Results of a Five-Year Experience in First Trimester Preeclampsia Screening
Abstract
:1. Introduction
- Nulliparity;
- Afro-Caribbean ethnicity;
- Maternal age < 20 or >35 years;
- Maternal body mass index (BMI) > 30;
- Chronic maternal hypertension;
- Diabetes, renal pathologies, and autoimmune diseases such as scleroderma, rheumatoid arthritis, and systemic lupus erythematosus;
- Positive obstetric history of PE;
- Positive familiar history of PE.
2. Materials and Methods
- Maternal age > 18 years;
- Singleton pregnancy;
- Gestational age between 11 + 0 and 13 + 6 weeks;
- CRL (Crown Rump Length) between 45 and 80 mm;
- Signed informed consent.
- (1)
- “High-risk” groupIncluding pregnant women having one of the following risk factors:
- BMI ≥ 30 kg/m2
- Presence of Chronic Arterial Hypertension;
- Previous history of preeclampsia;
- Previous history of intrauterine fetal death (IUFD) related to placental vascular disease (PVD), or Intrauterine Growth Restriction (IUGR).
- (2)
- “Low-risk” group
- Gestational age at birth;
- Neonatal weight at delivery;
- Apgar at 10 min;
- Mortality (≥23 + 0 weeks) and miscarriage (<22 + 6 weeks);
- Development of gestational hypertension, gestational diabetes, preeclampsia, IUGR, HELLP syndrome, placental abruption, eclampsia;
- Type of labor and possible indication for induction, type of birth, and possible indication for caesarean section.
3. Results
3.1. Characteristics of the High-Risk Population for the Multi-Parameter Test
3.2. Fetal DNA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sibai, B.; Dekker, G.; Kupferminc, M. Pre-eclampsia. Lancet 2005, 365, 785–799. [Google Scholar] [CrossRef]
- Fox, R.; Kitt, J.; Leeson, P.; Aye, C.Y.L.; Lewandowski, A.J. Preeclampsia: Risk factors, diagnosis, management, and the cardiovascular impact on the offspring. J. Clin. Med. 2019, 8, 1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capriglione, S.; Plotti, F.; Terranova, C.; Gulino, F.A.; Di Guardo, F.; Lopez, S.; Scaletta, G.; Angioli, R. Preeclampsia and the challenge of early prediction: Reality or utopia? State of art and critical review of literature. J. Matern.-Fetal Neonatal Med. 2018, 33, 677–678. [Google Scholar] [CrossRef] [PubMed]
- Koonin, L.M.; MacKay, A.P.; Berg, C.J.; Atrash, H.K.; Smith, J.C. Pregnancy related mortalily surveillance—United States, 1987–1990. Morb. Mortal. Wkly. Rep. CDC Surveill. Summ. 1997, 46, 17–36. [Google Scholar]
- Ren, Q.W.; Yang, F.F.; Han, T.B.; Guo, M.Z.; Zhao, N.; Feng, Y.L.; Yang, H.L.; Wang, S.P.; Zhang, Y.W.; Wu, W.W. Relationship between the pre-pregnancy BMI, gestational weight gain, and risk of preeclampsia and its subtypes. Chin. J. Epidemiol. 2021, 42, 2037–2043. (In Chinese) [Google Scholar] [CrossRef]
- Baker, P.N.; Cunningham, F.G. Platelet and coagulation abnormalities. In Chesley’s Hypertensive Disorders in Pregnancy; Lindheimer, M.D., Roberts, J.M., Cunningham, F.G., Eds.; Appleton & Lange: Stamford, CT, USA, 1999; pp. 349–373. [Google Scholar]
- Weinstein, L. Syndrome of hemolysis, elevated liver enzymes, and low platelets count: A severe consequence of hypertension in pregnancy. Am. J. Obstet. Gynecol. 1982, 142, 159–167. [Google Scholar] [CrossRef]
- Scott, J.R.; Di Saia, P.J.; Hammond, C.B.; Spellacy, W.N. Danforth’s Obstetrics & Gynecology, 8th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1999. [Google Scholar]
