Comprehensive Cardiac Magnetic Resonance to Detect Subacute Myocarditis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. CMR Image Aqcuisition
2.3. CMR Image Analysis
2.4. Endomyocardial Biopsy Protocol
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Subacute Myocarditis vs. Controls
3.3. Acute Myocarditis and Subacute Myocarditis
3.4. Acute Myocarditis vs. Subacute Myocarditis
4. Discussion
4.1. Subacute Myocarditis vs. Controls
4.2. Acute vs. Subacute Myocarditis
5. Limitations
6. Clinical Implications
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Imazio, M.; Trinchero, R. Myopericarditis: Etiology, management, and prognosis. Int. J. Cardiol. 2008, 127, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Lampejo, T.; Durkin, S.M.; Bhatt, N.; Guttmann, O. Acute myocarditis: Aetiology, diagnosis and management. Clin. Med. 2021, 21, e505–e510. [Google Scholar] [CrossRef] [PubMed]
- Law, Y.M.; Lal, A.K.; Chen, S.; Čiháková, D.; Cooper, L.T., Jr.; Deshpande, S.; Godown, J.; Grosse-Wortmann, L.; Robinson, J.D.; Towbin, J.A.; et al. Diagnosis and Management of Myocarditis in Children. Circulation 2021, 144, e123–e125. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.M.; Schulz-Menger, J.; Holmvang, G.; Kramer, C.M.; Carbone, I.; Sechtem, U.; Kindermann, I.; Gutberlet, M.; Cooper, L.T.; Liu, P.; et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J. Am. Coll. Cardiol. 2018, 72, 3158–3176. [Google Scholar] [CrossRef]
- Caforio, A.L.P.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Heliö, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636–2648. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Lagan, J.; Schmitt, M.; Miller, C.A. Clinical applications of multi-parametric CMR in myocarditis and systemic inflammatory diseases. Int. J. Cardiovasc. Imaging 2017, 34, 35–54. [Google Scholar] [CrossRef]
- Lurz, P.; Luecke, C.; Eitel, I.; Föhrenbach, F.; Frank, C.; Grothoff, M.; de Waha, S.; Rommel, K.P.; Lurz, J.A.; Klingel, K.; et al. Comprehensive Cardiac Magnetic Resonance Imaging in Patients with Suspected Myocarditis the MyoRacer-Trial. J. Am. Coll. Cardiol. 2016, 67, 1800–1811. [Google Scholar] [CrossRef]
- Nagel, E.; Kwong, R.Y.; Chandrashekhar, Y.S. CMR in Nonischemic Myocardial Inflammation: Solving the Problem of Diagnosing Myocarditis or Still Diagnostic Ambiguity? J. Am. Coll. Cardiol. 2020, 13, 163–166. [Google Scholar] [CrossRef]
- Wheen, P.; Armstrong, R.; Daly, C.A. Recent Advances in T1 and T2 Mapping in the Assessment of Fulminant Myocarditis by Cardiac Magnetic Resonance. Curr. Cardiol. Rep. 2020, 22, 47. [Google Scholar] [CrossRef]
- Luetkens, J.A.; Homsi, R.; Dabir, D.; Kuetting, D.L.; Marx, C.; Doerner, J.; Schlesinger-Irsch, U.; Andrié, R.; Sprinkart, A.M.; Schmeel, F.C.; et al. Comprehensive Cardiac Magnetic Resonance for Short-Term Follow-Up in Acute Myocarditis. J. Am. Hearth Assoc. 2016, 5, e003603. [Google Scholar] [CrossRef]
- Ammirati, E.; Frigerio, M.; Adler, E.D.; Basso, C.; Birnie, D.H.; Brambatti, M.; Friedrich, M.G.; Klingel, K.; Lehtonen, J.; Moslehi, J.J.; et al. Management of Acute Myocarditis and Chronic Inflammatory Cardiomyopathy: An Expert Consensus Document. Circ. Heart Fail. 2020, 13, e007405. [Google Scholar] [CrossRef]
