Diagnostic Challenges in Patients with Inborn Errors of Immunity with Different Manifestations of Immune Dysregulation
Abstract
:1. Introduction
2. Allergic Disease
3. Autoimmunity
4. Non-Malignant Lymphoproliferation
5. Neoplastic Manifestations
6. Diseases of Immune Dysregulation
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tangye, S.G.; Al-Herz, W.; Bousfiha, A.; Cunningham-Rundles, C.; Franco, J.L.; Holland, S.M.; Klein, C.; Morio, T.; Oksenhendler, E.; Picard, C. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 2022, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Bousfiha, A.; Jeddane, L.; Picard, C.; Al-Herz, W.; Ailal, F.; Chatila, T.; Cunningham-Rundles, C.; Etzioni, A.; Franco, J.L.; Holland, S.M.; et al. Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. J. Clin. Immunol. 2020, 40, 66–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asano, T.; Boisson, B.; Onodi, F.; Matuozzo, D.; Moncada-Velez, M.; Maglorius Renkilaraj, M.; Zhang, P.; Meertens, L.; Bolze, A.; Materna, M.; et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci. Immunol. 2021, 6, eabl4348. [Google Scholar] [CrossRef]
- Solé, D. Primary immunodeficiencies: A diagnostic challenge? J. Pediatr. 2021, 97 (Suppl. S1), S1–S2. [Google Scholar] [CrossRef] [PubMed]
- Ponsford, M.J.; Klocperk, A.; Pulvirenti, F.; Dalm, V.; Milota, T.; Cinetto, F.; Chovancova, Z.; Rial, M.J.; Sediva, A.; Litzman, J.; et al. Hyper-IgE in the allergy clinic—When is it primary immunodeficiency? Allergy 2018, 73, 2122–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieniawska-Śmiech, K.; Bar, K.; Babicki, M.; Śmiech, K.; Lewandowicz-Uszyńska, A. Assessment of weight and height of patients with primary immunodeficiency disorders and group of children with recurrent respiratory tract infections. BMC Immunol. 2020, 21, 42. [Google Scholar] [CrossRef]
- Mauracher, A.A.; Gujer, E.; Bachmann, L.M.; Güsewell, S.; Schmid, J.P. Patterns of Immune Dysregulation in Primary Immunodeficiencies: A Systematic Review. J. Allergy Clin. Immunol. Pract. 2021, 9, 792–802.e10. [Google Scholar] [CrossRef]
- Sokol, K.; Milner, J.D. The overlap between allergy and immunodeficiency. Curr. Opin. Pediatr. 2018, 30, 848–854. [Google Scholar] [CrossRef]
- Lewandowicz-Uszyńska, A.; Pasternak, G.; Świerkot, J.; Bogunia-Kubik, K. Primary Immunodeficiencies: Diseases of Children and Adults—A Review. Adv. Exp. Med. Biol. 2021, 1289, 37–54. [Google Scholar] [CrossRef]
- Chan, S.K.; Gelfand, E.W. Primary Immunodeficiency Masquerading as Allergic Disease. Immunol. Allergy Clin. N. Am. 2015, 35, 767–778. [Google Scholar] [CrossRef]
- Castagnoli, R.; Lougaris, V.; Giardino, G.; Volpi, S.; Leonardi, L.; La Torre, F.; Federici, S.; Corrente, S.; Cinicola, B.L.; Soresina, A.; et al. Inborn errors of immunity with atopic phenotypes: A practical guide for allergists. World Allergy Organ. J. 2021, 14, 100513. [Google Scholar] [CrossRef]
- Lyons, J.J.; Milner, J.D. Primary atopic disorders. J. Exp. Med. 2018, 215, 1009–1022. [Google Scholar] [CrossRef]
- Ozcan, E.; Notarangelo, L.D.; Geha, R.S. Primary immune deficiencies with aberrant IgE production. J. Allergy Clin. Immunol. 2008, 122, 1054–1064. [Google Scholar] [CrossRef]
- Aghamohammadi, A.; Cheraghi, T.; Gharagozlou, M.; Movahedi, M.; Rezaei, N.; Yeganeh, M.; Parvaneh, N.; Abolhassani, H.; Pourpak, Z.; Moin, M. IgA deficiency: Correlation between clinical and immunological phenotypes. J. Clin. Immunol. 2009, 29, 130–136. [Google Scholar] [CrossRef]
- Jacob, C.M.; Pastorino, A.C.; Fahl, K.; Carneiro-Sampaio, M.; Monteiro, R.C. Autoimmunity in IgA deficiency: Revisiting the role of IgA as a silent housekeeper. J. Clin. Immunol. 2008, 28 (Suppl. S1), S56–S61. [Google Scholar] [CrossRef]
- Tuano, K.S.; Orange, J.S.; Sullivan, K.; Cunningham-Rundles, C.; Bonilla, F.A.; Davis, C.M. Food allergy in patients with primary immunodeficiency diseases: Prevalence within the US Immunodeficiency Network (USIDNET). J. Allergy Clin. Immunol. 2015, 135, 273–275. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.G.; Barber, J.S.; Sokolic, R.A.; Garabedian, E.K.; Desai, A.N.; O’Brien, M.; Jones, N.; Bali, P.; Hershfield, M.S.; Stone, K.D.; et al. Elevated IgE and atopy in patients treated for early-onset ADA-SCID. J. Allergy Clin. Immunol. 2013, 132, 1444–1446. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://primaryimmune.org/about-primary-immunodeficiencies-diagnosis-information/laboratory-tests (accessed on 17 February 2022).
- Wittig, H.J.; Belloit, J.; De Fillippi, I.; Royal, G. Age-related serum immunoglobulin E levels in healthy subjects and in patients with allergic disease. J. Allergy Clin. Immunol. 1980, 66, 305–313. [Google Scholar] [CrossRef]
- Ansotegui, I.J.; Melioli, G.; Canonica, G.W.; Caraballo, L.; Villa, E.; Ebisawa, M.; Passalacqua, G.; Savi, E.; Ebo, D.; Gómez, R.M.; et al. IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World Allergy Organ. J. 2020, 13, 100080. [Google Scholar] [CrossRef]
- Lawrence, M.G.; Palacios-Kibler, T.V.; Workman, L.J.; Schuyler, A.J.; Steinke, J.W.; Payne, S.C.; McGowan, E.C.; Patrie, J.; Fuleihan, R.L.; Sullivan, K.E.; et al. Low Serum IgE Is a Sensitive and Specific Marker for Common Variable Immunodeficiency (CVID). J. Clin. Immunol. 2018, 38, 225–233. [Google Scholar] [CrossRef]
- Mogensen, T.H. Primary Immunodeficiencies with Elevated IgE. Int. Rev. Immunol. 2016, 35, 39–56. [Google Scholar] [CrossRef] [PubMed]
- Vu, Q.V.; Wada, T.; Toma, T.; Tajima, H.; Maeda, M.; Tanaka, R.; Oh-Ishi, T.; Yachie, A. Clinical and immunophenotypic features of atypical complete DiGeorge syndrome. Pediatr. Int. 2013, 55, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Adriani, M.; Aoki, J.; Horai, R.; Thornton, A.M.; Konno, A.; Kirby, M.; Anderson, S.M.; Siegel, R.M.; Candotti, F.; Schwartzberg, P.L. Impaired in vitro regulatory T cell function associated with Wiskott-Aldrich syndrome. Clin. Immunol. 2007, 124, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humblet-Baron, S.; Sather, B.; Anover, S.; Becker-Herman, S.; Kasprowicz, D.J.; Khim, S.; Nguyen, T.; Hudkins-Loya, K.; Alpers, C.E.; Ziegler, S.F. Wiskott-Aldrich syndrome protein is required for regulatory T cell homeostasis. J. Clin. Investig. 2007, 117, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Maillard, M.H.; Cotta-de-Almeida, V.; Takeshima, F.; Nguyen, D.D.; Michetti, P.; Nagler, C.; Bhan, A.K.; Snapper, S.B. The Wiskott-Aldrich syndrome protein is required for the function of CD4+CD25+Foxp3+ regulatory T cells. J. Exp. Med. 2007, 204, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Lexmond, W.S.; Goettel, J.A.; Lyons, J.J.; Jacobse, J.; Deken, M.M.; Lawrence, M.G.; DiMaggio, T.H.; Kotlarz, D.; Garabedian, E.; Sackstein, P.; et al. FOXP3fl Tregs require WASP to restrain Th2-mediated food allergy. J. Clin. Investig. 2016, 126, 4030–4044. [Google Scholar] [CrossRef] [Green Version]