- North, R.A.; Taylor, R.S.; Schellenberg, J.C. Evaluation of a definition of preeclampsia. Br. J. Obstet. Gynaecol. 1999, 106, 767–773. [Google Scholar] [CrossRef]
- Levine, R.J. Should the definition of preeclampsia include a rise in diastolic blood pressure=15 mm Hg? Am. J. Obstet. Gynecol. 2000, 182, 225. [Google Scholar]
- Liabsuetrakul, T.; Yamamoto, Y.; Kongkamol, C.; Ota, E.; Mori, R.; Noma, H. Medications for preventing hypertensive disorders in high-risk pregnant women: A systematic review and network meta-analysis. Syst. Rev. 2022, 11, 135. [Google Scholar] [CrossRef]
- El-Sayed, A.A.F. Preeclampsia: A review of the pathogenesis and possible management strategies based on its pathophysiological derangements. Taiwan J. Obstet. Gynecol. 2017, 56, 593–598. [Google Scholar] [CrossRef]
- Villar, J.; Carroli, G.; Wojdyla, D.; Abalos, E.; Giordano, D.; Ba’aqeel, H.; Farnot, U.; Bergsjø, P.; Bakketeig, L.; Lumbiganon, P.; et al. Preeclampsia, gestational hypertension and intrauterine growth restriction, related or independent conditions? Am. J. Obstet. Gynecol. 2006, 194, 921–931. [Google Scholar] [CrossRef] [PubMed]
- Hjartardottir, S.; Leifsson, B.G.; Geirsson, R.T.; Steinthorsdottir, V. Recurrence of hypertensive disorder in second pregnancy. Am. J. Obstet. Gynecol. 2006, 194, 916–920. [Google Scholar] [CrossRef] [PubMed]
- Sibai, B.M.; Hauth, J.; Caritis, S.; Lindheimer, M.D.; MacPherson, C.; Klebanoff, M.; VanDorsten, J.P.; Landon, M.; Miodovnik, M.; Paul, R.; et al. Hypertensive disorders in twin versus singleton gestations. Am. J. Obstet. Gynecol. 2000, 182, 938–942. [Google Scholar] [CrossRef]
- Krotz, S.; Fajardo, J.; Ghandi, S.; Patel, A.; Keith, L.G. Hypertensive disease in twin pregnancies. A review. Twin Res. Hum. Genet. 2002, 5, 8–14. [Google Scholar] [CrossRef]
- Ventura, S.J.M.J.; Curtin, S.C.; Menacker, F.; Hamilton, B.E. Births: Final data for 1999. Nat. Vital Stat. Rep. 2001, 49, 1–100. [Google Scholar]
- Antza, C.; Stabouli, S.; Kotsis, V. Practical guide for the management of hypertensive disorders during pregnancy. J. Hypertens. 2022, 40, 1257–1264. [Google Scholar] [CrossRef]
- Zweifel, P. Eklampsie. In Handbuch der Geburtshilfe; Doderlein, A., Ed.; Bergmann: Wiesbaden, Germany, 1916; Volume 11, pp. 672–673. [Google Scholar]
- Li, D.K.; Wi, S. Changing paternity and the risk of preeclampsia/eclampsia in the subsequent pregnancy. Am. J. Epidemiol. 2000, 151, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Basso, O.; Christensen, K.; Olsen, J. Higher risk of pre-eclampsia after change of partner. An effect of longer interpregnancy intervals? Epidemiology 2001, 12, 624–629. [Google Scholar] [CrossRef]
- Deen, M.E.; Lieke, G.C.; Ruurda, J.W.; Dekker, G.A. Risk factors for preeclampsia in multiparous women: Primipaternity versus the birth interval hypothesis. J. Matern.-Fetal Neonatal Med. 2006, 19, 79–84. [Google Scholar] [CrossRef]
- Saftlas, A.F.; Levine, R.J.; Kiebanoff, M.A.; Martz, K.L.; Ewell, M.G.; Morris, C.D.; Sibai, B.M. Abortion, changed paternity, and risk of preeclampsia in nulliparous women. Am. J. Epidemiol. 2003, 157, 1108–1114. [Google Scholar] [CrossRef] [Green Version]
- Klonoff-Cohen, H.S.; Savitz, D.A.; Cefalo, R.C.; McCann, M.F. An epidemiologic study of contraception and preeclampsia. JAMA 1989, 262, 3143–3147. [Google Scholar] [CrossRef]