- Sagar, S.; Liu, P.P.; Cooper, L.T. Myocarditis. Lancet 2012, 379, 738–747. [Google Scholar] [CrossRef]
- Eichhorn, C.; Greulich, S.; Bucciarelli-Ducci, C.; Sznitman, R.; Kwong, R.Y.; Gräni, C. Multiparametric Cardiovascular Magnetic Resonance Approach in Diagnosing, Monitoring, and Prognostication of Myocarditis. JACC Cardiovasc. Imaging 2022, 15, 1325–1338. [Google Scholar] [CrossRef]
- Cooper, L.T.; Baughman, K.L.; Feldman, A.M.; Frustaci, A.; Jessup, M.; Kuhl, U.; Levine, G.N.; Narula, J.; Starling, R.C.; Towbin, J.; et al. The Role of Endomyocardial Biopsy in the Management of Cardiovascular Disease. J. Am. Coll. Cardiol. 2007, 50, 1914–1931. [Google Scholar] [CrossRef]
- Schulz-Menger, J.; Bluemke, D.A.; Bremerich, J.; Flamm, S.D.; Fogel, M.A.; Friedrich, M.G.; Kim, R.J.; Von Knobelsdorff-Brenkenhoff, F.; Kramer, C.M.; Pennell, D.J.; et al. Standardized image interpretation and post-processing in cardiovascular magnetic resonance—2020 update. J. Cardiovasc. Magn. Reson. 2020, 22, 19. [Google Scholar] [CrossRef]
- Bunck, A.C.; Baeßler, B.; Ritter, C.; Kröger, J.R.; Persigehl, T.; Santos, D.P.; Steinmetz, M.; Niehaus, A.; Bamberg, F.; Beer, M.; et al. Structured Reporting in Cross-Sectional Imaging of the Heart: Reporting Templates for CMR Imaging of Cardiomyopathies (Myocarditis, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Arrhythmogenic Right Ventricular Cardiomyopathy and Siderosis). In RöFo-Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren; Georg Thieme Verlag KG: New York, NY, USA, 2020; Volume 192, pp. 27–37. [Google Scholar]
- Kawel-Boehm, N.; Maceira, A.; Valsangiacomo-Buechel, E.R.; Vogel-Claussen, J.; Turkbey, E.B.; Williams, R.; Plein, S.; Tee, M.; Eng, J.; A Bluemke, D. Normal values for cardiovascular magnetic resonance in adults and children. J. Cardiovasc. Magn. Reson. 2015, 17, 29. [Google Scholar] [CrossRef]
- Liu, B.; Dardeer, A.M.; Moody, W.E.; Hayer, M.K.; Baig, S.; Price, A.M.; Leyva, F.; Edwards, N.C.; Steeds, R.P. Reference ranges for three-dimensional feature tracking cardiac magnetic resonance: Comparison with two-dimensional methodology and relevance of age and gender. Int. J. Cardiovasc. Imaging 2017, 34, 761–775. [Google Scholar] [CrossRef]
- American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging; Cerqueira, M.D.; Weissman, N.J.; Dilsizian, V.; Jacobs, A.K.; Kaul, S.; Laskey, W.K.; Pennell, D.J.; Rumberger, J.A.; Ryan, T.; et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002, 105, 539–542. [Google Scholar]
- Rosmini, S.; Bulluck, H.; Captur, G.; Treibel, T.; Abdel-Gadir, A.; Bhuva, A.N.; Culotta, V.; Merghani, A.; Fontana, M.; Maestrini, V.; et al. Myocardial native T1 and extracellular volume with healthy ageing and gender. Eur. Hearth J. Cardiovasc. Imaging 2018, 19, 615–621. [Google Scholar] [CrossRef]
- Sado, D.M.; Flett, A.S.; Banypersad, S.M.; White, S.K.; Maestrini, V.; Quarta, G.; Lachmann, R.; Murphy, E.; Mehta, A.; Hughes, D.; et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 2012, 98, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.Y.; Ghosn, M.G.; Khan, A.; Gramze, N.L.; Brunner, G.; Nabi, F.; Nambi, V.; Nagueh, S.F.; Nguyen, D.T.; Graviss, E.A.; et al. Myocardial Extracellular Volume Fraction Adds Prognostic Information Beyond Myocardial Replacement Fibrosis. Circ. Cardiovasc. Imaging 2019, 12, e009535. [Google Scholar] [CrossRef]
