Fibrinogen to Albumin Ratio as Early Serum Biomarker for Prediction of Intra-Hospital Mortality in Neurosurgical Intensive Care Unit Patients with Spontaneous Intracerebral Hemorrhage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Treatment
2.4. Intensive Care Unit Treatment
2.5. Cardiopulmonary Parameters
2.6. Serum Biomarkers
2.7. Computed Tomography Scan
2.8. Intra-Hospital Outcome and Mortality
2.9. Statistical Analysis
3. Results
3.1. Main Characteristics
3.2. Intrahospital Mortality and Outcome
4. Discussion
4.1. Summary of Findings
4.2. Intra-Hospital Mortality
4.3. Fibrinogen to Albumin Ratio
4.4. Limitations and Strengths of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Caplan, L.R. Intracerebral haemorrhage. Lancet 1992, 339, 656–658. [Google Scholar] [CrossRef]
- Ahn, C.S.; Lee, S.K.; Kim, H.S.; Kong, M.H.; Song, K.Y.; Kang, D.S. Surgical outcome of spontaneous intracerebral hemorrhage in less than stuporous mental status. J. Korean Neurosurg. Soc. 2004, 35, 290–296. [Google Scholar]
- Garrett, M.C.; Komotar, R.J.; Starke, R.M.; Doshi, D.; Otten, M.L.; Connolly, E.S. Elevated troponin levels are predictive of mortality in surgical intracerebral hemorrhage patients. Neurocrit. Care 2010, 12, 199–203. [Google Scholar] [CrossRef]
- Martí-Fàbregas, J.; Belvís, R.; Guardia, E.; Cocho, D.; Muñoz, J.; Marruecos, L.; Martí-Vilalta, J.L. Prognostic value of Pulsatility index in acute intra-cerebral hemorrhage. Neurology 2003, 61, 1051–1056. [Google Scholar] [CrossRef]
- Hays, A.; Diringer, M.N. Elevated troponin levels are associated with higher mortality following intracerebral hemorrhage. Neurology 2006, 66, 1330–1334. [Google Scholar] [CrossRef] [PubMed]
- Bender, M.; Haferkorn, K.; Friedrich, M.; Uhl, E.; Stein, M. Impact of Early C-Reactive Protein/Albumin Ratio on Intra-Hospital Mortality among Patients with Spontaneous Intracerebral Hemorrhage. J. Clin. Med. 2020, 24, 1236. [Google Scholar] [CrossRef]
- Hjalmarsson, C.; Bergfeldt, L.; Bokemark, L.; Manhem, K.; Andersson, B. Electrocardiographic abnormalities and elevated cTNT at admission for intracerebral hemorrhage: Predictors for survival? Ann. Noninvasive Electrocardiol. 2013, 18, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.; Luecke, M.; Preuss, M.; Boeker, D.K.; Joedicke, A.; Oertel, M.F. Spontaneous intracerebral hemorrhage with ventricular extension and the grading of obstructive hydrocephalus: The prediction of outcome of a special life-threatening entity. Neurosurgery 2010, 67, 1243–1251. [Google Scholar] [CrossRef]
- Juvela, S. Risk factors for impaired outcome after spontaneous intracerebral hemorrhage. Arch. Neurol. 1995, 52, 1193–1200. [Google Scholar] [CrossRef]
- Davis, S.M.; Broderick, J.; Hennerici, M.; Brun, N.C.; Diringer, M.N.; Mayer, S.A.; Begtrup, K.; Steiner, T. Recombinant Activated Factor VII Intracerebral Hemorrhage Trial Investigators. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology 2006, 66, 1175–1181. [Google Scholar] [CrossRef]
- Tuhrim, S.; Horowitz, D.R.; Sacher, M.; Godbold, J.H. Volume of ventricular blood is an important determinant of outcome in supratentorial intracerebral hemorrhage. Crit. Care Med. 1999, 27, 617–621. [Google Scholar] [CrossRef]
