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Abstract: Background. At present, EC staging is based on the WHO conservative criteria, which only
consider the percentage of gland formation. The molecular subgrouping of EC recently proposed
by the Cancer Genome Atlas (TCGA) represents a milestone in precise molecular-based patient
triage. The present study aimed to investigate the influence of FGFR-2 on the epithelial-mesenchymal
transition (EMT) and whether it can lead to endometrial cancer dedifferentiation. Methods. One
hundred and three White female patients with confirmed EC were enrolled in our research. For
check for the analysis, we performed next-generation sequencing and immunohistochemical analyses of E-
updates cadherin, 3-catenin, and vimentin. Results. Tumor grade progression was closely correlated with LVI
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(p = 0.0028). Similar observations were noted with regard to TNM/FIGO stage progression. In terms
of FGFR-2 mutation, we found the following correlation p-values: LVI (p = 0.069), expression of
vimentin (p = 0.000), tumor budding (p = 0.000), and lack of E-cadherin (p = 0.000), RFS (p = 0.032),
ECSS (p = 0.047). Conclusions. FGFR-2 is the important factor influencing on EMT.
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Published: 15 September 2022 In recent decades, the morbidity and mortality associated with endometrial cancer
(EC) have been increasing despite diagnostic progress. For decades it was believed that
obesity and longtime estrogen exposure were particularly associated with EC. Moreover,
this malignancy is much more common in high-income countries due to their high rates
of obesity [1]. To date, the oncological grading system for EC is based on WHO rules
where solid areas and gland formation make up its core [2]. The Cancer Genome Atlas
(TCGA) has recently proposed molecular subgroupings that represent a milestone in precise,
By molecular-based patient triage [3]. Mechanically, a new diagnostic algorithm has been
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The association between hormone receptors and prognostic variables (FIGO stage, grade,
and survival) has been well documented in EC [5]. A recent study reports the involvement of 3-
catenin in tumor progress via the impact of epidermal growth factor receptor rearrangements.
Junctional adhesive molecule-A (JAM-A) can regulate EGFR levels by modulating (3-catenin
localization [6]. The environment where cancer grows is composed of stromal cells and
inflammatory cells and their outputs in the form of growth hormones, ligands, or cytokines.
It promotes epithelial cell proliferation and cell differentiation as well. The last decade has
provided us with insights into transcription factors that can modulate E-cadherin expression
and induce deep changes in the cytoskeleton allowing for both its infiltration by singular cells
and wider invasions. These factors include the transforming growth factor-beta, epidermal
growth factor, insulin growth factor 1, interleukin, vascular endothelial growth factor, platelet-
derived growth factor, integrin/integrin-linked kinase, Notch, fibroblast growth factor, and
Wnt/b-catenin signaling pathways. Most of these signals exert their action on E-cadherin
repression through the modulation of a set of pleiotropically acting transcription factors,
including members of the Snail (Snail and Slug) and basic helix-loop-helix (E47 and Twist)
families, as well as two double zinc finger and homeodomain (Zebl and Zeb?2) factors [7-10].
Moreover, stromal desmoplasia provides cancer-associated fibroblasts that in turn induce the
secretion of EGF, TGF-$3, HGF, and FGF-2 [11].

Estrogen-induced endometrial stromal cells could secrete fibroblast growth factor
(FGF), which in turn binds to the fibroblast growth factor receptor family (FGFR) receptors
on the cell membrane and acts as a pro-proliferative factor. Moreover, FGFR-2 receptor
mutation leads to its overexpression and overactivity. A first large-cohort study concerning
FGFR?2 in EC started over decade ago. Results unveiled 10% FGFR2 mutation contribution
in endometrioid EC. Moreover, the authors noted shorter RFS and OS in cases harboring
FGFR2 mutation [12,13]. Another study has demonstrated the cancer microenvironment’s
impact to cell adhesion, biological adhesion, bone development, and extracellular matrix
organization. Interestingly, the authors observed impacts on the Wnt pathway and -
catenin via protocadherin « gene cluster (PCDHA) disturbances, which play a crucial role
in cadherin maintenance [14,15].

Aim. We intend to estimate the contribution of FGFR?2 to the epithelial-mesenchymal
transition (EMT), tumor budding, and prognosis.