- Delong, E.R.; Delong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Radunski, U.K.; Lund, G.K.; Stehning, C.; Schnackenburg, B.; Bohnen, S.; Adam, G.; Blankenberg, S.; Muellerleile, K. CMR in patients with severe myocarditis: Diagnostic value of quantitative tissue markers including extracellular volume imaging. J. Am. Coll. Cardiol. Imaging 2014, 7, 667–675. [Google Scholar] [CrossRef]
- Luetkens, J.A.; Homsi, R.; Sprinkart, A.M.; Doerner, J.; Dabir, D.; Kuetting, D.L.; Block, W.; Andrie, R.P.; Stehning, C.; Fimmers, R.; et al. Incremental value of quantitative CMR including parametric mapping for the diagnosis of acute myocarditis. Eur. Hearth J. Cardiovasc. Imaging 2015, 17, 154–161. [Google Scholar] [CrossRef]
- Kellman, P.; Wilson, J.R.; Xue, H.; Ugander, M.; Arai, A.E. Extracellular volume fraction mapping in the myocardium, part 1: Evaluation of an automated method. J. Cardiovasc. Magn. Reson. 2012, 14, 63. [Google Scholar] [CrossRef]
- Treibel, T.; Fridman, Y.; Bering, P.; Sayeed, A.; Maanja, M.; Frojdh, F.; Niklasson, L.; Olausson, E.; Wong, T.; Kellman, P.; et al. Extracellular Volume Associates with Outcomes More Strongly Than Native or Post-Contrast Myocardial T1. JACC Cardiovasc. Imaging 2019, 13, 44–54. [Google Scholar] [CrossRef]
- Si-Mohamed, S.A.; Congi, A.; Ziegler, A.; Tomasevic, D.; Tatard-Leitman, V.; Broussaud, T.; Boccalini, S.; Bensalah, M.; Rouvière, A.-S.; Bonnefoy-Cudraz, E.; et al. Early Prediction of Cardiac Complications in Acute Myocarditis by Means of Extracellular Volume Quantification with the Use of Dual-Energy Computed Tomography. JACC Cardiovasc. Imaging 2021, 14, 2041–2042. [Google Scholar] [CrossRef]
- Si-Mohamed, S.; Restier, L.; Branchu, A.; Boccalini, S.; Congi, A.; Ziegler, A.; Tomasevic, D.; Bochaton, T.; Boussel, L.; Douek, P. Diagnostic Performance of Extracellular Volume Quantified by Dual-Layer Dual-Energy CT for Detection of Acute Myocarditis. J. Clin. Med. 2021, 10, 3286. [Google Scholar] [CrossRef]
- Ferreira, V.M.; Piechnik, S.K.; Dall’Armellina, E.; Karamitsos, T.D.; Francis, J.M.; Choudhury, R.P.; Friedrich, M.G.; Robson, M.D.; Neubauer, S. Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: A comparison to T2-weighted cardiovascular magnetic resonance. J. Cardiovasc. Magn. Reson. 2012, 14, 42. [Google Scholar] [CrossRef]
- Ferreira, V.M.; Piechnik, S.K.; Dall’Armellina, E.; Karamitsos, T.D.; Francis, J.M.; Ntusi, N.; Holloway, C.; Choudhury, R.P.; Kardos, A.; Robson, M.D.; et al. T1 Mapping for the diagnosis of acute myocarditis using CMR: Comparison to T2-Weighted and late gadolinium enhanced imaging. J. Am. Coll. Cardiol. 2013, 6, 1048–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messroghli, D.R.; Moon, J.C.; Ferreira, V.M.; Grosse-Wortmann, L.; He, T.; Kellman, P.; Mascherbauer, J.; Nezafat, R.; Salerno, M.; Schelbert, E.B.; et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imagi. J. Cardiovasc. Magn. Reson. 2017, 19, 75. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Amarasekera, A.T.; Li, C.; Bhat, A.; Chen, H.H.; Gan, G.C.; Ugander, M.; Tan, T.C. The utility of cardiac magnetic resonance imaging in the diagnosis of adult patients with acute myocarditis: A systematic review and meta-analysis. Int. J. Cardiol. 2022, 363, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Puntmann, V.O.; Zeiher, A.M.; Nagel, E. T1 and T2 mapping in myocarditis: Seeing beyond the horizon of Lake Louise criteria and histopathology. Expert Rev. Cardiovasc. Ther. 2018, 16, 319–330. [Google Scholar] [CrossRef]
- Kotanidis, C.P.; Bazmpani, M.-A.; Haidich, A.-B.; Karvounis, C.; Antoniades, C.; Karamitsos, T.D. Diagnostic Accuracy of Cardiovascular Magnetic Resonance in Acute Myocarditis. JACC Cardiovasc. Imaging 2018, 11, 1583–1590. [Google Scholar] [CrossRef]
- Blissett, S.; Chocron, Y.; Kovacina, B.; Afilalo, J. Diagnostic and prognostic value of cardiac magnetic resonance in acute myocarditis: A systematic review and meta-analysis. Int. J. Cardiovasc. Imaging 2019, 35, 2221–2229. [Google Scholar] [CrossRef]
- Schumm, J.; Greulich, S.; Wagner, A.; Grün, S.; Ong, P.; Bentz, K.; Klingel, K.; Kandolf, R.; Bruder, O.; Schneider, S.; et al. Cardiovascular magnetic resonance risk stratification in patients with clinically suspected myocarditis. J. Cardiovasc. Magn. Reson. 2014, 16, 14. [Google Scholar] [CrossRef]
- Greulich, S.; Seitz, A.; Müller, K.A.L.; Grün, S.; Ong, P.; Ebadi, N.; Kreisselmeier, K.P.; Seizer, P.; Bekeredjian, R.; Zwadlo, C.; et al. Predictors of Mortality in Patients with Biopsy-Proven Viral Myocarditis: 10-Year Outcome Data. J. Am. Hearth Assoc. 2020, 9. [Google Scholar] [CrossRef]
- Gräni, C.; Eichhorn, C.; Bière, L.; Murthy, V.L.; Agarwal, V.; Kaneko, K.; Cuddy, S.; Aghayev, A.; Steigner, M.; Blankstein, R.; et al. Prognostic Value of Cardiac Magnetic Resonance Tissue Characterization in Risk Stratifying Patients with Suspected Myocarditis. J. Am. Coll. Cardiol. 2017, 70, 1964–1976. [Google Scholar] [CrossRef]
- Becker, M.A.; Cornel, J.H.; Van de Ven, P.M.; van Rossum, A.C.; Allaart, C.P.; Germans, T. The Prognostic Value of Late Gadolinium-Enhanced Cardiac Magnetic Resonance Imaging in Nonischemic Dilated Cardiomyopathy: A Review and Meta-Analysis. J. Am. Coll. Cardiol. 2018, 11, 1274–1284. [Google Scholar] [CrossRef]
- Polte, C.L.; Bobbio, E.; Bollano, E.; Bergh, N.; Polte, C.; Himmelman, J.; Lagerstrand, K.M.; Gao, S.A. Cardiovascular Magnetic Resonance in Myocarditis. Diagnostics 2022, 12, 399. [Google Scholar] [CrossRef]
- Haaf, P.; Garg, P.; Messroghli, D.R.; Broadbent, D.A.; Greenwood, J.P.; Plein, S. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: A comprehensive review. J. Cardiovasc. Magn. Reson. 2016, 18, 89. [Google Scholar] [CrossRef]
- von Knobelsdorff-Brenkenhoff, F.; Schüler, J.; Dogangüzel, S.; Dieringer, M.A.; Rudolph, A.; Greiser, A.; Kellman, P.; Schulz-Menger, J. Detection and Monitoring of Acute Myocarditis Applying Quantitative Cardiovascular Magnetic Resonance. Circ. Cardiovasc. Imaging 2017, 10, e005242. [Google Scholar] [CrossRef]
- Grün, S.; Schumm, J.; Greulich, S.; Wagner, A.; Schneider, S.; Bruder, O.; Kispert, E.-M.; Hill, S.; Ong, P.; Klingel, K.; et al. Long-Term Follow-Up of Biopsy-Proven Viral Myocarditis: Predictors of Mortality and Incomplete Recovery. J. Am. Coll. Cardiol. 2012, 59, 1604–1615. [Google Scholar] [CrossRef]