- Dahma, G.; Neamtu, R.; Nitu, R.; Gluhovschi, A.; Bratosin, F.; Grigoras, M.L.; Silaghi, C.; Citu, C.; Orlu, I.N.; Bhattarai, S.; et al. The influence of maternal vitamin D supplementation in pregnancies associated with preeclampsia: A case-control study. Nutrients 2022, 14, 3008. [Google Scholar] [CrossRef]
- Dunk, C.E.; Bucher, M.; Zhang, J.; Hayder, H.; Geraghty, D.E.; Lye, S.J.; Myatt, L.; Hackmon, R. Human leukocyte antigen HLA-C, HLA-G, HLA-F and HLA-E placental profiles are altered in early severe preeclampsia and preterm birth with chorioamnionitis. Am. J. Obstet. Gynecol. 2022, 226, S333–S334. [Google Scholar] [CrossRef]
- Main, E.; Chiang, M.; Colbem, G. Nulliparous preeclampsia (PE) is associated with placental expression of a variant allele of the new histocompatibility gene: HLA-G. Am. J. Obstet. Gynecol. 1994, 170, 289. [Google Scholar]
- Miller, D.; Motomura, K.; Galaz, J.; Gershater, M.; Lee, E.D.; Romero, R.; Gomez-Lopez, N. Cellular immune responses in the pathophysiology of preeclampsia. J. Leukoc. Biol. 2022, 111, 237–260. [Google Scholar] [CrossRef] [PubMed]
- Dekker, G.A.; De Vries Je Doelitzsch, P.M.; Avigens, P.C.; Von Bomblergn, B.M.; Jacobs, C.; Von Geiju, H.P. Underlying disorders associated with severe early-onset preeciampsia? Am. J. Obstet. Gynecol. 1995, 173, 1042–1048. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Lv, Y.; Ding, H. Dissecting the roles of lipids in preeclampsia. Metabolites 2022, 12, 590. [Google Scholar] [CrossRef] [PubMed]
- Abdelzaher, W.Y.; Mostafa-Hedeab, G.; Bahaa, H.A.; Mahran, A.; Atef Fawzy, M.; Abdel Hafez, S.M.N.; Welson, N.N.; Rofaeil, R.R. Leukotriene receptor antagonist, montelukast ameliorates L-Name-induced pre-eclampsia in rats through suppressing the IL-6/Jak2/STAT3 signaling pathway. Pharmaceuticals 2022, 15, 914. [Google Scholar] [CrossRef] [PubMed]
- Esplin, M.S.; Fausett, M.B.; Fraser, A. Paternal and matemai components of the predisposition to preeclampsia. N. Engl. J. Med. 2001, 344, 867–872. [Google Scholar] [CrossRef]
- Cnossen, J.S.; Vollebregt, K.C.; de Vrieze, N.; Ter Riet, G.; Mol, B.W.; Franx, A.; Khan, K.S.; Van Der Post, J.A. Accuracy of mean arterial pressure and blood pressure measurements in predicting pre-eclampsia: Systematic review and meta-analysis. BMJ 2008, 336, 1117–1120. [Google Scholar] [CrossRef] [Green Version]
- Contro, E.; Bernabini, D.; Farina, A. Cell-free fetal DNA for the prediction of pre-eclampsia at the first and second trimesters: A systematic review and meta-analysis. Mol. Diagn. Ther. 2017, 21, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Akolekar, R.; Syngelaki, A.; Poon, L.; Wright, D.; Nicolaides, K.H. Competing risks model in early screening for preeclampsia by biophysical and biochemical markers. Fetal Diagn. Ther. 2013, 33, 8–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutin, A.; Gasse, C.; Demers, S.; Blanchet, G.; Giguère, Y.; Bujold, E. Does low PAPP-A predict advers placenta-mediated outcomes in a low-risk nulliparous population? The great obstetrical syndromes (GOS) study. J. Obstet. Gynaecol. Can. 2017, 40, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Rolnik, D.L.; Wright, D.; Poon, L.C.Y.; Syngelaki, A.; O’Gorman, N.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. ASPRE trial: Performance of screening for preterm pre-eclampsia. Ultrasound Obstet. Gynecol. 2017, 50, 492–495. [Google Scholar] [CrossRef]