- Kumánovics, A.; Wittwer, C.T.; Pryor, R.J.; Augustine, N.H.; Leppert, M.F.; Carey, J.C.; Ochs, H.D.; Wedgwood, R.J.; Faville, R.J., Jr.; Quie, P.G.; et al. Rapid molecular analysis of the STAT3 gene in Job syndrome of hyper-IgE and recurrent infectious diseases. J. Mol. Diagn. 2010, 12, 213–219. [Google Scholar] [CrossRef]
- Yong, P.F.; Freeman, A.F.; Engelhardt, K.R.; Holland, S.; Puck, J.M.; Grimbacher, B. An update on the hyper-IgE syndromes. Arthritis Res. Ther. 2012, 14, 228. [Google Scholar] [CrossRef] [Green Version]
- Siegel, A.M.; Stone, K.D.; Cruse, G.; Lawrence, M.G.; Olivera, A.; Jung, M.Y.; Barber, J.S.; Freeman, A.F.; Holland, S.M.; O’Brien, M.; et al. Diminished allergic disease in patients with STAT3 mutations reveals a role for STAT3 signaling in mast cell degranulation. J. Allergy Clin. Immunol. 2013, 132, 1388–1396. [Google Scholar] [CrossRef] [Green Version]
- Hox, V.; O’Connell, M.P.; Lyons, J.J.; Sackstein, P.; Dimaggio, T.; Jones, N.; Nelson, C.; Boehm, M.; Holland, S.M.; Freeman, A.F.; et al. Diminution of signal transducer and activator of transcription 3 signaling inhibits vascular permeability and anaphylaxis. J. Allergy Clin. Immunol. 2016, 138, 187–199, Correction in J. Allergy Clin. Immunol. 2017, 140, 320. [Google Scholar] [CrossRef] [Green Version]
- Boos, A.C.; Hagl, B.; Schlesinger, A.; Halm, B.E.; Ballenberger, N.; Pinarci, M.; Heinz, V.; Kreilinger, D.; Spielberger, B.D.; Schimke-Marques, L.F.; et al. Atopic dermatitis, STAT3- and DOCK8-hyper-IgE syndromes differ in IgE-based sensitization pattern. Allergy 2014, 69, 943–953. [Google Scholar] [CrossRef]
- Hill, H.R.; Quie, P.G.; Pabst, H.F.; Ochs, H.D.; Clark, R.A.; Klebanoff, S.J.; Wedgwood, R.J. Defect in neutrophil granulocyte chemotaxis in Job’s syndrome of recurrent “cold” staphylococcal abscesses. Lancet 1974, 304, 617–619. [Google Scholar] [CrossRef]
- Grimbacher, B.; Holland, S.M.; Gallin, J.I.; Greenberg, F.; Hill, S.C.; Malech, H.L.; Miller, J.A.; O’Connell, A.C.; Puck, J.M. Hyper-IgE syndrome with recurrent infections—An autosomal dominant multisystem disorder. N. Engl. J. Med. 1999, 14, 692–702. [Google Scholar] [CrossRef]
- Woellner, C.; Gertz, E.M.; Schäffer, A.A.; Lagos, M.; Perro, M.; Glocker, E.O.; Pietrogrande, M.C.; Cossu, F.; Franco, J.L.; Matamoros, N.; et al. Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J. Allergy Clin. Immunol. 2010, 125, 424–432.e8. [Google Scholar] [CrossRef] [Green Version]
- Hafsi, W.; Yarrarapu, S. Job syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Zhang, Q.; Davis, J.C.; Lamborn, I.T.; Freeman, A.F.; Jing, H.; Favreau, A.J.; Matthews, H.F.; Davis, J.; Turner, M.L.; Uzel, G.; et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 2009, 361, 2046–2055. [Google Scholar] [CrossRef] [Green Version]
- Wilkie, H.; Leyva-Castillo, J.M.; Janssen, E.; Geha, R.S. DOCK8 Deficiency Exacerbates Skin Contact Hypersensitivity: 194. J. Allergy Clin. Immunol. 2019, 143, AB64. [Google Scholar] [CrossRef]
- Stites, D.P.; Ishizaka, K.; Fudenberg, H.H. Serum IgE concentrations in hypogammaglobulinaemia and selective IgA deficiency. Studies on patients and family members. Clin. Exp. Immunol. 1972, 10, 391–397. [Google Scholar]
- Waldmann, T.A.; Polmar, S.H.; Balestra, S.T.; Jost, M.C.; Bruce, R.M.; Terry, W.D. Immunoglobulin E in immunologic deficiency diseases. II. Serum IgE concentration of patients with acquired hypogammaglobulinemia, thymoma and hypogammaglobulinemia, myotonic dystrophy, intestinal lymphangiectasia and Wiskott-Aldrich syndrome. J. Immunol. 1972, 109, 304–310. [Google Scholar]
- Agondi, R.C.; Barros, M.T.; Rizzo, L.V.; Kalil, J.; Giavina-Bianchi, P. Allergic asthma in patients with common variable immunodeficiency. Allergy 2010, 65, 510–515. [Google Scholar] [CrossRef]
- Agondi, R.C.; Barros, M.T.; Kokron, C.M.; Cohon, A.; Oliveira, A.K.; Kalil, J.; Giavina-Bianchi, P. Can patients with common variable immunodeficiency have allergic rhinitis? Am. J. Rhinol. Allergy 2013, 27, 79–83. [Google Scholar] [CrossRef]
- Hartman, H.; Schneider, K.; Hintermeyer, M.; Bausch-Jurken, M.; Fuleihan, R.; Sullivan, K.E.; Cunningham-Rundles, C.; Bonilla, F.A.; USIDNET Consortium; Verbsky, J. Lack of Clinical Hypersensitivity to Penicillin Antibiotics in Common Variable Immunodeficiency. J. Clin. Immunol. 2017, 37, 22–24. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.E.; Grimbacher, B.; Witte, T. Autoimmunity and primary immunodeficiency: Two sides of the same coin? Nat. Rev. Rheumatol. 2017, 14, 7–18. [Google Scholar] [CrossRef]
- Costagliola, G.; Cappelli, S.; Consolini, R. Autoimmunity in Primary Immunodeficiency Disorders: An Updated Review on Pathogenic and Clinical Implications. J. Clin. Med. 2021, 10, 4729. [Google Scholar] [CrossRef]
- Amaya-Uribe, L.; Rojas, M.; Azizi, G.; Anaya, J.M.; Gershwin, M.E. Primary immunodeficiency and autoimmunity: A comprehensive review. J. Autoimmun. 2019, 99, 52–72. [Google Scholar] [CrossRef]
- Fischer, A.; Provot, J.; Jais, J.P.; Alcais, A.; Mahlaoui, N.; members of the CEREDIH French PID study group. Autoimmune and Inflammatory Manifestations Occur Frequently in Patients with Primary Immunodeficiencies. J. Allergy Clin. Immunol. 2017, 140, 1388–1393.e8. [Google Scholar] [CrossRef] [Green Version]
