogeneic stem cell transplantation. Bone Marrow Transplant. 2006, 38, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Maurer, K.; Kim, H.T.; Kuczmarski, T.M.; Garrity, H.M.; Weber, A.; Reynolds, C.G.; Liney, D.; Cutler, C.; Antin, J.H.; Koreth, J.; et al. Impact of cryopreservation and transit times of allogeneic grafts on hematopoietic and immune reconstitution. Blood Adv. 2021, 5, 5140–5149. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.W.; Farhadfar, N.; Murthy, H.; Logan, B.R.; Bo-Subait, S.; Frey, N.; Goldstein, S.C.; Horowitz, M.M.; Lazarus, H.; Schwanke, J.D.; et al. The Effect of Donor Graft Cryopreservation on Allogeneic Hematopoietic Cell Transplantation Outcomes: A Center for International Blood and Marrow Transplant Research Analysis. Implications during the COVID-19 Pandemic. Transpl. Cell Ther. 2021, 27, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Szer, J.; Weisdorf, D.; Querol, S.; Foeken, L.; Madrigal, A. The impact of COVID-19 on the provision of donor hematopoietic stem cell products worldwide: Collateral damage. Bone Marrow Transplant. 2020, 55, 2043–2044. [Google Scholar] [CrossRef]
- Fernandez-Sojo, J.; Azqueta, C.; Valdivia, E.; Martorell, L.; Medina-Boronat, L.; Martínez-Llonch, N.; Silvia, T.; Margarita, C.; Carme, C.; Izaskun, E.; et al. Cryopreservation of unrelated donor hematopoietic stem cells: The right answer for transplantations during the COVID-19 pandemic? Bone Marrow Transplant. 2021, 56, 2489–2496. [Google Scholar] [CrossRef]
- Gluckman, E.; Ruggeri, A.; Volt, F.; Cunha, R.; Boudjedir, K.; Rocha, V. Milestones in umbilical cord blood transplantation. Br. J. Haematol. 2011, 154, 441–447. [Google Scholar] [CrossRef]
- Lanza, F.; Mangianti, S.; Accorsi, P.; Lombardini, L.; Martino, M.; Saccardi, R.; Vassanelli, A.; Ostuni, A.; Ciceri, F. Manipulation, and cryopreservation of autologous peripheral blood stem cell products in Italy: A survey by GITMO, SIDEM and GIIMA societies. Transfus. Apher. Sci. 2020, 59, 102753. [Google Scholar] [CrossRef]
- Pavlů, J.; Auner, H.; Szydlo, R.; Sevillano, B.; Palani, R.; O’Boyle, F.; Chaidos, A.; Jakob, C.; Kanfer, E.; MacDonald, D.; et al. Analysis of hematopoietic recovery after autologous transplantation as method of quality control for long-term progenitor cell cryopreservation. Bone Marrow Transplant. 2017, 52, 1599–1601. [Google Scholar] [CrossRef]
- Alotaibi, A.S.; Prem, S.; Chen, S.; Lipton, J.H.; Kim, D.D.; Viswabandya, A.; Kumar, R.; Lam, W.; Law, A.D.; Mattsson, J.; et al. Fresh vs. frozen allogeneic peripheral blood stem cell grafts: A successful timely option. Am. J. Hematol. 2021, 96, 179–187. [Google Scholar] [CrossRef]
- Lioznov, M.; Dellbrügger, C.; Sputtek, A.; Fehse, B.; Kröger, N.; Zander, A.R. Transportation and cryopreservation may impair haematopoietic stem cell function and engraftment of allogeneic PBSCs, but not BM. Bone Marrow Transplant. 2008, 42, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Parody, R.; Caballero, D.; Márquez-Malaver, F.; Vázquez, L.; Saldaña, R.; Madrigal, M.D.; Calderón, C.; Carrillo, E.; Corral, L.L.; Espigado, I.; et al. To freeze or not to freeze peripheral blood stem cells prior to allogeneic transplantation from matched related donors. Eur. J. Haematol. 