Study Population | Low Anamnestic Risk (n = 474) | High Anamnestic Risk (n = 115) | Total | Significance (p < 0.05) |
---|---|---|---|---|
(n = 589) | ||||
Age | NS | |||
<20 | 9 (2%) | 2 (2%) | 11 (2%) | |
20–34 | 336 (71%) | 78 (68%) | 414 (70.3%) | |
35–39 | 94 (20%) | 28 (25%) | 122 (20.7%) | |
>40 | 35 (7%) | 7 (5%) | 42 (7%) | |
Caucasian | 464 (98%) | 113 (99%) | 577 (98.5 %) | NS |
Other | 10 (2%) | 2 (1%) | 12 (1.5 %) | |
Parity | p = 0.013 | |||
nulliparous | 294 (62%) | 29 (25%) | 323 (54.8%) | |
multiparous | 180 (38%) | 86 (75%) | 266 (45.2%) | |
Conception | NS | |||
Spontaneous | 465 (98%) | 111 (96%) | 576 (97.8%) | |
Medically assisted procreation | 9 (2%) | 4 (4%) | 13 (2.2%) | |
Pregestational diabetes | 4 (0.9%) | 3 (2.9%) | 7 (1.2%) | NS |
Smoke | 18 (4%) | 7 (6%) | 25 (4.2%) | NS |
Study Population | Low Anamnestic Risk (n = 474) | High Anamnestic Risk (n = 115) | Significance (p < 0.05) |
---|---|---|---|
Pulsately Index uterine arteries ≥ 95th centile | 47 (10%) | 16 (13.5%) | NS |
MAP (mean) | 81.8 ± 7.1 | 96.2 ± 9.4 | p = 0.032 |
PAPP-A | 3671.2 ± 1995.3 | 1732.5 ± 1478.2 | p = 0.002 |
PIGF | 31.7 ± 9.8 | 28.9 ± 6.7 | NS |
Anamnestic Risk Factors | High Anamnestic Risk (n = 115) |
---|---|
Obesity | 95 (83%) |
Chronic hypertension | 11 (10%) |
Previous preeclampsia | 14 (12%) |
Previous Intrauterine fetal death | 5 (5%) |
Prior intrauterin growth restriction | 6 (6%) |
Population | Low Anamnestic Risk (n = 407) | High Anamnestic Risk (n = 91) | Total (n = 498) | Significance p < 0.05 |
---|---|---|---|---|
Miscarriage | 9 (2.2%) | 3 (3%) | 12 (2.4%) | NS |
Gestational diabetes | 48 (12%) | 35 (38.8%) | 83 (17%) | p < 0.0001 |
Gestational hypertension | 8 (2%) | 7(8.1%) | 15 (3.01%) | NS |
Preeclampsia | 6 (1.4%) | 0 (0%) | 6 (1.2%) | NS |
Hypertensive disorders | 20 (5%) | 8 (9%) | 28 (5.6%) | NS |
Intrauterine Growth Restriction | 1 (0.2%) | 0% | 1 (0.2%) | NS |
Intrauterine fetal death | 0 (0%) | 0 (0%) | 0 (0%) | NS |
Hemolysis, Elevated Liver enzymes and Low Platelets | 0 (0%) | 0 (0%) | 0 (0%) | NS |
Placental Abruption | 0 (0%) | 0 (0%) | 0 (0%) | NS |
Premature rupture of membranes | 0 (0%) | 3 (3%) | 3 (0.6%) | NS |
Cholestasis | 17 (4.1%) | 0 (0%) | 17 (3.4%) | NS |
Neonatal weight > 2500 g | 374 (92%) | 85 (93%) | 459 (92%) | NS |
Neonatal weight ≤ 10° (Small for Gestational Age) | 28 (7%) | 6 (6%) | 34 (6.8%) | NS |
Neonatal weight centile ≥ 90° (Large for Gestational Age) | 41 (10%) | 27 (30%) | 68 (13.7%) | p = 0.02 |
Apgar < 7 to 10′ | 0 (0%) | 0 (0%) | 0 (0%) | NS |
Preterm birth | 8 (2%) | 2 (2%) | 10 (2%) | NS |
Labor | p = 0.0002 | |||
No labor | 65 (16%) | 14 (15%) | 79 (15.8%) | |
Spontaneous | 274 (67.4%) | 58 (64%) | 332 (66.7%) | |
Induction | 68 (16.6%) | 19 (21%) | 87 (17.4%) | |
Type of deliver | NS | |||
Vaginal Birth | 309 (76%) | 67 (74%) | 376 (75.5%) | |
Cesarean birth | 98 (24%) | 24 (26%) | 122 (24.5%) |
Study Population | Low Anamnestic Risk (n = 474) | High Anamnestic Risk (n = 115) | ||
---|---|---|---|---|
Early PE | Late PE | Early PE | Late PE | |
High-risk test (≥1:20) | 8 (1.7%) | 22 (4.6%) | 12 (10.4%) | 50 (43.5%) |