- Gerner, S.T.; Auerbeck, K.; Sprügel, M.I.; Sembill, J.A.; Madžar, D.; Gölitz, P.; Hoelter, P.; Kuramatsu, J.B.; Schwab, S.; Huttner, H.B. Peak Troponin I Levels Are Associated with Functional Outcome in Intracerebral Hemorrhage. Cerebrovasc. Dis. 2018, 46, 72–81. [Google Scholar] [CrossRef]
- Foerch, C.; Curdt, I.; Yan, B.; Dvorak, F.; Hermans, M.; Berkefeld, J.; Raabe, A.; Neumann-Haefelin, T.; Steinmetz, H.; Sitzer, M. Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J. Neurol. Neurosurg. Psychiatry 2006, 77, 181–184. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Ren, W.; Zu, H.; Dong, Q. Evaluate the serum cortisol in patients with intracerebral hemorrhage. Clin. Neurol. Neurosurg. 2014, 123, 127–130. [Google Scholar] [CrossRef]
- Diedler, J.; Sykora, M.; Hahn, P.; Rupp, A.; Rocco, A.; Herweh, C.; Steiner, T. C-reactive-protein levels associated with infection predict short- and long-term outcome after supratentorial intracerebral hemorrhage. Cerebrovasc. Dis. 2009, 27, 272–279. [Google Scholar] [CrossRef]
- Agnihotri, S.; Czap, A.; Staff, I.; Fortunato, G.; McCullough, L.D. Peripheral leukocyte counts and outcomes after intracerebral hemorrhage. J. Neuroinflamm. 2011, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, S.; Costa, F.; Seabra, M.; Dias, R.; Soares, A.; Dias, C.; Azevedo, E.; Castro, P. Systemic inflammation status at admission affects the outcome of intracerebral hemorrhage by increasing perihematomal edema but not the hematoma growth. Acta Neurol. 2021, 121, 649–659. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Chang, S.; Zhou, K.; Che, G. Low Albumin to Fibrinogen Ratio Predicts Poor Overall Survival in Esophageal Small Cell Carcinoma Patients: A Retrospective Study. Cancer Manag. Res. 2020, 12, 2675–2683. [Google Scholar] [CrossRef] [Green Version]
- Tai, H.; Zhu, Z.; Mei, H.; Sun, W.; Zhang, W. Albumin-to-Fibrinogen Ratio Independently Predicts 28-Day Mortality in Patients with Peritonitis-Induced Sepsis. Mediat. Inflamm. 2020, 2020, 7280708. [Google Scholar] [CrossRef]
- Ruan, Y.; Yuan, C.; Liu, Y.; Zeng, Y.; Cheng, H.; Cheng, Q.; Chen, Y.; Huang, G.; He, W.; He, J. High fibrinogen-to-albumin ratio is associated with hemorrhagic transformation in acute ischemic stroke patients. Brain Behav. 2021, 11, e01855. [Google Scholar] [CrossRef]
- Kuyumcu, M.S.; Aydın, O. Fibrinogen-to-albumin ratio may be a predictor for ascending aortic aneurysm. Rev. Assoc. Med. Bras. 2021, 67, 868–872. [Google Scholar] [CrossRef]
- Guclu, H.; Ozal, S.A.; Pelitli Gurlu, V.; Özgün, G.S.; Özgün, E. Increased Fibrinogen to Albumin Ratio in Ischemic Retinal Vein Occlusions. Eur. J. Ophthalmol. 2017, 27, 735–739. [Google Scholar] [CrossRef]
- Chen, T.; Sun, J.L.; Zhang, J. The relationship between fibrinogen-to-albumin ratio and in-stent restenosis in patients with coronary artery disease undergoing drug-eluting stenting. Coron. Artery Dis. 2020, 31, 586–589. [Google Scholar] [CrossRef]
- Xu, W.Y.; Zhang, H.H.; Xiong, J.P.; Yang, X.B.; Bai, Y.; Lin, J.Z.; Long, J.Y.; Zheng, Y.C.; Zhao, H.T.; Sang, X.T. Prognostic significance of the fibrinogen-to-albumin ratio in gallbladder cancer patients. World J. Gastroenterol. 2018, 24, 3281–3292. [Google Scholar] [CrossRef]