2013, 91, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Jamal, N.; Saragosa, R.; Loach, D.; Wright, J.; Gupta, V.; Kuruvilla, J.; Lipton, J.H.; Minden, M.; Messner, H.A. Similar Outcomes of Cryopreserved Allogeneic Peripheral Stem Cell Transplants (PBSCT) Compared to Fresh Allografts. Biol. Blood Marrow Transplant. 2007, 13, 1233–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medd, P.; Nagra, S.; Hollyman, D.; Craddock, C.; Malladi, R. Cryopreservation of allogeneic PBSC from related and unrelated donors is associated with delayed platelet engraftment but has no impact on survival. Bone Marrow Transplant. 2013, 48, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Kanda, Y.; Inoue, M.; Uchida, N.; Onishi, Y.; Kamata, R.; Kotaki, M.; Kobayashi, R.; Tanaka, J.; Fukuda, T.; Fujii, N.; et al. Cryopreservation of Unrelated Hematopoietic Stem Cells from a Blood and Marrow Donor Bank During the COVID-19 Pandemic: A Nationwide Survey by the Japan Marrow Donor Program. Transpl. Cell Ther. 2021, 27, 664.e1–664.e6. [Google Scholar] [CrossRef] [PubMed]
- Schoemans, H.M.; Lee, S.J.; Ferrara, J.L.; Wolff, D.; Levine, J.E.; Schultz, K.R.; Shaw, B.E.; Flowers, M.E.; Ruutu, T.; Greinix, H.; et al. EBMT−NIH−CIBMTR Task Force position statement on standardized terminology & guidance for graft-versus-host disease assessment. Bone Marrow Transplant. 2018, 53, 1401–1415. [Google Scholar]
- Majhail, N.S.; Farnia, S.H.; Carpenter, P.A.; Champlin, R.E.; Crawford, S.; Marks, D.I.; Omel, J.L.; Orchard, P.J.; Palmer, J.; Saber, W.; et al. Indications for Autologous and Allogeneic Hematopoietic Cell Transplantation: Guidelines from the American Society for Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 2015, 21, 1863–1869. [Google Scholar] [CrossRef] [Green Version]
- Giralt, S.; Costa, L.; Schriber, J.; DiPersio, J.; Maziarz, R.; Mccarty, J.; Shaughnessy, P.; Snyder, E.; Bensinger, W.; Copelan, E.; et al. Optimizing autologous stem cell mobilization strategies to improve patient outcomes: Consensus guidelines and recommendations. Biol Blood Marrow Transpl. 2014, 20, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Mohty, M.; Hübel, K.; Kröger, N.; Aljurf, M.; Apperley, J.; Basak, G.W.; Bazarbachi, A.; Douglas, K.; Gabriel, I.; Garderet, L.; et al. Autologous haematopoietic stem cell mobilisation in multiple myeloma and lymphoma patients: A position statement from the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 2014, 49, 865–872. [Google Scholar] [CrossRef] [Green Version]
- Mengling, T.; Rall, G.; Bernas, S.N.; Astreou, N.; Bochert, S.; Boelk, T.; Buk, D.; Burkard, K.; Endert, D.; Gnant, K.; et al. Stem cell donor registry activities during the COVID-19 pandemic: A field report by DKMS. Bone Marrow Transplant. 2021, 56, 798–806. [Google Scholar] [CrossRef]
- Hamadani, M.; Zhang, M.; Tang, X.; Fei, M.; Brunstein, C.; Chhabra, S.; D’Souza, A.; Milano, F.; Phelan, R.; Saber, W.; et al. Graft Cryopreservation Does Not Impact Overall Survival after Allogeneic Hematopoietic Cell Transplantation Using Post-Transplantation Cyclophosphamide for Graft-versus-Host Disease Prophylaxis. Biol. Blood Marrow Transpl. 2020, 26, 1312–1317. [Google Scholar] [CrossRef]