- Azizi, G.; Ziaee, V.; Tavakol, M.; Alinia, T.; Yazdai, R.; Mohammadi, H.; Abolhassani, H.; Aghamohammadi, A. Approach to the Management of Autoimmunity in Primary Immunodeficiency. Scand. J. Immunol. 2017, 85, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Bertinchamp, R.; Gérard, L.; Boutboul, D.; Malphettes, M.; Fieschi, C.; Oksenhendler, E.; DEFI study group. Exclusion of Patients with a Severe T-Cell Defect Improves the Definition of Common Variable Immunodeficiency. J. Allergy Clin. Immunol. Pract. 2016, 4, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Speckmann, C.; Doerken, S.; Aiuti, A.; Albert, M.H.; Al-Herz, W.; Allende, L.M.; Scarselli, A.; Avcin, T.; Perez-Becker, R.; Cancrini, C. A prospective study on the natural history of patients with profound combined immunodeficiency: An interim analysis. J. Allergy Clin. Immunol. 2017, 139, 1302–1310.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Spee-Mayer, C.; Koemm, V.; Wehr, C.; Goldacker, S.; Kindle, G.; Bulashevska, A.; Proietti, M.; Grimbacher, B.; Ehl, S.; Warnatz, K. Evaluating laboratory criteria for combined immunodeficiency in adult patients diagnosed with common variable immunodeficiency. Clin. Immunol. 2019, 203, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.E.; Ayala, I.A.; Milojevic, D. Autoimmunity as a continuum in primary immunodeficiency. Curr. Opin. Pediatr. 2019, 31, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Alroqi, F.J.; Charbonnier, L.M.; Baris, S.; Kiykim, A.; Chou, J.; Platt, C.D.; Algassim, A.; Keles, S.; Al Saud, B.K.; Alkuraya, F.S.; et al. Exaggerated follicular helper T-cell responses in patients with LRBA deficiency caused by failure of CTLA4-mediated regulation. J. Allergy Clin. Immunol. 2018, 141, 1050–1059.e10. [Google Scholar] [CrossRef] [Green Version]
- Azizi, G.; Ahmadi, M.; Abolhassani, H.; Yazdani, R.; Mohammadi, H.; Mirshafiey, A.; Rezaei, N.; Aghamohammadi, A. Autoimmunity in Primary Antibody Deficiencies. Int. Arch. Allergy Immunol. 2016, 171, 180–193. [Google Scholar] [CrossRef] [Green Version]
- Bruton, O.C. Agammaglobulinemia. Pediatrics 1952, 9, 722–728. [Google Scholar] [CrossRef]
- Nonoyama, S.; Tsukada, S.; Yamadori, T.; Miyawaki, T.; Jin, Y.Z.; Watanabe, C.; Morio, T.; Yata, J.; Ochs, H.D. Functional analysis of peripheral blood B cells in patients with X-linked agammaglobulinemia. J. Immunol. 1998, 161, 3925–3929. [Google Scholar]
- Jacobs, Z.D.; Guajardo, J.R.; Anderson, K.M. XLA-associated neutropenia treatment: A case report and review of the literature. J. Pediatr. Hematol. Oncol. 2008, 30, 631–634. [Google Scholar] [CrossRef]
- Behniafard, N.; Aghamohammadi, A.; Abolhassani, H.; Pourjabbar, S.; Sabouni, F.; Rezaei, N. Autoimmunity in X-linked agammaglobulinemia: Kawasaki disease and review of the literature. Exp. Rev. Clin. Immunol. 2012, 8, 155–159. [Google Scholar] [CrossRef]
- Hernandez-Trujillo, V.P.; Scalchunes, C.; Cunningham-Rundles, C.; Ochs, H.D.; Bonilla, F.A.; Paris, K.; Yel, L.; Sullivan, K.E. Autoimmunity and inflammation in X-linked agammaglobulinemia. J. Clin. Immunol. 2014, 34, 627–632. [Google Scholar] [CrossRef]
- Ng, Y.S.; Wardemann, H.; Chelnis, J.; Cunningham-Rundles, C.; Meffre, E. Bruton’s tyrosine kinase is essential for human B cell tolerance. J. Exp. Med. 2004, 200, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Samuels, J.; Ng, Y.S.; Coupillaud, C.; Paget, D.; Meffre, E. Human B cell tolerance and its failure in rheumatoid arthritis. Ann. N. Y. Acad. Sci. 2005, 1062, 116–126. [Google Scholar] [CrossRef]
- Odnoletkova, I.; Kindle, G.; Quinti, I.; Grimbacher, B.; Knerr, V.; Gathmann, B.; Ehl, S.; Mahlaoui, N.; Van Wilder, P.; Bogaerts, K. The burden of common variable immunodeficiency disorders: A retrospective analysis of the European Society for Immunodeficiency (ESID) registry data. Orphanet J. Rare Dis. 2018, 13, 201. [Google Scholar] [CrossRef] [Green Version]
- Cunningham-Rundles, C. Autoimmunity in primary immune deficiency: Taking lessons from our patients. Clin. Exp. Immunol. 2011, 164 (Suppl. S2), 6–11. [Google Scholar] [CrossRef]
- Grześk, E.; Dąbrowska, A.; Urbanczyk, A.; Ewertowska, M.; Wysocki, M.; Kołtan, S. Common variable immunodeficiency: Different faces of the same disease. Postepy Dermatol. Alergol. 2021, 38, 873–880. [Google Scholar] [CrossRef]
- Quinti, I.; Soresina, A.; Spadaro, G.; Martino, S.; Donnanno, S.; Agostini, C.; Claudio, P.; Franco, D.; Maria Pesce, A.; Borghese, F.; et al. Long-term follow-up and outcome of a large cohort of patients with common variable immunodeficiency. J. Clin. Immunol. 2007, 27, 308–316. [Google Scholar] [CrossRef]
- Boileau, J.; Mouillot, G.; Gérard, L.; Carmagnat, M.; Rabian, C.; Oksenhendler, E.; Pasquali, J.L.; Korganow, A.S.; DEFI Study Group. Autoimmunity in common variable immunodeficiency: Correlation with lymphocyte phenotype in the French DEFI study. J. Autoimmun. 2011, 36, 25–32. [Google Scholar] [CrossRef]
- Arandi, N.; Mirshafiey, A.; Jeddi-Tehrani, M.; Abolhassani, H.; Sadeghi, B.; Mirminachi, B.; Shaghaghi, M.; Aghamohammadi, A. Evaluation of CD4+CD25+FOXP3+ regulatory T cells function in patients with common variable immunodeficiency. Cell. Immunol. 2013, 281, 129–133. [Google Scholar] [CrossRef]
- Carter, C.R.; Aravind, G.; Smalle, N.L.; Cole, J.Y.; Savic, S.; Wood, P.M. CVID patients with autoimmunity have elevated T cell expression of granzyme B and HLA-DR and reduced levels of Treg cells. J. Clin. Pathol. 2013, 66, 146–150. [Google Scholar] [CrossRef]
- Yu, G.P.; Chiang, D.; Song, S.J.; Hoyte, E.G.; Huang, J.; Vanishsarn, C.; Nadeau, K.C. Regulatory T cell dysfunction in subjects with common variable immunodeficiency complicated by autoimmune disease. Clin. Immunol. 2009, 131, 240–253. [Google Scholar] [CrossRef] [Green Version]
- Arumugakani, G.; Wood, P.M.; Carter, C.R. Frequency of Treg cells is reduced in CVID patients with autoimmunity and splenomegaly and is associated with expanded CD21lo B lymphocytes. J. Clin. Immunol. 2010, 30, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Chew, G.Y.; Sinha, U.; Gatenby, P.A.; DeMalmanche, T.; Adelstein, S.; Garsia, R.; Hissaria, P.; French, M.A.; Wilson, A.; Whittle, B. Autoimmunity in primary antibody deficiency is associated with protein tyrosine phosphatase nonreceptor type 22 (PTPN22). J. Allergy Clin. Immunol. 2013, 131, 1130.e1–1135.e1. [Google Scholar] [CrossRef] [PubMed]
- Brouet, J.C.; Chedeville, A.; Fermand, J.P.; Royer, B. Study of the B cell memory compartment in common variable immunodeficiency. Eur. J. Immunol. 2000, 30, 2516–2520. [Google Scholar] [CrossRef]
- Abolhassani, H.; Amirkashani, D.; Parvaneh, N.; Mohammadinejad, P.; Gharib, B.; Shahinpour, S. Autoimmune phenotype in patients with common variable immunodeficiency. J. Investig. Allergol. Clin. Immunol. 2013, 23, 323–329. [Google Scholar]
- Picchianti Diamanti, A.; Rosado, M.M.; Scarsella, M.; Ceccarelli, S.; Laganà, B.; D’Amelio, R.; Carsetti, R. Increased serum IgM, immunodeficiency, and autoimmunity: A clinical series. Int. J. Immunopathol. Pharmacol. 2015, 28, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.H.; Tsai, C.N.; Liu, M.F.; Wang, C.R. Common variable immunodeficiency mimicking rheumatoid arthritis with Sjogren’s syndrome. J. Microbiol. Immunol. Infect. 2005, 38, 358–360. [Google Scholar]