- Acharya, P.; Jakobleff, W.A.; Forest, S.J.; Chinnadurai, T.; Mellas, N.; Patel, S.R.; Kizer, J.R.; Billett, H.H.; Goldstein, D.J.; Jorde, U.P.; et al. Fibrinogen Albumin Ratio and Ischemic Stroke during Venoarterial Extracorporeal Membrane Oxygenation. ASAIO J. 2020, 66, 277–282. [Google Scholar] [CrossRef]
- Liu, X.; Yu, Z.; Wen, D.; Ma, L.; You, C. Prognostic value of albumin-fibrinogen ratio in subarachnoid hemorrhage patients. Medicine 2021, 100, e25764. [Google Scholar] [CrossRef]
- Castellanos, M.; Leira, R.; Tejada, J.; Gil-Peralta, A.; Dávalos, A.; Castillo, J. Stroke Project, Cerebrovascular Diseases Group of the Spanish Neurological Society. Predictors of good outcome in medium to large spontaneous supratentorial intracerebral haemorrhages. J. Neurol. Neurosurg. Psychiatry 2005, 76, 691–695. [Google Scholar] [CrossRef] [Green Version]
- Teasdale, G.; Jennett, B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974, 2, 81–84. [Google Scholar] [CrossRef]
- Le Gall, J.R.; Lemeshow, S.; Saulnier, F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993, 270, 2957–2963. [Google Scholar] [CrossRef]
- Finocchi, C.; Balestrino, M.; Malfatto, L.; Mancardi, G.; Serrati, C.; Gandolfo, C. National Institutes of Health Stroke Scale in patients with primary intracerebral hemorrhage. Neurol. Sci. 2018, 39, 1751–1755. [Google Scholar] [CrossRef]
- Evans, W.A., Jr. An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch. Neurol. Psychiatry 1942, 47, 931–937. [Google Scholar] [CrossRef]
- Graeb, D.A.; Robertson, W.D.; Lapointe, J.S.; Nugent, R.A.; Harrison, P.B. Computed tomographic diagnosis of intraventricular hemorrhage. Etiology and prognosis. Radiology 1982, 143, 91–96. [Google Scholar] [CrossRef]
- Van Swieten, J.C.; Koudstaal, P.J.; Visser, M.C.; Schouten, H.J.; van Gijn, J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 1988, 19, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Hemphill, J.C., 3rd; Greenberg, S.M.; Anderson, C.S.; Becker, K.; Bendok, B.R.; Cushman, M.; Fung, G.L.; Goldstein, J.N.; Macdonald, R.L.; Mitchell, P.H.; et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke 2015, 46, 2032–2060. [Google Scholar] [CrossRef] [Green Version]
- Schrag, M.; Kirshner, H. Management of Intracerebral Hemorrhage: JACC Focus Seminar. J. Am. Coll. Cardiol. 2020, 75, 1819–1831. [Google Scholar] [CrossRef]
- Specogna, A.V.; Turin, T.C.; Patten, S.B.; Hill, M.D. Factors associated with early deterioration after spontaneous intracerebral hemorrhage: A systematic review and meta-analysis. PLoS ONE 2014, 9, e96743. [Google Scholar] [CrossRef] [Green Version]
- Artero, A.; Zaragoza, R.; Camarena, J.J.; Sancho, S.; González, R.; Nogueira, J.M. Prognostic factors of mortality in patients with community-acquired bloodstream infection with severe sepsis and septic shock. J. Crit. Care 2010, 25, 276–281. [Google Scholar] [CrossRef]