- Bankova, A.K.; Caveney, J.; Yao, B.; Ramos, T.L.; Bögeholz, J.; Heydari, K.; Diaz, N.; Jackson, M.L.; Lowsky, R.; Brown, J.; et al. Real-World Experience of Cryopreserved Allogeneic Hematopoietic Grafts during the COVID-19 Pandemic: A Single-Center Report. Transpl. Cell Ther. 2022, 28, 215.e1–215.e10. [Google Scholar] [CrossRef] [PubMed]
- Sattui, S.; De La Flor, C.; Sanchez, C.; Lewis, D.; Lopez, G.; Rizo-Patrón, E.; White, A.C., Jr.; Montes, M. Cryopreservation modulates the detection of regulatory T cell markers. Cytom. Part B Clin. Cytom. 2012, 82, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Elkord, E. Frequency of human T regulatory cells in peripheral blood is significantly reduced by cryopreservation. J. Immunol. Methods 2009, 347, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Eapen, M.; Zhang, M.; Tang, X.; Lee, S.J.; Fei, M.; Wang, H.; Hebert, K.M.; Arora, M.; Chhabra, S.; Devine, S.M.; et al. Hematopoietic Cell Transplantation with Cryopreserved Grafts for Severe Aplastic Anemia. Biol. Blood Marrow Transpl. 2020, 26, e161–e166. [Google Scholar] [CrossRef]
- Jacob, R.P.; Flynn, J.; Devlin, S.M.; Maloy, M.; Giralt, S.A.; Maslak, P.; O’Reilly, R.J.; Tonon, J.-A.; Perales, M.A.; Avecilla, S.T.; et al. Universal Engraftment after Allogeneic Hematopoietic Cell Transplantation Using Cryopreserved CD34-Selected Grafts. Transpl. Cell Ther. 2021, 27, 697.e1–697.e5. [Google Scholar] [CrossRef]
Cryopreserved | Fresh | p Value | |
---|---|---|---|
(n = 31) | (n = 23) | ||
AGE at transplant, median (IQR) | 56 (43–63) | 61 (57–65) | 0.18 |
Sex, n (%) | 0.253 | ||
- Male | 14 (45.2) | 14 (60.9) | |
- Female | 17 (54.8) | 9 (39.1) | |
Patient Weight, median (IQR) | 77 (60–85) | 74 (61–89) | 0.696 |
Disease, n (%) | 0.524 | ||
- AML ** | 13 (41.9) | 14 (60.9) | |
- ALL | 9 (29.0) | 3 (13.0) | |
- MDS | 1 (3.2) | 0 (0) | |
- NHL | 4 (12.9) | 3 (13.0) | |
- Other | 4 (12.9) | 3 (13.0) | |
Disease Status, n (%) | 0.361 | ||
- CR *** | 16 (51.6) | 16 (69.6) | |
- R/R | 10 (32.3) | 4 (17.4) | |
- RP | 3 (9.7) | 3 (13.0) | |
- SD | 2 (6.4) | 0 (0) | |
HCT-CL, n/N (%) | 0.047 | ||
- 0 | 18/30 (60.0) | 8 (34.8) | |
- 1–2 | 7/30 (23.3) | 4 (17.4) | |
- >2 | 5/30 (16.7) | 11 (47.8) | |
Karnofsky, n (%) | 0.169 | ||
- <90% | 13 (41.9) | 14 (60.9) | |
- >90% | 18 (58.1) | 9 (39.1) | |
ECOG, n(%) | 0.056 | ||
- ≥2 | 27 (87.1) | 15 (65.2) | |
- <2 | 4 (12.9) | 8 (34.8) | |
AB0, n (%) | 0.15 | ||
- Major incompatibility | 13 (41.9) | 6 (26.1) | |
- Minor incompatibility | 12 (38.7) | 7 (30.4) | |
- Compatible | 6 (19.4) | 10 (43.5) | |
Donor Age, median (IQR) | 29 (23–36) | 29 (22–33) | 0.964 |
Donor/Recipient Sex Mismatch, n (%) | 13 (41.9) | 9 (39.1) | 0.836 |
Donor/Recipient Weight Discrepancy (>10 Kg body weight), n (%) | 19 (61.3) | 18 (78.3) | 0.184 |
HLA, n (%) | 0.399 | ||
- 10/10 | 21 (67.7) | 13 (56.5) | |
- others | 10 (32.3) | 10 (43.5) | |
Condition Regimen, n (%) | 0.393 | ||
- Myeloablative | 21 (67.7) | 18 (78.3) | |
- Reduce intensity | 10 (32.3) | 5 (21.7) | |
Patient/Donor CMV Status, n/N (%) | 0.727 | ||
- −/− | 5/30 (16.7) | 1/19 (5.3) | |
- −/+ | 3/30 (10.0) | 2/19 (10.5) | |