2. Materials and Methods

A total of one hundred and three White female patients with confirmed EC were
enrolled. All patients underwent surgery and other diagnostic oncological procedures
between 2005 and 2017. The collective evaluation data and follow-up data were tabulated.
To align tumor staging, each case was re-diagnosed according to the Eighth Edition of the
TNM Classification system and the recent ESMO Clinical Practice Guidelines for diagnosis,
treatment, and follow-up [16,17].

All participants underwent surgical treatment without previous radio-chemotherapy
to conduct a credible comparative analysis of the tumor characteristics, treatment, and
unchanged molecular profiling. A complete characteristic of studied group was described
in our previous publication [18].

To achieve the goal, we used an Illumina Hot Spot Cancer Panel (Illumina Inc., San
Diego, CA, USA). The gene panel comprised BL1, EGFR, GNAS, KRAS, PTPN11, AKT1,
ERBB2, GNAQ, MET, RB1, ALK, ERBB4, HNF1A, MLH1, RET, APC, EZH2, HRAS, MPL,
SMAD4, ATM, FBXW7, IDH1, NOTCH1, SMARCB1, BRAF, FGFR1, JAK2, NPM1, SMO,
CDH1, FGFR2, JAK3, NRAS, SRC, CDKN2A, FGFR3, IDH2, PDGFRA, STK11, CSFIR, FLT3,
KDR, PIK3CA, TP53, CTNNB1, GNA11, KIT, PTEN, and VHL. The sequencing target was
2800 COSMIC mutations from 50 oncogenes and tumor suppressor genes.

In addition, we performed a tissue microarray (TMA Master II, 3DHistech) for the
immunohistochemistry analysis. We performed the immunohistochemical assays using
the automated IHC/ISH slide staining system BenchMark Ultra (Ventana Medical Sys-
tems; Roche Group, Tucson, AZ, USA). After the deparaffinization and rehydration of the
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samples, we performed the unmasking processes using a CC1 (Ventana Medical Systems;
Roche Group, Tucson, AZ, USA) and incubation with primary antibodies (the time and
temperature of both antigen retrieval and primary antibody incubation followed the manu-
facturer’s recommendations). In addition, further routine steps were performed. Moreover,
we used the Ventana ultra-View Universal DAB Detection Kit and Opti View Detection Kit.
The immunohistochemistry details are presented in Table 1.

Table 1. The antibodies’ characteristics.

Clone Dilution Manufacturer Positive Expression
B-catenin 14—monoclonal; mouse 1.64 ug/mL; ready to use Cell Marque Nuclear/Cytoplasmic
Vimentin Vim 3B4 ready to use Ventana Cytoplasmic
ER SP1 monoclonal, rabbit 1 pug/mL; ready to use Ventana Nuclear
E-cadherin 36 monoclonal; mouse 0.314 ug/mL; ready to use Ventana Membranous

As the tumor cell budding phenomenon has been described for colorectal cancer, we
decided to explore it in endometrial cancer. Tumor budding was performed according to
the method of Ueno et al. and the recent consensus of the International Tumor Budding
Consensus Conference [19,20]. We decided to confirm the EMT in cases that were vimentin
positive, E-cadherin negative, and had four or more tumor buds per 0.785 mm?. Substantial
Lymphovascular invasion (LVI) was defined as >4 LVSI-positive vessels in at least one
H&E slide.

2.1. Molecular Analysis

DNA isolation: Cancer genomic DNA was extracted from formalin-fixed paraffin-embedded
tissue using a MagCore® Genomic DNA FFPE One-Step Kit (RBC Bioscience, Taiwan). The
quality was quantified using a DeNovix DS-11 Spectrophotometer (DeNovix, Wilmington, DE,
USA) and a QuantiFluo® ONE dsDNA System (Promega, Madison, WL, USA).

The assay generates a library of 207 gene-specific amplicons and targets ~2800 clinically
relevant mutations.

Sequencing: The products were analyzed via next-generation sequencing (NGS) using
an [llumina platform, MiSeq Dx.

Data analysis: the analysis of NGS data was performed using the GALAXY platform
(usegal-axy.org, accessed on). Sequencing reads (FASTQ files) were aligned to the human ref-
erence genome hg19 using the Bowtie2 tool. Variant calling was performed using the Varscan2
tool. The parameters used for the analysis were minimum allele frequency—0.05, minimum
quality—20, and minimum coverage x80. All variants were annotated with ANNOVAR
(https:/ /wannovar.wglab.org, accessed on 2 May 2022). The results were visualized using the
R Bioconductor package by Maftools (http://bioconductor.org/, accessed on 2 May 2022).
More details have been described in previous study [18].