- Jesus, A.A.; Liphaus, B.L.; Silva, C.A.; Bando, S.Y.; Andrade, L.E.; Coutinho, A.; Carneiro-Sampaio, M. Complement and antibody primary immunodeficiency in juvenile systemic lupus erythematosus patients. Lupus 2011, 20, 1275–1284. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL clinical practice guidelines: Autoimmune hepatitis. J. Hepatol. 2015, 63, 971–1004. [Google Scholar] [CrossRef]
- Pecoraro, A.; Crescenzi, L.; Varricchi, G.; Marone, G.; Spadaro, G. Heterogeneity of Liver Disease in Common Variable Immunodeficiency Disorders. Front. Immunol. 2020, 11, 338. [Google Scholar] [CrossRef] [Green Version]
- Tahiat, A.; Yagoubi, A.; Ladj, M.S.; Belbouab, R.; Aggoune, S.; Atek, L.; Bouziane, D.; Melzi, S.; Boubidi, C.; Drali, W.; et al. Diagnostic and Predictive Contribution of Autoantibodies Screening in a Large Series of Patients with Primary Immunodeficiencies. Front. Immunol. 2021, 12, 665322. [Google Scholar] [CrossRef]
- Boyle, R.J.; Le, C.; Balloch, A.; Tang, M.L. The clinical syndrome of specific antibody deficiency in children. Clin. Exp. Immunol. 2006, 146, 486–492. [Google Scholar] [CrossRef]
- Cheng, Y.K.; Decker, P.A.; O’Byrne, M.M.; Weiler, C.R. Clinical and laboratory characteristics of 75 patients with specific polysaccharide antibody deficiency syndrome. Ann. Allergy Asthma Immunol. 2006, 97, 306–311. [Google Scholar] [CrossRef]
- Gennery, A.R.; Cant, A.J.; Jeggo, P.A. Immunodeficiency associated with DNA repair defects. Clin. Exp. Immunol. 2000, 121, 1–7. [Google Scholar] [CrossRef]
- Vorechovsky, I.; Munzarova, M.; Lokaj, J. Increased bleomycin-induced chromosome damage in lymphocytes of patients with common variable immunodeficiency indicates an involvement of chromosomal instability in their cancer predisposition. Cancer Immunol. Immunother. 1989, 29, 303–306. [Google Scholar] [CrossRef]
- Gantt, R.; Parshad, R.; Price, F.M.; Sanford, K.K. Biochemical evidence for deficient DNA repair leading to enhanced G2 chromatid radiosensitivity and susceptibility to cancer. Radiat. Res. 1986, 108, 117–126. [Google Scholar] [CrossRef]
- Rothblum-Oviatt, C.; Wright, J.; Lefton-Greif, M.A.; McGrath-Morrow, S.A.; Crawford, T.O.; Lederman, H.M. Ataxia telangiectasia: A review. Orphanet J. Rare Dis. 2016, 11, 159. [Google Scholar] [CrossRef] [Green Version]
- Luzi, G.; Zullo, A.; Iebba, F.; Rinaldi, V.; Sanchez Mete, L.; Muscaritoli, M.; Aiuti, F. Duodenal pathology and clinical-immunological implications in common variable immunodeficiency patients. Am. J. Gastroenterol. 2003, 98, 118–121. [Google Scholar] [CrossRef]
- Malamut, G.; Verkarre, V.; Suarez, F.; Viallard, J.F.; Lascaux, A.S.; Cosnes, J.; Bouhnik, Y.; Lambotte, O.; Béchade, D.; Ziol, M. The enteropathy associated with common variable immunodeficiency: The delineated frontiers with celiac disease. Am. J. Gastroenterol. 2010, 105, 2262–2275. [Google Scholar] [CrossRef]
- Daniels, J.A.; Lederman, H.M.; Maitra, A.; Montgomery, E.A. Gastrointestinal tract pathology in patients with common variable immunodeficiency (CVID): A clinicopathologic study and review. Am. J. Surg. Pathol. 2007, 31, 1800–1812. [Google Scholar] [CrossRef] [PubMed]
- Westermann-Clark, E.; Meehan, C.A.; Meyer, A.K.; Dasso, J.F.; Amre, D.; Ellison, M.; Patel, B.; Betensky, M.; Hauk, C.I.; Mayer, J. Primary Immunodeficiency in Children with Autoimmune Cytopenias: Retrospective 154-Patient Cohort. Front. Immunol. 2021, 12, 649182. [Google Scholar] [CrossRef] [PubMed]
- Mayor, P.C.; Eng, K.H.; Singel, K.L.; Abrams, S.I.; Odunsi, K.; Moysich, K.B.; Fuleihan, R.; Garabedia, E.; Lugar, P.; Ochs, H.D.; et al. Cancer in primary immunodeficiency diseases: Cancer incidence in the United States Immune Deficiency Network Registry. J. Allergy Clin. Immunol. 2018, 141, 1028–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonilla, F.A.; Barlan, I.; Chapel, H.; Costa-Carvalho, B.T.; Cunningham-Rundles, C.; de la Morena, M.T.; Espinosa-Rosales, F.J.; Hammarström, L.; Nonoyama, S.; Quinti, I. International Consensus Document (ICON): Common Variable Immunodeficiency Disorders. J. Allergy Clin. Immunol. Pract. 2016, 4, 38–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gangemi, S.; Allegra, A.; Musolino, C. Lymphoproliferative disease and cancer among patients with common variable immunodeficiency. Leuk. Res. 2015, 39, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.M.; Sebire, N.J.; Harvey, J.; Gaspar, H.B.; Cathy, C.; Jones, A.; Rao, K.; Cubitt, D.; Amrolia, P.J.; Davies, E.G.; et al. Successful treatment of lymphoproliferative disease complicating primary immunodeficiency/immunodysregulatory disorders with reduced-intensity allogeneic stem-cell transplantation. Blood 2007, 110, 2209–2214. [Google Scholar] [CrossRef] [Green Version]
- Teachey, D.T.; Seif, A.E.; Grupp, S.A. Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). Br. J. Haematol. 2010, 148, 205–216. [Google Scholar] [CrossRef]
- Teachey, D.T.; Greiner, R.; Seif, A.; Attiyeh, E.; Bleesing, J.; Choi, J.; Manno, C.; Rappaport, E.; Schwabe, D.; Sheen, C.; et al. Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome. Br. J. Haematol. 2009, 145, 101–106. [Google Scholar] [CrossRef]
- Neven, B.; Magerus-Chatinet, A.; Florkin, B.; Gobert, D.; Lambotte, O.; De Somer, L.; Lanzarotti, N.; Stolzenberg, M.C.; Bader-Meunier, B.; Aladjidi, N. A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood 2011, 118, 4798–4807. [Google Scholar] [CrossRef]
- Price, S.; Shaw, P.A.; Seitz, A.; Joshi, G.; Davis, J.; Niemela, J.E.; Perkins, K.; Hornung, R.L.; Folio, L.; Rosenberg, P.S. Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood 2014, 123, 1989–1999. [Google Scholar] [CrossRef]
- Su, H.C.; Lenardo, M.J. Genetic defects of apoptosis and primary immunodeficiency. Immunol. Allergy Clin. N. Am. 2008, 28, 329–351. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.B. The expanding spectrum of the autoimmune lymphoproliferative syndromes. Curr. Opin. Pediatr. 2013, 25, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Pace, R.; Vinh, D.C. Autoimmune Lymphoproliferative Syndrome and Epstein-Barr Virus-Associated Lymphoma: An Adjunctive Diagnostic Role for Monitoring EBV Viremia? Case Rep. Immunol. 2013, 2013, 245893. [Google Scholar] [CrossRef]