- Park, J.E.; Chung, K.S.; Song, J.H.; Kim, S.Y.; Kim, E.Y.; Jung, J.Y.; Kang, Y.A.; Park, M.S.; Kim, Y.S.; Chang, J.; et al. The C-Reactive Protein/Albumin Ratio as a Predictor of Mortality in Critically Ill Patients. J. Clin. Med. 2018, 7, 333. [Google Scholar] [CrossRef] [Green Version]
- Morotti, A.; Marini, S.; Lena, U.K.; Crawford, K.; Schwab, K.; Kourkoulis, C.; Ayres, A.M.; Edip Gurol, M.; Viswanathan, A.; Greenberg, S.M.; et al. Significance of admission hypoalbuminemia in acute intracerebral hemorrhage. J. Neurol. 2017, 264, 905–911. [Google Scholar] [CrossRef]
- Hübner, M.; Mantziari, S.; Demartines, N.; Pralong, F.; Coti-Bertrand, P.; Schäfer, M. Postoperative Albumin Drop Is a Marker for Surgical Stress and a Predictor for Clinical Outcome: A Pilot Study. Gastroenterol. Res. Pract. 2016, 2016, 8743187. [Google Scholar] [CrossRef] [Green Version]
- Yahalom, G.; Schwartz, R.; Schwammenthal, Y.; Merzeliak, O.; Toashi, M.; Orion, D.; Sela, B.A.; Tanne, D. Chronic kidney disease and clinical outcome in patients with acute stroke. Stroke 2009, 40, 1296–1303. [Google Scholar] [CrossRef]
- Parikh, N.S.; Merkler, A.E.; Schneider, Y.; Navi, B.B.; Kamel, H. Discharge Disposition after Stroke in Patients with Liver Disease. Stroke 2017, 48, 476–478. [Google Scholar] [CrossRef]
Parameter | Overall (n = 198) | Survivor (n = 128) | Non-Survivor (n = 70) | p-Value |
---|---|---|---|---|
Baseline Data | ||||
Age, years, mean (±SD) * | 68.7 (13) | 66.1 (13.1) | 73.5 (11.4) | <0.0001 |
Women, n (%) * | 87 (43.9) | 63 (49.2) | 24 (34.3) | 0.04 |
Men, n (%) * | 111 (56.1) | 65 (50.8) | 46 (65.7) | |
Body Mass Index, kg/m2, median (IQR) * | 26.2 (24.5–29.4) | 27.3 (24.6–29.4) | 26 (24.5–27.8) | 0.06 |
Glasgow Coma Scale score, median (IQR) * | 6.5 (3–11) | 8 (3–13) | 4 (3–6) | <0.0001 |
APACHE II score, median (IQR) * | 18 (14–21) | 14 (13–17) | 20 (18–22) | <0.0001 |
NIHSS score, median (IQR) * | 15 (9–25) | 17 (8–19) | 26 (18–31) | <0.0001 |
mRS score, median (IQR) * | 5 (3–5) | 4 (3–5) | 5 (4–5) | 0.06 |
Hospital stay, median (IQR) ** | 16.5 (5–31) | 24 (16–38) | 3 (1–9) | <0.0001 |
Comorbidities | ||||
Chronic arterial hypertension, n (%) * | 68.7 (13) | 82 (64.1) | 37 (52.9) | 0.12 |
Chronic obstructive pulmonary diseases, n (%) * | 87 (43.9) | 19 (14.8) | 5 (7.1) | 0.11 |
Cardiac arrhythmia, n (%) * | 111 (56.1) | 26 (20.3) | 17 (24.3) | 0.52 |
Coronary artery disease, n (%) * | 26.2 (24.5–29.4) | 16 (12.5) | 14 (20) | 0.16 |
Heart failure, n (%) * | 6.5 (3–11) | 6 (4.7) | 7 (10) | 0.15 |
History of cardiac/cardiosurgical intervention, n (%) * | 18 (14–21) | 14 (10.9) | 10 (14.3) | 0.49 |
Chronic renal insufficiency, n (%) * | 15 (9–25) | 12 (9.4) | 5 (7.1) | 0.59 |
Diabetes mellitus, n (%) * | 5 (3–5) | 19 (14.8) | 13 (18.6) | 0.5 |
History of ischemic stroke, n (%) * | 16.5 (5–31) | 17 (13.3) | 8 (11.4) | 0.71 |
History of ICH, n (%) * | 68.7 (13) | 4 (3.1) | 4 (5.7) | 0.38 |
History of cancer, n (%) * | 87 (43.9) | 11 (8.6) | 8 (11.4) | 0.52 |
Premedication | ||||
Pre-existing medication, n (%) * | 102 (51.1) | 75 (58.6) | 27 (38.6) | 0.007 |
Antihypertensive drugs, n (%) * | 84 (42.4) | 62 (48.4) | 22 (31.4) | 0.02 |
Antiobstructive drugs, n (%) * | 4 (2) | 1 (0.8) | 3 (4.3) | 0.09 |
Antidiabetic drugs, n (%) * | 18 (9.1) | 8 (6.3) | 10 (14.3) | 0.06 |