Characteristic | Acute Group n = 25 (52) | Subacute Group n = 23 (48) | p-Value |
---|---|---|---|
Age [yrs] | 32 (22–45) | 48 (30–63) | |
Female | 12 (48) | 13 (56) | |
BMI [kg/m²] | 25 (23–29) | 24 (21–28) | |
Duration of symptoms [days] | 3 (2–6) | 29 (21–32) | |
Symptoms | |||
Dyspnea | 12 (48) | 8 (34) | n.s. |
Chest pain | 12 (48) | 5 (22) | n.s. |
Fever | 8 (32) | 8 (34) | n.s. |
Fatigue | 7 (28) | 9 (39) | n.s. |
Angina pectoris | 6 (24) | 6 (26) | n.s. |
Peripheral edema | 1 (4) | 1 (4) | n.s. |
NYHA-Classification | |||
NYHA I | 13 (52) | 15 (65) | n.s. |
NYHA II | 4 (16) | 5 (22) | n.s. |
NYHA III | 4 (16) | 2 (9) | n.s. |
NYHA IV | 4 (16) | 1 (4) | n.s. |
CVRF | |||
Arterial Hypertension | 3 (12) | 7 (30) | n.s. |
Diabetes | 2 (8) | 3 (13) | n.s. |
Dyslipidemia | 2 (8) | 3 (13) | n.s. |
Smoking | 2 (8) | 2 (9) | n.s. |
Obesity | 5 (20) | 4 (17) | n.s. |
ECG findings | |||
Tachycardic sinus rhythm | 1 (4) | 1 (4) | n.s. |
Left bundle branch block | 1 (4) | 0 | n.s. |
AV node block type III | 0 | 1 (4) | n.s. |
ST-segment elevation | 6 (24) | 0 | 0.012 |
T-wave inversion | 7 (28) | 0 | 0.007 |
Blood results | |||
Troponin [ng/L] | 508 (114–4391) | 39 (17–118) | <0.0001 |
Troponin elevated ♂ > 57 ♀ > 37 [ng/L] | 22 (88) | 13 (56) | 0.013 |
Troponin elevated >3 times | 19 (76) | 5 (22) | <0.001 |
Troponin elevated >5 times | 14 (56) | 1 (4) | <0.0001 |
NT-proBNP [ng/L] | 650 (175–1108) | 127 (78–455) | <0.0001 |
NT-proBNP elevated >300 [ng/L] | 20 (80) | 7 (30) | <0.001 |
CRP [mg/dL] | 5 (0.5–8) | 0.3 (0.1–1) | 0.001 |
CRP elevated >0.5 [mg/dL] | 18 (72) | 7 (30) | 0.004 |
Leucocytes [1/µL] | 11,300 (9100–14,300) | 8600 (7900–10,000) | 0.011 |
Leucocytes elevated >10,300 [1/µL] | 13 (52) | 4 (17) | 0.012 |
EMB, performed in n = 8 (100) patients | n = 6 (75) | n = 2 (25) | |
Presence of viral genomes (multiple possible) | |||
Parvovirus B19 | 2 (33) | 1 (50) * | n.s. |
Human herpesvirus 6 | 2 (33) | 1 (50) * | n.s. |
Epstein-Barr virus | 1 (16) | 1 (50) * | n.s. |
Parameter | Acute Group n = 25 (52) | Subacute Group n = 23 (48) | p-Value |
---|---|---|---|
Morphology [mm] | |||
LV-EDD 4-chamber view | 50 (46–56) | 50 (47–54) | n.s. |
RV-EDD 4-chamber view | 42 (40–48) | 44 (40–47) | n.s. |
IVS | 8 (7–10) | 8 (7–10) | n.s. |
Pericardial effusion | |||
Pericardial effusion [mm] | 5 (2–6) | 3 (2–4) | n.s. |
Pericardial effusion >5 mm | 12 (48) | 4 (17) | 0.022 |
Volumetry (LV) | |||
EF [%] | 58 (45–63) | 59 (47–64) | n.s. |
EF reduced ♂ > 57 ♀ < 58 | 11 (44) | 11 (48) | n.s. |
SV [mL] | 81 (60–101) | 90 (78–108) | n.s. |
Indexed SV [mL/m²] | 42 (32–48) | 51 (45–60) | 0.009 |
Indexed SV reduced ♂ > 43 ♀ < 40 | 12 (48) | 4 (17) | 0.022 |
EDV [mL] | 155 (125–190) | 167 (132–192) | n.s. |
Indexed EDV [mL/m²] | 73 (68–96) | 92 (79–103) | 0.034 |
Indexed EDV elevated ♂ > 100 ♀ > 95 | 7 (28) | 9 (39) | n.s. |
ESV [mL] | 61 (44–97) | 77 (54–100) | n.s. |
Indexed ESV [mL/m²] | 32 (25–52) | 42 (32–49) | n.s. |
Indexed ESV elevated ♂ > 39 ♀ > 35 | 9 (36) | 12 (52) | n.s. |
Peak strain (%) | |||
Global Radial strain | 27 (16–32) | 29 (23–34) | n.s. |