- Rao, V.K.; Carrasquillo, J.A.; Dale, J.K.; Bacharach, S.L.; Whatley, M.; Dugan, F.; Tretler, J.; Fleisher, T.; Puck, J.M.; Wilson, W. Fluorodeoxyglucose positron emission tomography (FDG-PET) for monitoring lymphadenopathy in the autoimmune lymphoproliferative syndrome (ALPS). Am. J. Hematol. 2006, 81, 81–85, Correction in Am. J. Hematol. 2006, 81, 389. [Google Scholar] [CrossRef]
- Bride, K.; Teachey, D. Autoimmune lymphoproliferative syndrome: More than a FAScinating disease. F1000Research 2017, 6, 1928. [Google Scholar] [CrossRef] [Green Version]
- Vajdic, C.M.; Mao, L.; van Leeuwen, M.T.; Kirkpatrick, P.; Grulich, A.E.; Riminton, S. Are antibody deficiency disorders associated with a narrower range of cancers than other forms of immunodeficiency? Blood 2010, 116, 1228–1234. [Google Scholar] [CrossRef]
- Mellemkjaer, L.; Hammarstrom, L.; Andersen, V.; Yuen, J.; Heilmann, C.; Barington, T.; Bjorkander, J.; Olsen, J.H. Cancer risk among patients with IgA deficiency or common variable immunodeficiency and their relatives: A combined Danish and Swedish study. Clin. Exp. Immunol. 2002, 130, 495–500. [Google Scholar] [CrossRef]
- Rezaei, N.; Hedayat, M.; Aghamohammadi, A.; Nichols, K.E. Primary immunodeficiency diseases associated with increased susceptibility to viral infections and malignancies. J. Allergy Clin. Immunol. 2011, 127, 1329–1343. [Google Scholar] [CrossRef]
- Taskinen, M.; Ranki, A.; Pukkala, E.; Jeskanen, L.; Kaitila, I.; Mäkitie, O. Extended follow-up of the Finnish cartilage-hair hypoplasia cohort confirms high incidence of non-Hodgkin lymphoma and basal cell carcinoma. Am. J. Med. Genet. A 2008, 146, 2370–2375. [Google Scholar] [CrossRef]
- Leechawengwongs, E.; Shearer, W.T. Lymphoma complicating primary immunodeficiency syndromes. Curr. Opin. Hematol. 2012, 19, 305–312. [Google Scholar] [CrossRef]
- Ngalamika, O.; Zhang, Y.; Yin, H.; Zhao, M.; Gershwin, M.E.; Lu, Q. Epigenetics, autoimmunity and hematologic malignancies: A comprehensive review. J. Autoimmun. 2012, 39, 451–465. [Google Scholar] [CrossRef]
- Dhalla, F.; da Silva, S.P.; Lucas, M.; Travis, S.; Chapel, H. Review of gastric cancer risk factors in patients with common variable immunodeficiency disorders, resulting in a proposal for a surveillance programme. Clin. Exp. Immunol. 2011, 165, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Quiding-Järbrink, M.; Sundström, P.; Lundgren, A.; Hansson, M.; Bäckström, M.; Johansson, C.; Enarsson, K.; Hermansson, M.; Johnsson, E.; Svennerholm, A.M. Decreased IgA antibody production in the stomach of gastric adenocarcinoma patients. Clin. Immunol. 2009, 131, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Cunningham-Rundles, C. The many faces of common variable immunodeficiency. Hematol. Am. Soc. Hematol. Educ. Program 2012, 2012, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Verma, N.; Thaventhiran, A.; Gathmann, B.; ESID Registry Working Party; Thaventhiran, J.; Grimbacher, B. Therapeutic management of primary immunodeficiency in older patients. Drugs Aging 2013, 30, 503–512. [Google Scholar] [CrossRef] [PubMed]
- Ludvigsson, J.F.; Neovius, M.; Ye, W.; Hammarström, L. IgA deficiency and risk of cancer: A population-based matched cohort study. J. Clin. Immunol. 2015, 35, 182–188. [Google Scholar] [CrossRef]
- De Miranda, N.F.; Björkman, A.; Pan-Hammarström, Q. DNA repair: The link between primary immunodeficiency and cancer. Ann. N. Y. Acad. Sci. 2011, 1246, 50–63. [Google Scholar] [CrossRef]
- Gennery, A.R. Primary immunodeficiency syndromes associated with defective DNA double-strand break repair. Br. Med. Bull. 2006, 77–78, 71–85. [Google Scholar] [CrossRef]
- Carroll, C.; Badu-Nkansah, A.; Hunley, T.; Baradaran-Heravi, A.; Cortez, D.; Frangoul, H. Schimke Immunoosseous Dysplasia associated with undifferentiated carcinoma and a novel SMARCAL1 mutation in a child. Pediatr. Blood Cancer 2013, 60, E88–E90. [Google Scholar] [CrossRef] [Green Version]
- Baradaran-Heravi, A.; Raams, A.; Lubieniecka, J.; Cho, K.S.; DeHaai, K.A.; Basiratnia, M.; Mari, P.O.; Xue, Y.; Rauth, M.; Olney, A.H. SMARCAL1 deficiency predisposes to non-Hodgkin lymphoma and hypersensitivity to genotoxic agents in vivo. Am. J. Med. Genet. A 2012, 158, 2204–2213. [Google Scholar] [CrossRef] [Green Version]
- Karalis, A.; Tischkowitz, M.; Millington, G.W. Dermatological manifestations of inherited cancer syndromes in children. Br. J. Dermatol. 2011, 164, 245–256. [Google Scholar] [CrossRef]
- Spinner, M.A.; Sanchez, L.A.; Hsu, A.P.; Shaw, P.A.; Zerbe, C.S.; Calvo, K.R.; Arthur, D.C.; Gu, W.; Gould, C.M.; Brewer, C.C. GATA2 deficiency: A protean disorder of hematopoiesis, lymphatics, and immunity. Blood 2014, 123, 809–821. [Google Scholar] [CrossRef] [Green Version]
- Sokolic, R. Neutropenia in primary immunodeficiency. Curr. Opin. Hematol. 2013, 20, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Yang, B.; Suen, W.C. Prospects for modulating the CD40/CD40L pathway in the therapy of the hyper-IgM syndrome. Innate Immun. 2018, 24, 4–10. [Google Scholar] [CrossRef]
- Jacobsohn, D.A.; Emerick, K.M.; Scholl, P.; Melin-Aldana, H.; O’Gorman, M.; Duerst, R.; Kletzel, M. Nonmyeloablative hematopoietic stem cell transplant for X-linked hyper-immunoglobulin m syndrome with cholangiopathy. Pediatrics 2004, 113, e122–e127. [Google Scholar] [CrossRef] [Green Version]
- Hayward, A.R.; Levy, J.; Facchetti, F.; Notarangelo, L.; Ochs, H.D.; Etzioni, A.; Bonnefoy, J.Y.; Cosyns, M.; Weinberg, A. Cholangiopathy and tumors of the pancreas, liver, and biliary tree in boys with X-linked immunodeficiency with hyper-IgM. J. Immunol. 1997, 158, 977–983. [Google Scholar]
- Hauck, F.; Voss, R.; Urban, C.; Seidel, M.G. Intrinsic and extrinsic causes of malignancies in patients with primary immunodeficiency disorders. J. Allergy Clin. Immunol. 2018, 141, 59–68.e4. [Google Scholar] [CrossRef] [Green Version]
- De Flora, S.; Bonanni, P. The prevention of infection-associated cancers. Carcinogenesis 2011, 32, 787–795. [Google Scholar] [CrossRef]
- Philip, M.; Rowley, D.A.; Schreiber, H. Inflammation as a tumor promoter in cancer induction. Semin. Cancer Biol. 2004, 14, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Leiding, J.W.; Holland, S.M. Warts and all: Human papillomavirus in primary immunodeficiencies. J. Allergy Clin. Immunol. 2012, 130, 1030–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pablos, J.L.; Amara, A.; Bouloc, A.; Santiago, B.; Caruz, A.; Galindo, M.; Delaunay, T.; Virelizier, J.L.; Arenzana-Seisdedos, F. Stromal-cell derived factor is expressed by dendritic cells and endothelium in human skin. Am. J. Pathol. 1999, 155, 1577–1586. [Google Scholar] [CrossRef] [Green Version]