Antiplatelet agents, n (%) * | 30 (15.2) | 17 (13.3) | 13 (18.6) | 0.32 |
New oral anticoagulants, n (%) * | 11 (5.6) | 6 (4.7) | 5 (7.1) | 0.47 |
Vitamin K antagonist, n (%) * | 42 (21.2) | 26 (20.3) | 16 (22.9) | 0.68 |
Parameter | Overall (n = 198) | Survivor (n = 128) | Non-Survivor (n = 70) | p-Value |
---|---|---|---|---|
Cardiopulmonary parameter | ||||
Norepinephrine application rate, µg/kg/min, mean (±SD) ** | 0.03 (0.05) | 0.03 (0.04) | 0.03 (0.05) | 0.47 |
Systolic blood pressure, mmHg, median (IQR) ** | 136 (127–143) | 135 (128–142) | 136 (126–145) | 0.27 |
Heart rate, beats per minute, median (IQR) ** | 75 (63–88) | 75 (64.3–88) | 75.5 (60–87.3) | 0.33 |
Inspiratory oxygen fraction, mean (±SD) ** | 37.5 (13.5) | 37.3 (14.1) | 37.9 (12.3) | 0.77 |
Intubated patients, n (%) * | 141 (71.2) | 87 (68) | 54 (77.1) | 0.17 |
PEEP level, median (IQR) ** | 8 (6–9) | 7 (6–9) | 8 (6–10.5) | 0.42 |
Arterial oxygen partial pressure (mmHg), median (IQR) ** | 109 (99–125) | 108.5 (98.3–123.8) | 109 (99–125.3) | 0.82 |
Body temperature, centigrade, median (IQR) * | 36.2 (35.3–36.8) | 36.3 (35.7–36.8) | 35.8 (34.8–36.5) | <0.0001 |
Serum Biomarker | ||||
White blood cells, giga/L, mean (±SD) * | 11.3 (4.8) | 11.1 (4.4) | 11.5 (5.4) | 0.56 |
Hemoglobin, g/dL, mean (±SD) * | 12.9 (2.1) | 13 (2) | 12.9 (2.2) | 0.6 |
Hematocrit, %, mean (±SD) * | 0.38 (0.06) | 0.38 (0.05) | 0.38 (0.06) | 0.9 |
Cholinesterase, U/L, mean (±SD) * | 7750.8 (2423.3) | 8087.7 (2389.3) | 7134.79 (2379.8) | 0.008 |
Blood glucose, mg/dL, mean (±SD) * | 168 (66.3) | 161.7 (62) | 178.7 (72.8) | 0.09 |
Serum lactate, mmol/L, mean (±SD) * | 1.9 (1.8) | 1.8 (1.7) | 2.1 (1.9) | 0.37 |
Troponin I, µg/dL, mean (±SD) * | 0.35 (2.9) | 0.76 (0.4) | 0.71 (0.5) | 0.53 |
Cortisol, µg/dL, mean (±SD) * | 28.1 (21.2) | 0.37 (0.5) | 0.43 (0.5) | 0.44 |
C-reactive protein, mg/L, mean (±SD) * | 25.2 (44) | 21 (42.4) | 32.8 (46) | 0.07 |
Albumin, g/L, mean (±SD) * | 38 (5.8) | 38.9 (5.1) | 36.3 (6.7) | 0.002 |
C-reactive protein to albumin ratio, mean (±SD) * | 0.7 (1.3) | 0.6 (1.2) | 1 (1.5) | 0.02 |
Thyroid stimulating hormone, mU/L, mean (±SD) * | 1.3 (1.1) | 1.4 (1.1) | 1.2 (0.7) | 0.56 |
Prothrombin time, %, mean (±SD) * | 82.7 (26.7) | 86.8 (25) | 75.1 (28.3) | 0.003 |
Partial thromboplastin time, seconds, mean (±SD) * | 32.8 (12.7) | 31.1 (9.5) | 36 (16.7) | 0.01 |
Antithrombin III, %/NORM, mean (±SD) * | 89.2 (15.4) | 90.1 (14.6) | 87.5 (16.8) | 0.26 |
Fibrinogen, g/L, mean (±SD) * | 3.3 (1.1) | 3.2 (1.1) | 3.5 (1.1) | 0.1 |
Fibrinogen to albumin ratio, mean (±SD) * | 0.9 (0.03) | 0.08 (0.3) | 0.1 (0.04) | 0.002 |
Treatment | ||||
Medical treatment, n (%) | 67 (33.8) | 34 (26.6) | 33 (47.1) | 0.003 |
Additional Surgical Treatment, n (%) | 131 (66.2) | 94 (73.4) | 37 (52.9) | |
Insertion EVD, n (%) | 41 (31.2) | 28 (29.8) | 13 (35.1) | 0.55 |
Evacuation ICH, n (%) | 45 (34.4) | 32 (34) | 13 (35.1) | 0.91 |
Decompressive craniectomy, n (%) | 14 (10.7) | 9 (9.6) | 5 (13.5) | 0.51 |
Decompressive craniectomy and evacuation ICH, n (%) | 31 (23.7) | 25 (26.6) | 6 (16.2) | 0.21 |
Computed tomography scan | ||||
Localization | ||||