Global Radial strain reduced <22 | 9 (36) | 4 (17) | n.s. |
Global Circumferential strain | −18 (−20 to −15) | −18 (−21 to −16) | n.s. |
Global Circumferential strain reduced >−13 | 6 (24) | 4 (17) | n.s. |
Global Longitudinal strain | −12 (−15 to −10) | −13 (−15 to −12) | n.s. |
Global Longitudinal strain reduced >−9 | 5 (20) | 0 | 0.008 |
Parameter(s) | Sensitivity | Specificity | Positive Predictive Value | Negative Predictive Value | Accuracy |
---|---|---|---|---|---|
Single parameter | |||||
T1 relaxation times | 100 | 50 | 79 | 100 | 83 |
ECV | 96 | 83 | 92 | 91 | 91 |
T2 relaxation times | 87 | 75 | 87 | 75 | 83 |
LGE | 61 | 100 | 100 | 57 | 74 |
Combined parameters | |||||
T1 + ECV | 96 | 83 | 92 | 91 | 91 |
Lake Louise criteria | 87 | 83 | 91 | 77 | 86 |
ECV + T2 | 83 | 92 | 95 | 73 | 86 |
Parameter(s) | Acute Group n = 25 (52) | Subacute Group n = 23 (48) | p-Value |
---|---|---|---|
Late Gadolinium Enhancement (LGE) | |||
Prevalence | 22 (88) | 14 (61) | 0.028 |
Number of positive segments | 4 (2–5) | 2 (0–4) | n.s. |
>2 SD [% of LV myocardial mass] | 5 (3–9) | 3 (0–5) | 0.002 |
Pattern type | |||
Linear septal mid-myocardial | 6 (24) | 6 (26) | n.s. |
Linear subepicardial | 14 (56) | 8 (35) | n.s. |
Patchy | 6 (24) | 3 (13) | n.s. |
Mapping | |||
T1 global relaxation time [ms] | 1069 (1024–1127) | 1033 (995–1135) | n.s. |
T1 global elevated (>1053 ms) * | 14 (56) | 9 (39) | n.s. |
T1 elevated in ≥1 segment | 22 (88) | 21 (91) | n.s. |
T1 total of elevated segments | 9 (5–15) | 6 (2–13) | n.s. |
ECV global [%] | 33 (31–35) | 33 (30–36) | n.s. |
ECV global elevated (>30%) | 22 (88) | 15 (65) | n.s. |
ECV elevated in ≥1 segment | 24 (96) | 21 (91) | n.s. |
ECV total of elevated segments | 10 (7–14) | 10 (6–14) | n.s. |
T2 global relaxation time [ms] | 53 (52–56) | 51 (48–54) | n.s. |
T2 global elevated (>51 ms) * | 20 (80) | 10 (43) | 0.008 |
T2 elevated in ≥1 segment | 23 (92) | 20 (87) | n.s. |
T2 total of elevated segments | 10 (8–15) | 6 (2–11) | 0.048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brendel, J.M.; Klingel, K.; Kübler, J.; Müller, K.A.L.; Hagen, F.; Gawaz, M.; Nikolaou, K.; Greulich, S.; Krumm, P. Comprehensive Cardiac Magnetic Resonance to Detect Subacute Myocarditis. J. Clin. Med. 2022, 11, 5113. https://doi.org/10.3390/jcm11175113
Brendel JM, Klingel K, Kübler J, Müller KAL, Hagen F, Gawaz M, Nikolaou K, Greulich S, Krumm P. Comprehensive Cardiac Magnetic Resonance to Detect Subacute Myocarditis. Journal of Clinical Medicine. 2022; 11(17):5113. https://doi.org/10.3390/jcm11175113
Chicago/Turabian StyleBrendel, Jan M., Karin Klingel, Jens Kübler, Karin A. L. Müller, Florian Hagen, Meinrad Gawaz, Konstantin Nikolaou, Simon Greulich, and Patrick Krumm. 2022. "Comprehensive Cardiac Magnetic Resonance to Detect Subacute Myocarditis" Journal of Clinical Medicine 11, no. 17: 5113. https://doi.org/10.3390/jcm11175113
APA StyleBrendel, J. M., Klingel, K., Kübler, J., Müller, K. A. L., Hagen, F., Gawaz, M., Nikolaou, K., Greulich, S., & Krumm, P. (2022). Comprehensive Cardiac Magnetic Resonance to Detect Subacute Myocarditis. Journal of Clinical Medicine, 11(17), 5113. https://doi.org/10.3390/jcm11175113