2.2. Ethical Statement

This retrospective study used human tissues for the experiment was performed in
accordance with the updated ethical standards of the Declaration of Helsinki (2004). In
addition, the study was approved by the Ethical Commission of the Faculty of Medicine
and Health Science, Jan Kochanowski University, Kielce, Poland on 3 December 2019
(decision No. 47/2019).

2.3. Statistical Analysis

Descriptive statistics were gathered in order to summarize the data in a manageable
form. Quantitative data are reported as mean, standard deviation, median, and range.
Categorical data are expressed as number and percentage distributions. The chi-square
test or Fisher’s exact test was applied to compare proportions, and a multivariable logistic
regression model was used to assess the relationship between the targeted genes. The
follow-up period was calculated as the number of years from the date of surgery to disease
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recurrence. Deaths that occurred from causes other than cancer were recorded. The last
contact with the patient is also presented. The univariate associations between disease-free
survival in selected patients and tumor characteristics were evaluated using the univariate
Cox proportional hazard model. Analyses of continuous variables were dichotomized
in the median. To identify the independent prognostic factor for disease-free survival,
multivariate Cox proportional hazard models with backward selection (with the cut-off
at 0.05) were performed on variables that were statistically significant in univariate and
multivariate analyses.

All statistical tests were two-sided, and values <0.05 were considered significant. The
computations were performed using STATISTICA (data analysis software system) version 12
(2014) (StatSoft, Inc., Tulsa, OK, USA, http:/ /www.statsoft.com/, accessed on 2 May 2022).

3. Results
3.1. Epithelial-Mesenchymal Transition Analysis

Table 2 presents the crucial data influencing the prognosis with regard to vimentin,
EMT, E-cadherin, B-catenin, and estrogen receptors. As can be seen, vimentin positive/E-
cadherin negative cells and EMT strongly correlated with stage and grade progress.

Table 2. Tumor characteristics and expression of targeting proteins according to grade, stage, and
FGFR-2 mutation.

N=103 G(N) TNM/FIGO Stage Grade FGFR2 FGFR2 Wild
Gl G2 G3 IA IB I III w Progress Progress Mutation (N) Type (N) 4

Histopathological type
> Endometrioid 14 15 n/a n/a 10 %3 p <0.001
> Non -endometriod 49 39 7 25 21 20 4 5 0 0
ESMO
> Low grade 49 17 0 49 20 18 0 0 n/a n/a 3 100 p=0021
> High grade 0 22 7 0 1 2 10 14 7 3
Substantial lymphovascular B
invasion (LVI) 0 20 7 0 2 4 7 11 p=0.038 p <0.001 3 24 p>0.05
Vimentin+ 0 14 22 0 0 1 16 20 p <0.001 p <0.009 10 2 p <0.001
EMT (tumor budding plus
vimentin+, E-cadherin 0 6 14 0 4 5 6 17 p<0.01 p <0.001 10 1 p <0.001
negative)
B-catenin 5 9 1 7 3 5 0 0 p=0.044 p =0.032 6 9 p>0.05
E-cadherin lack 0 1 4 0 0 3 6 10 p =0.002 p <0.00 9 1 p <0.001
ER (77%) 42 33 5 54 10 12 2 1 p>05 p>05 4 76 p <0.001

Tumor grade progression was closely correlated with LVI (R = 0.2113, p = 0.0338), ex-
pression of vimentin (R = 0.5344, p = 0.000), tumor budding (r = 0.4867, p = 0.000), B-catenin
(R =0.410, p = 0.044), and lack of E-cadherin (R = 0.2950, p = 0.0028). Similar observations were
noted with regard to TNM/FIGO stage progression—LVI (R = 0.6949, p = 0.000), expression
of vimentin (R = 0.2573, p = 0.009), tumor budding (R = 0.3098, p = 0.000), B-catenin (R = 0.437,
p = 0.032), and lack of E-cadherin (R =0.3291, p = 0.000). Moreover, mutation of FGFR-2
contributed to E-cadherin expression decline (p < 0.001) and EMT (p < 0.001).