- Grierson, H.L.; Skare, J.; Hawk, J.; Pauza, M.; Purtilo, D.T. Immunoglobulin class and subclass deficiencies prior to Epstein-Barr virus infection in males with X-linked lymphoproliferative disease. Am. J. Med. Genet. 1991, 40, 294–297. [Google Scholar] [CrossRef]
- Rezaei, N.; Mahmoudi, E.; Aghamohammadi, A.; Das, R.; Nichols, K.E. X-linked lymphoproliferative syndrome: A genetic condition typified by the triad of infection, immunodeficiency and lymphoma. Br. J. Haematol. 2011, 152, 13–30. [Google Scholar] [CrossRef]
- Conrado, L.A.; Marques, S.A.; Lastoria, J.C.; Cucé, L.C.; Marques, M.E.; Dillon, N.L. Keratitis-ichthyosis-deafness (KID) syndrome with squamous cell carcinoma. Int. J. Dermatol. 2007, 46, 403–406. [Google Scholar] [CrossRef]
- Natsuga, K.; Akiyama, M.; Shimizu, H. Malignant skin tumours in patients with inherited icthyosis. Br. J. Dermatol. 2011, 165, 263–268. [Google Scholar] [CrossRef]
- Filipovich, A.H.; Mathur, A.; Kamat, D.; Shapiro, R.S. Primary immunodeficiencies: Genetic risk factors for lymphoma. Cancer Res. 1992, 52 (Suppl. S19), 5465s–5467s. [Google Scholar]
- Broeks, A.; Urbanus, J.H.; Floore, A.N.; Dahler, E.C.; Klijn, J.G.; Rutgers, E.J.; Devilee, P.; Russell, N.S.; Van Leeuwen, F.E.; Van ‘t Veer, L.J. ATM-heterozygous germline mutations contribute to breast cancer-susceptibility. Am. J. Hum. Genet. 2000, 66, 494–500. [Google Scholar] [CrossRef] [Green Version]
- Jerzak, K.J.; Mancuso, T.; Eisen, A. Ataxia-telangiectasia gene (ATM) mutation heterozygosity in breast cancer: A narrative review. Curr. Oncol. 2018, 25, e176–e180. [Google Scholar] [CrossRef] [Green Version]
- Kiykim, A.; Eker, N.; Surekli, O.; Nain, E.; Kasap, N.; Aktürk, H.; Dogru, O.; Canbolat, A.; Somer, A.; Koc, A. Malignancy and lymphoid proliferation in primary immune deficiencies; hard to define, hard to treat. Pediatr. Blood Cancer 2020, 67, e28091. [Google Scholar] [CrossRef]
- Seidemann, K.; Tiemann, M.; Henze, G.; Sauerbrey, A.; Müller, S.; Reiter, A. Therapy for non-Hodgkin lymphoma in children with primary immunodeficiency: Analysis of 19 patients from the BFM trials. Med. Pediatr. Oncol. 1999, 33, 536–544. [Google Scholar] [CrossRef]
- Bomken, S.; Van der Werff Ten Bosch, J.; Attarbaschi, A.; Bacon, C.M.; Borkhardt, A.; Boztug, K.; Fischer, U.; Hauck, F.; Kuiper, R.P.; Lammens, T.; et al. Current Understanding and Future Research Priorities in Malignancy Associated with Inborn Errors of Immunity and DNA Repair Disorders: The Perspective of an Interdisciplinary Working Group. Front. Immunol. 2018, 9, 2912. [Google Scholar] [CrossRef]
- Gompels, M.M.; Hodges, E.; Lock, R.J.; Angus, B.; White, H.; Larkin, A.; Chapel, H.M.; Spickett, G.P.; Misbah, S.A.; Smith, J.L.; et al. Lymphoproliferative disease in antibody deficiency: A multi-centre study. Clin. Exp. Immunol. 2003, 134, 314–320. [Google Scholar] [CrossRef]
- Ren, A.; Yin, W.; Miller, H.; Westerberg, L.S.; Candotti, F.; Park, C.S.; Lee, P.; Gong, Q.; Chen, Y.; Liu, C. Novel Discoveries in Immune Dysregulation in Inborn Errors of Immunity. Front. Immunol. 2021, 12, 725587. [Google Scholar] [CrossRef]
- Fournier, B.; Tusseau, M.; Villard, M.; Malcus, C.; Chopin, E.; Martin, E.; Jorge Cordeiro, D.; Fabien, N.; Fusaro, M.; Gauthier, A. DEF6 Deficiency, A Mendelian Susceptibility to EBV Infection, Lymphoma, and Autoimmunity. J. Allergy Clin. Immunol. 2021, 147, 740–743.e9. [Google Scholar] [CrossRef]
- Somekh, I.; Thian, M.; Medgyesi, D.; Gülez, N.; Magg, T.; Gallón Duque, A.; Stauber, T.; Lev, A.; Genel, F.; Unal, E.; et al. CD137 Deficiency Causes Immune Dysregulation with Predisposition to Lymphomagenesis. Blood 2019, 134, 1510–1516. [Google Scholar] [CrossRef]
- Salzer, E.; Zoghi, S.; Kiss, M.G.; Kage, F.; Rashkova, C.; Stahnke, S.; Haimel, M.; Platzer, R.; Caldera, M.; Ardy, R.C.; et al. The Cytoskeletal Regulator HEM1 Governs B Cell Development and Prevents Autoimmunity. Sci. Immunol. 2020, 5, eabc3979. [Google Scholar] [CrossRef]
- Delmonte, O.M.; Castagnoli, R.; Calzoni, E.; Notarangelo, L.D. Inborn Errors of Immunity with Immune Dysregulation: From Bench to Bedside. Front. Pediatr. 2019, 7, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, E. Future of Therapy for Inborn Errors of Immunity. Clin. Rev. Allergy Immunol. 2022, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hoyos-Bachiloglu, R.; Platt, C. Precision Medicine as Treatment for Primary Immunodeficiency and Immune Dysregulation. Immunol. Genet. J. 2019, 2, 153–172. [Google Scholar]
- Rao, V.K.; Webster, S.; Dalm, V.; Šedivá, A.; Van Hagen, P.M.; Holland, S.; Rosenzweig, S.D.; Christ, A.D.; Sloth, B.; Cabanski, M. Effective “activated PI3Kδ syndrome”-targeted therapy with the PI3Kδ inhibitor leniolisib. Blood 2017, 130, 2307–2316. [Google Scholar] [CrossRef]
- Riaz, I.B.; Faridi, W.; Patnaik, M.M.; Abraham, R.S. A Systematic Review on Predisposition to Lymphoid (B and T cell) Neoplasias in Patients with Primary Immunodeficiencies and Immune Dysregulatory Disorders (Inborn Errors of Immunity). Front. Immunol. 2019, 10, 777. [Google Scholar] [CrossRef]
Disease | IUIS Classification | Inheritance | Mutation | Characteristics | Immunological Features |
---|---|---|---|---|---|
Hyper IgE syndrome (HIES) | Combined immunodeficiencies with associated syndromic features | AD LOF | STAT3 | Infectious disease and immunological manifestations (skin abscesses, recurrent sinopulmonary infections, bacterial infections, pulmonary aspergillus, Pneumocystis jirovecii, and chronic mucocutaneous candidiasis) Craniofacial, dental, musculoskeletal, neurological, and vascular abnormalities | Eosinophilia ↑ IgE ↓-specific antibody production Intermittent chemotactic defectsImpaired inflammatory cytokine production Reduced or absent Th17 cells Defective Th17 cell production of IL-17 Decreased IFN-γ production upon stimulation Decreased CD8+ memory T cellsDiminished delayed-type hypersensitivity and lymphoproliferative responses to antigenic stimulation |
ZNF341 deficiency (phenocopy of AD-HIES) | Combined immunodeficiencies with associated syndromic features | AR | ZNF341 | Mild facial dysmorphism Early onset eczema Recurrent bacterial infections (respiratory, skin infections) Lung abscesses and pneumatoceles Musculosceletal abnormalities Retention of primary teeth | ↑ IgE- and IgG ↓-specific antibody production ↓ memory B cells excess of Th2 cells ↓ Th17 and NK cells |