Supratentorial, lobar, n (%) * | 67 (33.8) | 42 (32.8) | 25 (35.7) | 0.68 |
Supratentorial, deep, n (%) * | 96 (48.5) | 58 (45.3) | 38 (54.3) | 0.23 |
Infratentorial, n (%) * | 35 (17.7) | 28 (21.9) | 7 (10) | 0.04 |
ICH volume, cm3, mean (±SD) | 61.2 (46.6) | 51.8 (38.3) | 78.5 (55.2) | <0.0001 |
IVH, n (%) * | 142 (71.7) | 85 (66.4) | 57 (81.4) | 0.03 |
Hydrocephalus, n (%) * | 102 (51.5) | 59 (46.1) | 43 (61.4) | 0.14 |
Parameter | Odds Ratio | 95% CI | p-Value |
---|---|---|---|
Age, years, mean (±SD) * | 1.07 | 1.03–1.1 | <0.0001 |
Glasgow Coma Scale score, median (IQR) * | 0.75 | 0.76–0.85 | <0.0001 |
APACHE II score, median (IQR) * | 0.71 | 0.63–0.81 | <0.0001 |
NIHSS score, median (IQR) * | 0.64 | 0.61–0.74 | 0.04 |
Sex, (n) * | 0.77 | 0.3–1.9 | 0.58 |
Pre-existing medication, n (%) * | 2.46 | 0.91–6.66 | 0.08 |
Body temperature, centigrade, median (IQR) * | 0.85 | 0.58–1.24 | 0.4 |
Cholinesterase, U/L, mean (±SD) * | 1.0 | 0.99–1 | 0.2 |
Albumin, g/L, mean (±SD) * | 1.02 | 0.92–1.14 | 0.66 |
Prothrombin time, %, mean (±SD) * | 0.99 | 0.97–1.02 | 0.83 |
Partial thromboplastin time, %/NORM, mean (±SD) * | 1.02 | 0.92–1.08 | 0.66 |
C-reactive protein to albumin ratio, mean (±SD) * | 0.74 | 0.47–1.15 | 0.18 |
Fibrinogen to albumin ratio, mean (±SD) * | 1.16 | 1.02–1.31 | 0.03 |
ICH volume, cm3, mean (±SD) * | 1.01 | 1.01–1.02 | 0.01 |
IVH, n (%) * | 0.89 | 0.29–2.68 | 0.83 |
Parameter | Correlation Coefficient r | p-Value |
---|---|---|
Fibrinogen to albumin ratio/Age * | 0.24 | 0.0008 |
Fibrinogen to albumin ratio/GCS * | 0.002 | 0.97 |
Fibrinogen to albumin ratio/APACHE II score * | −0.12 | 0.08 |
Fibrinogen to albumin ratio/NIHSS score * | 0.38 | <0.0001 |
Fibrinogen to albumin ratio/Volume of intracerebral hemorrhage * | 0.05 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bender, M.; Haferkorn, K.; Tajmiri-Gondai, S.; Uhl, E.; Stein, M. Fibrinogen to Albumin Ratio as Early Serum Biomarker for Prediction of Intra-Hospital Mortality in Neurosurgical Intensive Care Unit Patients with Spontaneous Intracerebral Hemorrhage. J. Clin. Med. 2022, 11, 4214. https://doi.org/10.3390/jcm11144214
Bender M, Haferkorn K, Tajmiri-Gondai S, Uhl E, Stein M. Fibrinogen to Albumin Ratio as Early Serum Biomarker for Prediction of Intra-Hospital Mortality in Neurosurgical Intensive Care Unit Patients with Spontaneous Intracerebral Hemorrhage. Journal of Clinical Medicine. 2022; 11(14):4214. https://doi.org/10.3390/jcm11144214
Chicago/Turabian StyleBender, Michael, Kristin Haferkorn, Shahin Tajmiri-Gondai, Eberhard Uhl, and Marco Stein. 2022. "Fibrinogen to Albumin Ratio as Early Serum Biomarker for Prediction of Intra-Hospital Mortality in Neurosurgical Intensive Care Unit Patients with Spontaneous Intracerebral Hemorrhage" Journal of Clinical Medicine 11, no. 14: 4214. https://doi.org/10.3390/jcm11144214
APA StyleBender, M., Haferkorn, K., Tajmiri-Gondai, S., Uhl, E., & Stein, M. (2022). Fibrinogen to Albumin Ratio as Early Serum Biomarker for Prediction of Intra-Hospital Mortality in Neurosurgical Intensive Care Unit Patients with Spontaneous Intracerebral Hemorrhage. Journal of Clinical Medicine, 11(14), 4214. https://doi.org/10.3390/jcm11144214