3.2. Epithelial-Mesenchymal Transition and FGFR-2 Mutation Impact on Survive

As previously reported the FGFR-2 mutation was observed in 14% [18]. The comparative
analysis of FGFR-2 mutation vs grade, stage, survive, age, and BMI are presented in Table 3.
FGFR2 mutation occurred very rare in FIGO G1 tumors (p = 0.016). Analysis of low vs high
grade FIGO stage pointed FGFR2 as more common in advanced tumors (p = 0.034), and finally
the shorter time of RFS and ACSS was observed in cases with FGFR2 mutation (p < 0.05).
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Table 3. The analysis of FGFR-2 mutation impact on grade, stage and survive.

FGFR-2 Mutated FGFR-2 Wild Type P
Age (median) 72 70 p=0.1632
BMI (median) 322 34 p>0.05
FIGO G1 2 47 p=0.016
FIGO G2 3 36 p>0.05
FIGO G3 6 1 p>0.05
FIGO stage I/11 3 72 p>0.05
FIGO stage II/1V 7 21 p=0.034
OS (median) (years) 7.7 8 p>0.05
RFS (median) (years) 4 6.2 p =0.032
ECSS (endometrial cancer specific 52 74 p=0047

survival; median)

The OS correlation was positive for beta catenin (test log-rank for beta-catenin—p = 0.03977;
HR test 0.456, p = 0.041). The Kaplan-Meier curves in Figure 1 present the strongest impacts
were caused by LVI+, E-cadherin loss, and tumor budding. The Cox model (Table 4) provided
us similar information but multivariant test pointed LVI as the most important one.
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Figure 1. Kaplan—-Meier curves for lymphovascular invasion, loss of E-cadherin, 3-catenin, and

tumor budding.
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Table 4. A comparison of univariate and multivariate Cox models.
Univariate Cox Model Multivariate Cox Model
Chi Square HR CI95% P Chi Square HR P CI95%
LVI+ 42.84 0.0779 —1.65to —0.89 0.000 43.58 0.061 0.000 —3.61to —1.96
Tumor budding 3.997 0.4821 —1.44 to —0.01 0.0455 0.080 0.8338 0.776 —1.43 to 1.07
Vimentin+ 3.377 0.4934 —0.72 to —0.02 0.066 0.047 0.877 0.827 —1.30 to 1.043
E—cadherin 5.238 0.38 —1.79to —0.13 0.022 0.524 0.628 0.469 —1.72t0 0.79
FGFR2 mutation 3.203 0.42 —0.89t0 0.12 0.043 0.2850 1.635 0.59 —1.54 to 0.66

As can be seen in Table 4, LVI had the strongest impact on OS. The following question
was: is there a correlation between LVI and targeted genes panel?

The mutational contributions were as follows: PTEN 49%, PIK3CA 35%, KRAS 25%,
TP53 20%, FGFR-2 14%, CTNNB1 12%, FBXW7 9%, ATM 1%, ALK1 1%, and APC 1%. An
attempt to join the EMT’s features with high-grade mutations showed the following results:
TP53, KRAS vs. vimentin, E-cadherin, and tumor budding (p > 0.05). Lympho-vascular
invasion was more commonly observed in TP53 mutated tumors (R = 0.3138, p = 0.009).
The opposite results were obtained with respect to FGFR-2 mutation. Here, were noted the
results as follows: LVI (R = 0.2181, p = 0.069), expression of vimentin (R = 0.8199, p = 0.000),
tumor budding (R = 0.6407, p = 0.000), and lack of E-cadherin (R =0.6948, p = 0.000).
Figure 2 depicts vimentin reactivity in poorly differentiated cancer and change in can-
cer cell morphology called EMT.

Figure 2. The compilation of five pictures representing of EMT and tumor budding in aspect of FGFR-2
mutation (p = 0.000). (A) Vimentin+ singular cancer cells forming small groups. (B) Vimentin+ stromal
cells. Note the lack of expression in well-formed glands. (C) H&E staining showing small groups
(arrows) of pleomorphic and spindle cells. (D) Pancytokeratin staining showing singular and small buds
of cancer cells as an example of tumor budding. (E) A focal lack of E-cadherin leads to a gradual loss of
epithelial characteristics.
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To analyze the interaction between FGFR-2 and {3-catenin, we excluded all cases with
CTNNB-1 and APC mutations. This allowed us to analyze other ways of Wnt pathway
activation. Beta-catenin showed a correlation with FGFR-2 mutation (R = 0.2508, p = 0.04058).
Moreover, beta-catenin expression was observed in the progress stage (R = 0.2209, p = 0.0263)
with a prognostic impact on RFS (R = 0.2049, p = 0.0388). Worse clinical outcomes were
observed in patients with a BMI between 30 and 34.99 with beta-catenin expression (R = 0.1931,
p = 0.0410).