Loeys–Dietz syndrome (TGFBR deficiency) | Combined immunodeficiencies with associated syndromic features | AD | TGFBR1TGFBR2 | Recurrent respiratory infections Eczema Food allergy Musculosceletal abnormalities Retention of primary teeth Vascular abnormalities | ↑ IgE |
PGM3 deficiency (hyperimmunoglobulin E-like syndrome with glycosylation defects) | Combined immunodeficiencies with associated syndromic features | AR | PGM3 | Impaired immunity (recurrent respiratory tract infections, abscesses) Severe atopy, asthma, eczema, and food allergy Autoimmunity Neurocognitive impairment Skeletal dysplasia | Neutropenia T and B cell lymphopenia Eosinophilia ↑ IgE levels N/↑ IgG and IgA Progressive bone marrow failure |
Comel–Netherton syndrome | Combined immunodeficiencies with associated syndromic features | AR | SPINK5 | Congenital ichthyosis Bamboo hair Recurrent bacterial infections Atopy Failure to thrive | ↑ IgE and IgA ↓ switched and non-switched B cells |
CARD11 deficiency | Combined immunodeficiencies with associated syndromic features | AD LOF | CARD11 | Severe atopic dermatitis Food allergy Molluscum contagiosum infection Recurrent respiratory infections Lymphoma Various phenotypes from SCID to combined immunodeficiency, associated with atopy and elevated IgE levels or isolated severe atopy | ↑ IgE Poor specific antibody production Impaired activation of both NF-kB and mTORC1 pathways N/↓ B cell numbers Defective T-cell activation and proliferation Skewing toward Th2 |
ERBIN deficiency | Combined immunodeficiencies with associated syndromic features | AD | ERBB2IP | Recurrent respiratory infections Susceptibility to S.aureus Eczema Atopy Joint hypermobility, sometimes vascular abnormalities | ↑ IgE ↑ circulating Treg |
IL6R deficiency | Combined immunodeficiencies with associated syndromic features | AR | IL6R | Immunodeficiency (recurrent pyogenic infections, cold abscesses) Atopy Abnormal inflammatory responses | High circulating IL-6 levels Normal/↓ serum IgM, IgG, and IgA Very ↑ IgE ↓-specific antibody productionReduced switched memory B |
Interleukin 6 signal transducer (IL6ST) deficiency | Combined immunodeficiencies with associated syndromic features | AR | IL6ST | Recurrent infections Boils Eczema Bronchiectasis Pulmonary abscesses Skeletal abnormalities (scoliosis, bone fractures, and craniosynostosis) Retention of primary teeth | Eosinophilia ↑ IgE, Specific antibody production variably affected Impaired B cell memory and acute-phase response ↓ Th17 cells |
DOCK8 deficiency | Immunodeficiencies affecting cellular and humoral immunity | AR | DOCK8 | Recurrent viral and bacterial infections Cutaneous infections (staphylococcal, viral, and fungal) Severe atopy Often multiple severe allergies to food and environmental allergens Hepatic disorders Early-onset malignancy | Eosinophilia ↓ T cell numbers (with normal CD4/CD8 ratio) and variably decreased or normal B- and NK-cell numbers ↓ production of TNFα and IFNγ ↓ numbers of Th17 T cells ↑ Th 2 ↑ IL-4 and IL-13 Few Treg with poor function ↓ IgM levels and variable IgA and IgG levels ↑ IgE Poor antibody responses |
TYK2 deficiency | Defects in intrinsic and innate immunity | AR | TYK2 | Susceptibility to intracellular bacteria (mycobacteria, Salmonella) and viruses Eczema | Impaired cellular responses to IL-10, IL-12, and IL-23 and type I IFNs |
Omenn syndrome (OS) | Immunodeficiencies affecting cellular and humoral immunity (usually a T-B-NK+ SCID) | AR | various | Erythroderma Alopecia Aplasia/hypoplasia of the eyebrow Desquamation of skin Dry skin Edema Chronic diarrhea Failure to thrive Hepatosplenomegaly Lymphadenopathy Pneumonia Sometimes anemia, autoimmunity, hypothyroidism, and lymphoma | Eosinophilia ↑ IgE Abnormal secretion of IL-4 and IL-5 from activated T cells Exaggerated Th2 response Absence of B cells in the circulation |
Wiscott–Aldrich syndrome (WAS) | Combined immunodeficiencies with associated syndromic features | XL | WAS | Recurrent bacterial and viral infections Bloody diarrhea Eczema Thrombocytopenia with small platelets ↑ risk of malignancy Autoimmune diseases IgA nephropathy | Eosinophilia Often ↑ IgE and IgA ↓ IgM ↓ antibody responses to polysaccharides Progressive ↓ in T cells numbers Abnormal lymphocyte responses to anti-CD3 |
Atypical DiGeorge syndrome with deletion of chromosome 22q11.2 | Combined immunodeficiencies with associated syndromic features | AD | Deletion typically in chromosome 22 | Pharyngeal pouch defects Thymus hypoplasia/aplasia Hypoparathyroidism Congenital heart disease Eczema, erythroderma Lymphadenopathy | Eosinophilia ↑ IgE Partial T cell deficiency Oligoclonal T cells expansion T cell count is higher than typical complete DiGeorge patients |
IPEX syndrome (immunodysregulation, polyendocrinopathy, and enteropathy X-linked syndrome) | Diseases of immune dysregulation | XL | FOXP3 | Multiple endocrinopathies Severe chronic enteropathy Dermatitis Eczema Anemia Thrombocytopenia | ↑ IgE and IgA Lack of (and/or impaired function of) CD4+ CD25+ FOXP3+ regulatory T cells (Tregs) |
IUIS Classification | Disease | Main Molecular Defect | Common Autoimmune Disease |
---|---|---|---|
Immunodeficiencies affecting cellular and humoral immunity | ICOS deficiency | ICOS | Arthritis, SLE, MS, and enteropathy |
Combined immunodeficiencies with associated syndromic features | 22q11 deletion syndrome (DiGeorge syndrome) | Large deletion typically in chromosome 22 | AIC, AIT, and arthritis |
Wiskott–Aldrich syndrome | WAS | AIC, IBD, GN, arthritis, and vasculitis | |
Predominantly antibody deficiencies | X-linked agammaglobulinemia | Btk | RA, JIA, IBD, AIC, AIT, PND, KD, DM, T1D, SD, and alopecia |
CVID | Various | AIC (ITP, AIHA, AN), RA, JIA, SLE, IBD, AIT, PA, SS, and vitiligo | |
Selective IgA deficiency | Unknown | AIC (ITP, AIHA), IBD, CD, PV, MG, SLE, RA, JIA, T1D, and AIT | |
P110 delta deficiency | PIK3CD | IBD, AIC | |
Hyper IgM syndrome | CD40, CD40L | AIT, IBD, RA, JIA, AIHA, and AGN | |
Diseases of immune dysregulation | LRBA deficiency | LRBA | AIC (AIHA, ITP, AN), IBD, RA, and JIA |
APECED | AIRE | T1D, AD, AIT, hypoparathyroidism, enteropathy, adrenal corticotropic hormone insufficiency, growth hormone insufficiency, vitiligo, alopecia, autoimmune hepatitis, and ovarian/testicular failure | |