Low-risk test (<1:20) | 466 (98.3%) | 452 (95.3%) | 103 (89.6%) | 65 (56.5%) |
(a) | |||||
---|---|---|---|---|---|
Risk Test for Early PE | Low Risk (n = 478) | High Risk (n = 20) | Total (n = 498) | False Positive (n = 498) | False Negative (n = 498) |
Preeclampsia | 0 (0%) | 6 (30%) | 6 (1.2%) | 27 (5.4%) | 0 (0%) |
Gestational hypertension | 22 (4.7%) | 1 (5%) | 15 | 27 (5.4%) | 22 (4.3%) |
IUGR | 0 (0%) | 1 (5%) | 1 (0.2%) | 27 (5.4%) | 0 (0%) |
Gestational diabetes | 73 (15%) | 10 (50%) | 83 (16.6%) | 16 (3.2%) | 101 (20.4%) |
Preterm birth | 6 (1.2%) | 4 (17%) | 10 (2%) | 27 (5.4%) | 5 (1.1%) |
Maternal composite outcomes | 165 (34.5%) | 17 (83%) | 182 (36.5%) | 5 (1.1%) | 155 (31.2%) |
Fetal composite outcomes | 19 (3.9%) | 4 (16.7%) | 23 (4.6%) | 27 (5.4%) | 10 (2.2%) |
(b) | |||||
Risk Test for Early PE | Low Risk (n = 478) | High Risk (n = 20) | Total (n = 498) | Significance p < 0.05 | |
Assumption of ASA | 62 (13%) | 14 (72%) | 76 (15.3%) | p = 0.02 |
(a) | |||||
---|---|---|---|---|---|
Risk Test for Late PE | Low Risk (n = 397) | High Risk (n = 101) | Total (n = 498) | False Positive (n = 498) | False Negative (n = 498) |
Preeclampsia | 0 (0%) | 0 (0%) | 0 (0%) | 90 (18%) | 0 (0%) |
Gestational hypertension | 9 (2.3%) | 6 (6%) | 15 (3%) | 40 (17.2%) | 21 (4.3%) |
Hypertensive disorders | 22 (5.5%) | 6 (6%) | 28 (5.6%) | 40 (17.2%) | 21 (4.3%) |
IUGR | 1 (0.2%) | 0 (0%) | 1 (0.2%) | 90 (18%) | 5 (1.1%) |
Gestational diabetes | 22 (5.5%) | 61 (60%) | 83 (16.6%) | 37 (7.5%) | 64 (12.9%) |
Preterm birth | 4 (1%) | 6 (6%) | 10 (2%) | 84 (17.2%) | 5 (1.1%) |
Maternal composite outcomes | 116 (29.2%) | 66 (65%) | 182 (36.5%) | 32 (6.5%) | 123 (24.7%) |
Fetal composite outcomes | 23 (5.8%) | 0 (0%) | 23 (4.6%) | 91 (18.3%) | 16 (3.2%) |
Assumption of ASA | 11 | 65 | 76 (15.3%) | p = 0.02 | |
(b) | |||||
Risk Test for Late PE | Low Risk (n = 397) | High Risk (n = 101) | Total (n = 498) | False Positive (n = 498) | |
Assumption of ASA | 11 | 65 | 76 (15.3%) | p = 0.02 |
Low Risk (n = 82) | High Risk (n = 19) | Significance p < 0.05 | |
---|---|---|---|
% fetal fraction, mean ± SD | 8.7 ± 2.1 | 14.2 ± 3.2 | p = 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capriglione, S.; Gulino, F.A.; Latella, S.; De Felice, G.; Filippini, M.; Farinelli, M.; Martire, F.G.; Viora, E. Results of a Five-Year Experience in First Trimester Preeclampsia Screening. J. Clin. Med. 2022, 11, 4555. https://doi.org/10.3390/jcm11154555
Capriglione S, Gulino FA, Latella S, De Felice G, Filippini M, Farinelli M, Martire FG, Viora E. Results of a Five-Year Experience in First Trimester Preeclampsia Screening. Journal of Clinical Medicine. 2022; 11(15):4555. https://doi.org/10.3390/jcm11154555
Chicago/Turabian StyleCapriglione, Stella, Ferdinando Antonio Gulino, Silvia Latella, Giovanna De Felice, Maurizio Filippini, Miriam Farinelli, Francesco Giuseppe Martire, and Elsa Viora. 2022. "Results of a Five-Year Experience in First Trimester Preeclampsia Screening" Journal of Clinical Medicine 11, no. 15: 4555. https://doi.org/10.3390/jcm11154555
APA StyleCapriglione, S., Gulino, F. A., Latella, S., De Felice, G., Filippini, M., Farinelli, M., Martire, F. G., & Viora, E. (2022). Results of a Five-Year Experience in First Trimester Preeclampsia Screening. Journal of Clinical Medicine, 11(15), 4555. https://doi.org/10.3390/jcm11154555