4. Discussion

A remarkable change in the molecular subgrouping of EC has been witnessed in recent
years. Low- and high-grade EC groupings have been proposed, where the latter is driven
by TP53 mutation, high copy number variations, and microsatellite stability. This study
attempted to discuss the internal crossing pathway involved in EC progress, especially
in the context of the EMT. Ueno et al. first proposed their criteria for colorectal cancer
grading to the WHO almost 20 years ago [19]. In our study, we observed the same cancer
cell attributes, including the loss of intercellular connections before becoming a hybrid
epithelial-mesenchymal cell. However, it is less common then in colorectal cancer, poorly
differentiated EC present the same EMT attributes. The available data concerning FGFR-2
and f3-catenin are extremely poor. Their cooperation was reported in embryogenesis,
wound healing, and even cancer [20-22].

A recent study indicated that FGFR-2 mutation is a causative factor of the EMT in
EC [23]. The dysregulation of FGF secretion and FGFR expression in stromal, estrogen
positive cells, and also cancer cells can be a driving force in cancer progression [24]. Our
results on aspects of the EMT confirmed a direct negative impact on OS. Interestingly, a
distinctive tumor attribute of lympho-vascular invasion (LVI) was observed more frequently
in high-grade TP53 mutated tumors, especially with EMT. Our results unanimously confirm
that EMT features are useful for prediction but only LVI reached the predictive validity
in the multivariant Cox model. The approach to explain LVI mechanism led us to TP53
pathway, but the FGFR2 mutation in this field is still unclear. Our results confirmed
previous data concerning RFS and OS [13]. We observed shorter time of RFS and ACSS
with no final impact on OS.

Much is known about E-cadherin, Snaill /2, vimentin, and other attributes of the EMT,
but the role of catenin is still unclear in this field. For many years, 3-catenin has been
perceived as a factor that worsens prognosis in EC. Recently, a new paper put a new light
on the -catenin-dependent EMT. In essence, Wnt/ 3-catenin pathway activation plays a
pivotal role in the epithelial-mesenchymal transition (EMT). The Wnt pathway is closely
associated with the overexpression of Snail, Slug, and Twist, which control the down-
regulation of the adherens junction epithelial protein (E)-cadherin and the upregulation
of the mesenchymal-specific marker neuronal(N)-cadherin during the EMT, promoting
cell migration [25]. A recent paper by Ferguson et al. perfectly explains the action and
regulation of the FGF axis. In the context of 3-catenin, the authors first joined FGFR-2
with E-cadherin and indirectly with -catenin. FGFR interacts directly with cadherins
(and NCAMs) through the conserved acid-box region in IgIII [26-29] and then activates
many pathways. In our study, 3-catenin was observed in nuclear compartment or focal
loss of membrane expression in APC, CTNNB-1, and CDH-1 wild-type tumors. Moreover,
these tumors presented FGFR-2 mutation. The results concerning its impact on OS, grade,
and stage were positive, but this may be an additional result of FGFR activation. In our
study, we found that the loss of tumor cells’ integrality by tumor budding together with
vimentin expression vividly promotes the EMT. We observed a tight correlation between
the EMT and advanced grade and stage and with general OS. The present study indirectly
confirms the cross-talks between transcriptional factors and abnormal gene function as was
published by us recently [30].

The role of cancer stem cells (CSC) has been discussed many times in the literature. Their
contribution to tumor dedifferentiation and impact on ECM, EMT, and chemoresistance have
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led to many trials directed towards CSC inhibition [31]. A recent paper by Chen et al. presents
the clinical implications of EMT regulation. The presented in vitro and in vivo preclinical
studies both demonstrated that isoliquiritigenin (ISL) efficiently suppressed endometrial
cancer cell migration and reduced the HEC-1A-LUC tumor metastasis in nude mice by
inhibiting the TGF-f3/Smad signaling pathway. These findings will likely lead to further
research to highlight ISL's potential in the treatment of endometrial cancer metastasis [31].

5. Conclusions

Our study confirmed that EMT would be a reliable biomarker for the prediction of
EC outcomes.
FGFR-2 mutation could contribute to EMT and indirectly worsens prognosis.
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