IPEX | FOXP3 | IBD, AIC, AIT, vitiligo, alopecia, hepatitis, and early onset diabetes | |
CTLA4 haploinsufficiency | CTLA4 | IBD, AIC, SLE, and arthritis | |
XIAP deficiency | XIAP | IBD, AIC, and hepatitis | |
Early onset inflammatory bowel disease syndromes | various | IBD, arthritis | |
STAT3 GOF | STAT3 | IBD, AIC, hepatitis, and early-onset T1D | |
ALPS | various | AIC, GN, endocrinopathies, and SLE | |
Congenital defects of phagocyte number, function, or both | Chronic granulomatous disease | CYBB | IBD, AIC, AIT, JIA, GN, SLE, APLA, and autoimmune pulmonary disease |
Defects in innate immunity | STAT1 deficiency | STAT1 GOF | AIC, AIT, T1D, and SLE |
Autoinflammatory disorders | Type 1 interferonopathies | various | SLE, AIC, and vasculopathy |
Complement deficiencies | Complement deficiencies | various | SLE, vasculitis |
Disease | IUIS Classification | Type of Malignancy |
---|---|---|
SCID | Immunodeficiencies affecting cellular and humoral immunity (Ia) | Lymphoma |
ITK deficiency | Immunodeficiencies affecting cellular and humoral immunity (Ib) | EBV-associated lymphoproliferation Lymphoma |
IKAROS deficiency (CD154) | Immunodeficiencies affecting cellular and humoral immunity (Ib) | T-ALL |
DOCK8 deficiency | Immunodeficiencies affecting cellular and humoral immunity (Ib) | Vulvar, facial, and anal squamous cell dysplasia and carcinomas;T cell lymphoma-leukemiaBurkitt lymphomaNHL |
STK4 deficiency | Immunodeficiencies affecting cellular and humoral immunity (Ib) | Lymphoma |
RHOH deficiency | Immunodeficiencies affecting cellular and humoral immunity (Ib) | Lymphoma |
OX40 deficiency | Immunodeficiencies affecting cellular and humoral immunity (Ib) | Kaposi sarcoma |
CD40/CD40L deficiency | Immunodeficiencies affecting cellular and humoral immunity (Ib) | Hepatocarcinoma Cholangiocarcinoma Peripheral neuroectodermal tumors of the gastrointestinal tract and the pancreas Lymphoma |
Wiskott–Aldrich syndrome | Combined immunodeficiency of T and B cell with associated or syndromic features | Lymphoma EBV-related B-cell lymphoma Leukemia Cerebellar astrocytoma Kaposi sarcoma Smooth muscle tumors |
Ataxia-telangiectasia | Combined immunodeficiency of T and B cell with associated or syndromic features | Leukemia Lymphoma Breast cancer Gastrointestinal malignancies (possible) |
Nijmegen breakage syndrome | Combined immunodeficiency of T and B cell with associated or syndromic features | Lymphoma Acute leukemia Solid tumors |
Bloom syndrome | Combined immunodeficiency of T and B cell with associated or syndromic features | Leukemia Lymphoma |
PMS2 deficiency | Combined immunodeficiency of T and B cell with associated or syndromic features | Lymphoma Colorectal carcinoma Brain tumors |
MCM4 deficiency | Combined immunodeficiency of T and B cell with associated or syndromic features | B cells lymphoma |
Ligase I deficiency | Combined immunodeficiency of T and B cell with associated or syndromic features | Lymphoma |
Cartilage-hair hypoplasia | Combined immunodeficiency of T and B cell with associated or syndromic features | Lymphoma Leukemia Squamous cell carcinoma Basal cell carcinoma |
Schimke syndrome | Combined immunodeficiency of T and B cell with associated or syndromic features | Osteosarcoma NHL |
Autosomal dominant hyper-IgE syndrome (AD-HIES) | Combined immunodeficiency of T and B cell with associated or syndromic features | NHL |
CID with early-onset asthma, eczema and food allergies, autoimmunity ID with atopic dermatitis (CARD11) | Combined immunodeficiency of T and B cell with associated or syndromic features | Lymphoma |
X-linked agammaglobulinemia | Predominantly antibody deficiencies | Lymphoreticular malignancies Gastric and colorectal adenocarcinoma Squamous cell carcinoma of the lung |
Common variable immunodeficiency (CVID) | Predominantly antibody deficiencies | Lymphoma Thymus cancer Gastric cancer |
Selective IgA deficiency | Predominantly antibody deficiencies | Gastrointestinal cancer |
X-linked lymphoproliferative disease (XLP1) | Diseases of immune dysregulation | Lymphoma |
CD27 deficiency | Diseases of immune dysregulation | Lymphoma |
RASGRP1 deficiency | Diseases of immune dysregulation | EBV-associated lymphoma |
CD70 deficiency | Diseases of immune dysregulation | Hodgkin lymphoma |
CTPS1 deficiency | Diseases of immune dysregulation | B-cell NH lymphoma |
CD137 deficiency | Diseases of immune dysregulation | B-cell lymphoma |
XL magnesium EBV and neoplasia (XMEN) | Diseases of immune dysregulation | Lymphoma |
ALPS–FAS | Diseases of immune dysregulation | Lymphoma |
Severe congenital neutropenia | Congenital defects of phagocyte number, function, or both | MDS/leukemia |
HAX1 deficiency | Congenital defects of phagocyte number, function, or both | MDS/leukemia |
Shwachman-Diamond syndrome | Congenital defects of phagocyte number, function, or both | Leukemia |
GATA2 deficiency | Congenital defects of phagocyte number, function, or both | AML/CMML |
WHIM syndrome | Defects in intrinsic and innate immunity | HPV-related cancers Lymphoma |
Epidermodysplasia verruciformis | Defects in intrinsic and innate immunity | Squamous cell carcinoma |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieniawska-Śmiech, K.; Pasternak, G.; Lewandowicz-Uszyńska, A.; Jutel, M. Diagnostic Challenges in Patients with Inborn Errors of Immunity with Different Manifestations of Immune Dysregulation. J. Clin. Med. 2022, 11, 4220. https://doi.org/10.3390/jcm11144220
Pieniawska-Śmiech K, Pasternak G, Lewandowicz-Uszyńska A, Jutel M. Diagnostic Challenges in Patients with Inborn Errors of Immunity with Different Manifestations of Immune Dysregulation. Journal of Clinical Medicine. 2022; 11(14):4220. https://doi.org/10.3390/jcm11144220
Chicago/Turabian StylePieniawska-Śmiech, Karolina, Gerard Pasternak, Aleksandra Lewandowicz-Uszyńska, and Marek Jutel. 2022. "Diagnostic Challenges in Patients with Inborn Errors of Immunity with Different Manifestations of Immune Dysregulation" Journal of Clinical Medicine 11, no. 14: 4220. https://doi.org/10.3390/jcm11144220
APA StylePieniawska-Śmiech, K., Pasternak, G., Lewandowicz-Uszyńska, A., & Jutel, M. (2022). Diagnostic Challenges in Patients with Inborn Errors of Immunity with Different Manifestations of Immune Dysregulation. Journal of Clinical Medicine, 11(14), 4220. https://doi.org/10.3390/jcm11144220