- +/+ | 10/30 (33.3) | 8/19 (42.1) | |
- +/− | 12/30 (40.0) | 8/19 (42.1) | |
WBC/kg Infused, mean ± SD | 9.7 ± 7.1 | 7.8 ± 2.7 | 0.217 |
CD34/kg Infused, mean ± SD | 5.2 ± 1.9 | 7.0 ± 1.3 | <0.001 |
CD3/kg Infused, mean ± SD | 15.3 ± 5.1 | 20.8 ± 10.3 | 0.087 |
Days to neutrophil recovery (500/mmc), median (IQR) | 13.5 (12–15) | 14 (13–16) | 0.522 |
Days to neutrophil recovery (1000/mmc), median (IQR) | 14 (13–16) | 14 (13–16) | 0.904 |
Days to platelet recovery (20,000/mmc), median (IQR) | 14 (12–18) | 15 (12–17) | 0.744 |
Days to platelet recovery (50,000/mmc), median (IQR) | 19 (15–24) | 18 (15–20) | 0.469 |
Cryopreserved | Fresh | p Value | |
---|---|---|---|
(n = 31) | (n = 23) | ||
Acute GVHD, n (%) | |||
- Yes | 23 (74.2) | 15 (65.2) | |
Grade, n/N (%) | 0.475 | ||
- I | 10/23 (43.5) | 6/15 (40.0) | 0.832 |
- II–IV | 13/23 (56.5) | 9/15 (60.0) | |
Days onset, median (IQR) | 24 (17–37) | 28 (23–45) | 0.464 |
Skin involvement, n (%) | |||
- Yes | 21 (67.7) | 15 (65.2) | 0.846 |
Grade, n/N(%) | 0.2 | ||
- I | 6/21 (28.6) | 1/15 (6.7) | |
- II–IV | 15/21 (71.4) | 14/15 (93.3) | |
Gut involvement, n (%) | |||
- Yes | 7 (22.6) | 5 (21.7) | 0.941 |
Grade, n/N (%) | 0.417 | ||
- I | 7/7 (100) | 4/5 (80.0) | |
- II | 0/7 (0) | 1/5 (20.0) | |
Hepatic involvement, n (%) | 0.502 | ||
- Yes | 2 (6.4) | 0 (0) | |
Grade, n/N (%) | |||
- II | 2/2 (100) | ||
Treatment, n/N (%) | 1 | ||
- Steroid | 21 (91.3) | 14/16 (87.5) | |
- observation | 2 (8.7) | 2/16 (12.5) | |
Response to first line treatment, n/N (%) | 0.43 | ||
- Complete response | 15 (65.2) | 11/14 (78.6) | |
- Partial response | 2 (8.7) | 2/14 (14.3) | |
- Refractory | 6 (26.1) | 1/14 (7.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Facchin, G.; Savignano, C.; Battista, M.L.; Isola, M.; De Martino, M.; Petruzzellis, G.; Rosignoli, C.; Pizzano, U.; Cerno, M.; De Cecco, G.; et al. Impact of Cryopreservation of Peripheral Blood Stem Cells (PBSC) in Transplantation from Matched Unrelated Donor (MUD). J. Clin. Med. 2022, 11, 4114. https://doi.org/10.3390/jcm11144114
Facchin G, Savignano C, Battista ML, Isola M, De Martino M, Petruzzellis G, Rosignoli C, Pizzano U, Cerno M, De Cecco G, et al. Impact of Cryopreservation of Peripheral Blood Stem Cells (PBSC) in Transplantation from Matched Unrelated Donor (MUD). Journal of Clinical Medicine. 2022; 11(14):4114. https://doi.org/10.3390/jcm11144114
Chicago/Turabian StyleFacchin, Gabriele, Chiara Savignano, Marta Lisa Battista, Miriam Isola, Maria De Martino, Giuseppe Petruzzellis, Chiara Rosignoli, Umberto Pizzano, Michela Cerno, Giulia De Cecco, and et al. 2022. "Impact of Cryopreservation of Peripheral Blood Stem Cells (PBSC) in Transplantation from Matched Unrelated Donor (MUD)" Journal of Clinical Medicine 11, no. 14: 4114. https://doi.org/10.3390/jcm11144114
APA StyleFacchin, G., Savignano, C., Battista, M. L., Isola, M., De Martino, M., Petruzzellis, G., Rosignoli, C., Pizzano, U., Cerno, M., De Cecco, G., Bertone, A., Barillari, G., Fanin, R., & Patriarca, F. (2022). Impact of Cryopreservation of Peripheral Blood Stem Cells (PBSC) in Transplantation from Matched Unrelated Donor (MUD). Journal of Clinical Medicine, 11(14), 4114. https://doi.org/10.3390/jcm11144114